Tải bản đầy đủ (.pdf) (50 trang)

Phép tính vi phân hàm nhiều biến

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (310.58 KB, 50 trang )

Chu
.
o
.
ng 9
Ph´ep t´ınh vi phˆan h`am
nhiˆe
`
ubiˆe
´
n
9.1 D
-
a
.
oh`amriˆeng .................110
9.1.1 D
-
a
.
o h`am riˆeng cˆa
´
p1.............110
9.1.2 D
-
a
.
o h`am cu

a h`am ho
.


.
p............111
9.1.3 H`am kha

vi..................111
9.1.4 D
-
a
.
o h`am theo hu
.
´o
.
ng.............112
9.1.5 D
-
a
.
o h`am riˆeng cˆa
´
pcao............113
9.2 Vi phˆan cu

a h`am nhiˆe
`
ubiˆe
´
n.........125
9.2.1 Vi phˆan cˆa
´

p1.................126
9.2.2
´
Ap du
.
ng vi phˆan d
ˆe

t´ınh gˆa
`
nd´ung . . . . . 126
9.2.3 C´ac t´ınh chˆa
´
tcu

aviphˆan..........127
9.2.4 Vi phˆan cˆa
´
pcao ...............127
9.2.5 Cˆong th´u
.
cTaylor...............129
9.2.6 Vi phˆan cu

ah`amˆa

n .............130
9.3 Cu
.
.

c tri
.
cu

a h`am nhiˆe
`
ubiˆe
´
n .........145
110 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
9.3.1 Cu
.
.
c tri
.
....................145
9.3.2 Cu
.
.
c tri
.
c´o d

iˆe
`
ukiˆe
.
n .............146
9.3.3 Gi´a tri
.
l´o
.
n nhˆa
´
t v`a b´e nhˆa
´
tcu

a h`am . . . . 147
9.1 D
-
a
.
oh`am riˆeng
9.1.1 D
-
a
.
o h`am riˆeng cˆa
´
p1
Gia


su
.

w = f(M), M =(x, y) x´ac d
i
.
nh trong lˆan cˆa
.
n n`ao d´o c u

adiˆe

m
M(x, y). Ta
.
id
iˆe

m M ta cho biˆe
´
n x sˆo
´
gia t`uy´y∆x trong khi vˆa
˜
ngi˜u
.
gi´a tri
.
cu


abiˆe
´
n y khˆong d
ˆo

i. Khi d´o h`am f(x, y) nhˆa
.
nsˆo
´
gia tu
.
o
.
ng
´u
.
ng l`a

x
w = f(x +∆x, y)− f(x, y)
go
.
il`asˆo
´
gia riˆeng cu

a h`am f(x, y) theo biˆe
´
n x ta
.

id
iˆe

m M(x, y).
Tu
.
o
.
ng tu
.
.
d
a
.
ilu
.
o
.
.
ng

y
w = f(x, y +∆y) − f(x, y)
go
.
il`asˆo
´
gia riˆeng cu

a h`am f(x, y) theo biˆe

´
n y ta
.
id
iˆe

m M(x, y).
D
-
i
.
nh ngh˜ıa 9.1.1
1. Nˆe
´
utˆo
`
nta
.
i gi´o
.
iha
.
nh˜u
.
uha
.
n
lim
∆x→0


x
w
∆x
= lim
∆x→0
f(x +∆x, y)− f(x, y)
∆x
th`ı gi´o
.
iha
.
nd
´odu
.
o
.
.
cgo
.
il`ad
a
.
o h`am riˆeng cu

a h`am f(x, y) theo biˆe
´
n
x ta
.
id

iˆe

m(x, y)v`adu
.
o
.
.
cchı

bo
.

imˆo
.
t trong c´ac k´yhiˆe
.
u
∂w
∂x
,
∂f(x, y)
∂x
,f

x
(x, y),w

x
.
9.1. D

-
a
.
o h`am riˆeng 111
2. Tu
.
o
.
ng tu
.
.
:nˆe
´
utˆo
`
nta
.
i gi´o
.
iha
.
n
lim
∆y→0

y
w
∆y
= lim
∆y→0

f(x, y +∆y)− f(x, y)
∆y
th`ı gi´o
.
iha
.
nd
´odu
.
o
.
.
cgo
.
il`ad
a
.
o h`am riˆeng cu

a h`am f(x, y) theo biˆe
´
n
y ta
.
id
iˆe

m M(x, y)v`adu
.
o

.
.
cchı

bo
.

imˆo
.
t trong c´ac k´yhiˆe
.
u
∂w
∂y
,
∂f(x, y)
∂y
,f

y
(x, y),w

y
.
T`u
.
d
i
.
nh ngh˜ıa suy r˘a

`
ng da
.
o h`am riˆeng cu

a h`am hai biˆe
´
n theo biˆe
´
n
x l`a d
a
.
o h`am thˆong thu
.
`o
.
ng cu

a h`am mˆo
.
tbiˆe
´
n x khi cˆo
´
d
i
.
nh gi´a tri
.

cu

abiˆe
´
n y.Dod
´o c ´a c da
.
o h`am riˆeng du
.
o
.
.
c t´ınh theo c´ac quy t˘a
´
cv`a
cˆong th´u
.
c t´ınh d
a
.
o h`am thˆong thu
.
`o
.
ng cu

a h`am mˆo
.
tbiˆe
´

n.
Nhˆa
.
nx´et. Ho`an to`an tu
.
o
.
ng tu
.
.
ta c´o thˆe

d
i
.
nh ngh˜ıa da
.
o h`am riˆeng
cu

a h`am ba (ho˘a
.
c nhiˆe
`
uho
.
n ba) biˆe
´
nsˆo
´

.
9.1.2 D
-
a
.
o h`am cu

a h`am ho
.
.
p
Nˆe
´
u h`am w = f(x, y), x = x(t), y = y(t)th`ıbiˆe

uth´u
.
c w =
f[x(t),y(t)] l`a h`am ho
.
.
pcu

a t. Khi d
´o
dw
dt
=
∂w
∂x

·
dx
dt
+
∂w
∂y
·
dy
dt
· (9.1)
Nˆe
´
u w = f(x, y), trong d
´o x = x(u, v), y = y(u, v)th`ı







∂w
∂u
=
∂w
∂x
∂x
∂u
+
∂w

∂y
∂y
∂u
,
∂w
∂v
=
∂w
∂x
∂x
∂v
+
∂w
∂y
∂y
∂v
·
(9.2)
9.1.3 H`am kha

vi
Gia

su
.

h`am w = f(M) x´ac d
i
.
nh trong mˆo

.
t lˆan cˆa
.
n n`ao d´ocu

adiˆe

m
M(x, y). H`am f d
u
.
o
.
.
cgo
.
i l`a h`am kha

vi ta
.
id
iˆe

m M(x, y)nˆe
´
usˆo
´
gia
112 Chu
.

o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
∆f(M)=f(x +∆,y +∆y) − f(x, y)cu

a h`am khi chuyˆe

nt`u
.
d
iˆe

m
M(x, y)d
ˆe
´
ndiˆe

N(x +∆,y+∆y) c´o thˆe

biˆe

udiˆe
˜
ndu
.

´o
.
ida
.
ng
∆f(M)=D
1
∆x + D
2
∆y + o(ρ),ρ→ 0
trong d
´o ρ =

∆x
2
+∆y
2
.
Nˆe
´
u h`am f(x, y) kha

vi ta
.
id
iˆe

m M(x, y)th`ı
∂f
∂x

(M)=D
1
,
∂f
∂y
(M)=D
2
v`a khi d´o
∆f(M)=
∂f
∂x
(M)∆x +
∂f
∂y
∆y + o(ρ),ρ→ 0. (9.3)
9.1.4 D
-
a
.
o h`am theo hu
.
´o
.
ng
Gia

su
.

:

(1) w = f(M) l`a h`am x´ac d
i
.
nh trong lˆan cˆa
.
n n`ao d´o c u

adiˆe

m
M(x, y);
(2) e = (cos α, cos β) l`a vecto
.
d
o
.
nvi
.
trˆen d
u
.
`o
.
ng th˘a

ng c´o hu
.
´o
.
ng

L qua d
iˆe

m M(x, y);
(3) N = N(x +∆x, y +∆y)l`ad
iˆe

m thuˆo
.
c L v`a ∆e l`a dˆo
.
d`ai cu

a
d
oa
.
n th˘a

ng MN.
Nˆe
´
utˆo
`
nta
.
i gi´o
.
iha
.

nh˜u
.
uha
.
n
lim
∆→0
(N →M)
∆w
∆
th`ı gi´o
.
iha
.
nd
´odu
.
o
.
.
cgo
.
il`ad
a
.
o h`am ta
.
idiˆe

m M(x, y) theo hu

.
´o
.
ng cu

a
vecto
.
e v`a d
u
.
o
.
.
ck´yhiˆe
.
ul`a
∂w
∂e
,t´u
.
cl`a
∂w
∂e
= lim
∆→0
∆w
∆
·
9.1. D

-
a
.
o h`am riˆeng 113
Da
.
o h`am theo hu
.
´o
.
ng cu

a vecto
.
e = (cos α, cos β)d
u
.
o
.
.
c t´ınh theo
cˆong th´u
.
c
∂f
∂e
=
∂f
∂x
(M) cos α +

∂f
∂y
(M) cos β. (9.4)
trong d
´o cos α v`a cos β l`a c´ac cosin chı

phu
.
o
.
ng cu

a vecto
.
e .
Vecto
.
v´o
.
i c´ac to
.
ad
ˆo
.
∂f
∂x
v`a
∂F
∂y
(t´u

.
c l`a vecto
.

∂f
∂x
,
∂f
∂y

)d
u
.
o
.
.
cgo
.
i
l`a vecto
.
gradiˆen cu

a h`am f(M)ta
.
id
iˆe

m M(x, y)v`adu
.

o
.
.
ck´yhiˆe
.
ul`a
gradf(M).
T`u
.
d
´o d a
.
o h`am theo hu
.
´o
.
ng
∂f
∂e
c´o biˆe

uth´u
.
cl`a
∂f
∂e
=

gradf,e


.
Ta lu
.
u´yr˘a
`
ng: 1) Nˆe
´
u h`am w = f(x, y) kha

vi ta
.
id
iˆe

m M(x, y)
th`ı n´o liˆen tu
.
cta
.
i M v`a c´o c´ac d
a
.
o h`am riˆeng cˆa
´
p1ta
.
id´o ;
2) N´eu h`am w = f(x, y) c´o c´ac d
a
.

o h`am riˆeng cˆa
´
p 1 theo mo
.
ibiˆe
´
n
trong lˆan cˆa
.
nn`aod
´ocu

adiˆe

m M(x, y) v`a c´ac da
.
o h`am riˆeng n`ay liˆen
tu
.
cta
.
id
iˆe

m M(x, y) th`ı n´o kha

vi ta
.
idiˆe


m M.
Nˆe
´
u h`am f(x, y) kha

vi ta
.
id
iˆe

m M(x, y) th`ı n´o c´o da
.
o h`am theo
mo
.
ihu
.
´o
.
ng ta
.
id
iˆe

md´o .
Ch´u´y.Nˆe
´
u h`am f(x, y)c´od
a
.

o h`am theo mo
.
ihu
.
´o
.
ng ta
.
id
iˆe

m M
0
th`ı khˆong c´o g`ıda

mba

o l`a h`am f(x, y) kha

vi ta
.
idiˆe

m M
0
(xem v´ı
du
.
4).
9.1.5 D

-
a
.
o h`am riˆeng cˆa
´
p cao
Gia

su
.

miˆe
`
n D ⊂ R
2
v`a
f : D → R
114 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
l`a h`am hai biˆe
´
n f(x, y)du
.

o
.
.
c cho trˆen D.Tad
˘a
.
t
D
x
=

(x, y) ∈ D : ∃
∂f
∂x
= ±∞

,
D
y
=

(x, y) ∈ D : ∃
∂f
∂y
= ±∞

.
D

= D

x
∩ D
y
D
-
i
.
nh ngh˜ıa. 1) C´ac da
.
o h`am riˆeng
∂f
∂x
v`a
∂f
∂y
d
u
.
o
.
.
cgo
.
i l`a c´ac d
a
.
o
h`am riˆeng cˆa
´
p1.

2) Nˆe
´
u h`am
∂f
∂x
: D
x
→ R v`a
∂f
∂y
: D
y
→ R c´o c´ac da
.
o h`am riˆeng

∂x

∂f
∂x

=

2
f
∂x∂x
=

2
f

∂x
2
,

∂y

∂f
∂x

=

2
f
∂x∂y
,

∂x

∂f
∂y

=

2
f
∂y∂x
,

∂y


∂f
∂y

=

2
f
∂y∂y
=

2
f
∂y
2
th`ı ch´ung du
.
o
.
.
cgo
.
i l`a c´ac d
a
.
o h`am riˆeng cˆa
´
p2theo x v`a theo y.
C´ac d
a
.

o h`am riˆeng cˆa
´
p3du
.
o
.
.
cd
i
.
nh ngh˜ıa nhu
.
l`a c´ac d
a
.
o h`am riˆeng
cu

ad
a
.
o h`am riˆeng cˆa
´
p 2, v.v...
Ta lu
.
u´yr˘a
`
ng nˆe
´

u h`am f(x, y) c´o c´ac d
a
.
o h`am hˆo
˜
nho
.
.
p

2
f
∂x∂y
v`a

2
f
∂y∂x
liˆen tu
.
cta
.
id
iˆe

m(x, y) th`ı ta
.
idiˆe

md´o c´ac da

.
o h`am hˆo
˜
nho
.
.
p n`ay
b˘a
`
ng nhau:

2
f
∂x∂y
=

2
f
∂y∂x
·
C
´
AC V
´
IDU
.
9.1. D
-
a
.

o h`am riˆeng 115
V´ı d u
.
1. T´ınh da
.
o h`am riˆeng cˆa
´
p1cu

a c´ac h`am
1) 4w = x
2
− 2xy
2
+ y
3
.2)w = x
y
.
Gia

i. 1) D
a
.
o h`am riˆeng
∂w
∂x
d
u
.

o
.
.
c t´ınh nhu
.
l`a d
a
.
o h`am cu

a h`am w
theo biˆe
´
n x v´o
.
i gia

thiˆe
´
t y = const. Do d
´o
∂w
∂x
=(x
2
− 2xy
2
+ y
3
)


x
=2x − 2y
2
+0=2(x − y
2
).
Tu
.
o
.
ng tu
.
.
, ta c´o
∂w
∂y
=(x
2
− 2xy
2
+ y
3
)

y
=0− 4xy +3y
2
= y(3y − 4x).
2) Nhu

.
trong 1), xem y = const ta c´o
∂w
∂x
=

x
y


x
= yx
y−1
.
Tu
.
o
.
ng tu
.
.
, khi xem x l`a h˘a
`
ng sˆo
´
ta thu d
u
.
o
.

.
c
∂w
∂y
= x
y
lnx.
(v`ı w = x
y
l`a h`am m˜udˆo
´
iv´o
.
ibiˆe
´
n y khi x = const. 
V´ı d u
.
2. Cho w = f(x, y)v`ax = ρ cos ϕ, y = ρ sin ϕ. H˜ay t´ınh
∂w
∂ρ
v`a
∂w
∂ϕ
.
Gia

i. D
ˆe


´ap du
.
ng cˆong th´u
.
c (9.2), ta lu
.
u´yr˘a
`
ng
w = f(x, y)=f(ρ cos ϕ, ρ sin ϕ)=F(ρ, ϕ).
Do d
´o theo (9.2) v`a biˆe

uth´u
.
cd
ˆo
´
iv´o
.
i x v`a y ta c´o
∂w
∂ρ
=
∂w
∂x
∂x
∂ρ
+
∂w

∂y
∂y
∂ρ
=
∂w
∂x
cos ϕ +
∂w
∂y
sin ϕ
∂w
∂ϕ
=
∂w
∂x
∂x
∂ϕ
+
∂w
∂y
∂y
∂ϕ
=
∂w
∂x
(−ρ sin ϕ)+
∂w
∂y
(ρ cos ϕ)
= ρ



∂w
∂x
sin ϕ +
∂w
∂y
cos ϕ

. 
116 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
V´ı d u
.
3. T´ınh da
.
o h`am cu

a h`am w = x
2
+ y
2
x ta

.
idiˆe

m M
0
(1, 2) theo
hu
.
´o
.
ng cu

a vecto
.
−→
M
0
M
1
, trong d´o M
1
l`a diˆe

mv´o
.
ito
.
ad
ˆo
.

(3, 0).
Gia

i. D
ˆa
`
u tiˆen ta t`ım vecto
.
d
o
.
nvi
.
e c´o hu
.
´o
.
ng l`a hu
.
´o
.
ng d
˜a cho.
Ta c´o
−→
M
0
M
1
=(2,−2)=2e

1
− 2e
2
,
⇒|
−→
M
0
M
1
| =2

2 ⇒ e =
M
0
M
1
|M
0
M
1
|
=
2e
1
− 2e
2
2

2

=
1

2
e
1

1

2
e
2
.
trong d
´o e
1
, e
2
l`a vecto
.
d
o
.
nvi
.
cu

a c´ac tru
.
cto

.
ad
ˆo
.
.T`u
.
d
´o suy r˘a
`
ng
cos α =
1

2
, cos β = −
1

2
·
Tiˆe
´
p theo ta t´ınh c´ac d
a
.
o h`am riˆeng ta
.
idiˆe

m M
0

(1, 2). Ta c´o
f

x
=2x + y
2
⇒ f

x
(M
0
)=f

x
(1, 2)=6,
f

y
=2xy ⇒ f

y
(M
0
)=f

y
(1, 2)=4.
Do d
´o theo cˆong th´u
.

c (9.4) ta thu d
u
.
o
.
.
c
∂f
∂e
=6·
1

2
− 4 ·
1

2
=

2. 
V´ı d u
.
4. H`am f(x, y)=x + y +

|xy| c´o da
.
o h`am theo mo
.
ihu
.

´o
.
ng
ta
.
id
iˆe

m O(0, 0) nhu
.
ng khˆong kha

vi ta
.
id
´o.
Gia

i. 1. Su
.
.
tˆo
`
nta
.
id
a
.
o h`am theo mo
.

ihu
.
´o
.
ng.
Ta x´et hu
.
´o
.
ng cu

a vecto
.
e d
irat`u
.
Ov`alˆa
.
pv´o
.
i tru
.
c Ox g´oc α.Ta
c´o

e
f(0, 0) = ∆x +∆y +

|∆x∆y|
=


cos α + sin α +

| cos α sin α|

ρ,
9.1. D
-
a
.
o h`am riˆeng 117
trong d´o ρ =

∆x
2
+∆y
2
,∆x = ρ cos α,∆y = ρ sin α.
T`u
.
d
´o suy ra
∂f
∂e
(0, 0) = lim
ρ→0

e
f(0, 0)
ρ

= cos α + sin α +

| sin α cos α|
t´u
.
cl`ad
a
.
o h`am theo hu
.
´o
.
ng tˆo
`
nta
.
i theo mo
.
ihu
.
´o
.
ng.
2. Tuy nhiˆen h`am d
˜a cho khˆong kha

vi ta
.
i O. Thˆa
.

tvˆa
.
y, ta c´o
∆f(0, 0) = f(∆x, ∆y)− f(0, 0)=∆x +∆y +

|∆x||∆y|−0.
V`ı f

x
=1v`af

y
= 1 (ta
.
i sao ? ) nˆen nˆe
´
u f kha

vi ta
.
i O(0, 0) th`ı
∆f(0, 0) = ∆x +∆y +

|∆x∆y| =1· ∆x +1· ∆y + ε(ρ)ρ
ε(ρ) → 0(ρ → 0),ρ=

∆x
2
+∆y
2

hay l`a lu
.
u´y∆x = ρ cos α,∆y = ρ sin α ta c´o
ε(ρ)=

| cos α sin α|.
Vˆe
´
pha

id
˘a

ng th´u
.
c n`ay khˆong pha

i l`a vˆo c`ung b´e khi ρ → 0 (v`ı n´o
ho`an to`an khˆong phu
.
thuˆo
.
c v`ao ρ). Do d
´o theo di
.
nh ngh˜ıa h`am f(x, y)
d
˜a cho khˆong kha

vi ta

.
idiˆe

mO.
V´ı d u
.
5. T´ınh c´ac d
a
.
o h`am riˆeng cˆa
´
p2cu

a c´ac h`am:
1) w = x
y
,2)w = arctg
x
y
·
Gia

i. 1) D
ˆa
`
u tiˆen t´ınh c´ac da
.
o h`am riˆeng cˆa
´
p1.Tac´o

∂w
∂x
= yx
y−1
,
∂w
∂y
= x
y
lnx.
Tiˆe
´
p theo ta c´o

2
w
∂x
2
= y(y − 1)x
y−2
,

2
w
∂y∂x
= x
y−1
+ yx
y−1
lnx = x

y−1
(1 + ylnx),

2
w
∂x∂y
= yx
y−1
lnx + x
y
·
1
x
= x
y−1
(1 + ylnx),

2
f
∂y
2
= x
y
(lnx)
2
.
118 Chu
.
o
.

ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
2) Ta c´o
∂w
∂x
=
y
x
2
+ y
2
,
∂w
∂y
= −
x
x
2
+ y
2
·
T`u
.
d
´o

2

w
∂x
2
=

∂x

y
x
2
+ y
2

= −
2xy
(x
2
+ y
2
)
2
,

2
w
∂y
2
=

∂y


−x
x
2
+ y
2

=
2xy
x
2
+ y
2
,

2
w
∂x∂y
=

∂y

y
x
2
+ y
2

=
x

2
− y
2
(x
2
+ y
2
)
2
,

2
w
∂y∂x
=

∂x


x
x
2
+ y
2

=
x
2
− y
2

(x
2
+ y
2
)
2
·
Nhˆa
.
nx´et. Trong ca

1) lˆa
˜
n2)tad
ˆe
`
uc´o

2
w
∂x∂y
=

2
w
∂y∂x
. 
V´ı d u
.
6. T´ınh c´ac d

a
.
o h`am riˆeng cˆa
´
p1cu

a h`am w = f(x+y
2
,y+x
2
)
ta
.
id
iˆe

m M
0
(−1, 1), trong d´o x v`a y l`a biˆe
´
ndˆo
.
clˆa
.
p.
Gia

i. D
˘a
.

t t = x + y
2
, v = y + x
2
. Khi d´o
w = f(x + y
2
,y+ x
2
)=f(t, v).
Nhu
.
vˆa
.
y w = f(t, v) l`a h`am ho
.
.
pcu

a hai biˆe
´
nd
ˆo
.
clˆa
.
p x v`a y. N´o phu
.
thuˆo
.

c c´ac biˆe
´
nd
ˆo
.
clˆa
.
p thˆong qua hai biˆe
´
n trung gian t, v. Theo cˆong
th´u
.
c (9.2) ta c´o:
∂w
∂x
=
∂f
∂t
·
∂t
∂x
+
∂f
∂v
·
∂v
∂x
= f

t

(x + y
2
,y+ x
2
) · 1+f

v
(x + y
2
,y+ x
2
) · 2x
= f

t
+2xf

v
.
9.1. D
-
a
.
o h`am riˆeng 119
∂w
∂x
(−1, 1) =
∂f
∂x
(0, 2) = f


t
(0, 2) − 2f

v
(0, 2)
∂w
∂y
=
∂f
∂t
·
∂t
∂y
+
∂f
∂v
·
∂v
∂y
= f

t
(·)2y + f

v
(·)1
=2yf

t

+ f

v
∂w
∂y
(−1, 1) =
∂f
∂y
(0, 2)=2f

t
(0, 2) + f

v
(0, 2). 
B
`
AI T
ˆ
A
.
P
T´ınh d
a
.
o h`am riˆeng cu

a c´ac h`am sau dˆay
1. f(x, y)=x
2

+ y
3
+3x
2
y
3
.
(D
S. f

x
=2x +6xy
3
, f

y
=3y
2
+9x
2
y
2
)
2. f(x, y, z)=xyz +
x
yz
.
(D
S. f


x
= yz +
1
yz
, f

y
= xz −
x
y
2
z
, f

z
= xy −
x
yz
2
)
3. f(x, y, z) = sin(xy + yz). (D
S. f

x
= y cos(xy + yz),
f

y
=(x + z) cos(xy + yz), f


z
= y cos(xy + yz))
4. f(x, y) = tg(x + y)e
x/y
.
(D
S. f

x
=
e
x/y
cos
2
(x + y)
+ tg(x + y)e
x/y
1
y
,
f

y
=
e
x/y
cos
2
(x + y)
+ tg(x + y)e

x/y


x
y
2

.)
5. f = arc sin
x

x
2
+ y
2
.(DS. f

x
=
|y|
x
2
+ y
2
, f

y
=
−xsigny
x

2
+ y
2
)
6. f(x, y)=xyln(xy). (D
S. f

x
= yln(xy)+y, f

y
= xln(xy)+x)
120 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
7. f(x, y, z)=

y
x

z
.
(D
S. f


x
= z

y
x

z−1


y
x
2

= −
z
x

y
x

z
,
f

y
=
z
y


y
x

z
,f

z
=

y
x

z
ln
y
x
)
8. f(x, y, z)=z
x/y
.
(D
S. f

x
= x
x/y
lnz ·

1
y


, f

y
= z
x/y
lnz ·

−x
y
2

, f

z
=

x
y

z
x/y−1
)
9. f(x, y, z)=x
y
z
.
(D
S. f


x
= y
z
x
y
z
−1
, f

y
= x
y
z
zy
z−1
lnx, f

z
= x
y
z
ln(x)
z
lny)
10. f(x, y, z)=x
y
y
z
z
x

.
(D
S. f

x
= x
y−1
y
z+1
z
x
+ x
y
y
z
z
x
lnz, f

y
= x
y
lnxy
z
z
x
+ x
y
y
z−1

z
x+1
,
f

z
= x
y
y
z
lny · z
x
+ x
y+1
y
z
z
x−1
)
11. f(x, y) = ln sin
x + a

y
.
(D
S. f

x
=
1


y
cotg
x + a

y
, f

y
= −
x + a
y
cotg
x + a

y
)
12. f(x, y)=
x
y
− e
x
arctgy.
(D
S. f

x
=
1
y

− e
x
arctgy, f

y
= −
x
y
2

e
x
1+y
2
)
13. f(x, y)=ln

x +

x
2
+ y
2

.
(D
S. f

x
=

1

x
2
+ y
2
, f

y
=
1
x +

x
2
+ y
2
·
y

x
2
+ y
2
).
T`ım d
a
.
o h`am riˆeng cu


a h`am ho
.
.
p sau d
ˆay (gia

thiˆe
´
t h`am f(x, y)
kha

vi)
14. f(x, y)=f(x + y,x
2
+ y
2
).
(D
S. f

x
= f

t
+ f

v
2x, f

y

= f

t
+ f

v
2y, t = x + y, v = x
2
+ y
2
)
15. f(x, y)=f

x
y
,
y
x

.
9.1. D
-
a
.
o h`am riˆeng 121
(DS. f

x
=
1

y
f

t

y
x
2
f

v
, f

y
=
−x
y
2
f

t
+
1
x
f

v
, t =
x
y

, v =
y
x
)
16. f(x, y)=f(x − y,xy).
(D
S. f

x
= f

t
+ yf

v
, f

y
= −f

t
+ xf

v
, t = x − y, v = xy)
17. f(x, y)=f(x − y
2
,y− x
2
,xy).

(D
S. f

x
= f

t
− 2xf

v
+ yf

w
, f

y
= −2yf

t
+ f

v
+ xf

w
,
t = x− y
2
, v = y − x
2

, w = xy)
18. f(x, y, z)=f(

x
2
+ y
2
,

y
2
+ z
2
,

z
2
+ x
2
).
(D
S. f

x
=
xf

t

x

2
+ y
2
+
xf

w

z
2
+ x
2
,f

y
=
yf

t

x
2
+ y
2
+
yf

v

x

2
+ z
2
,
f

z
=
zf

v

x
2
+ y
2
+
zf

w

z
2
+ x
2
,t=

x
2
+ y

2
,
v =

y
2
+ z
2
,w=

z
2
+ x
2
)
19. w = f(x, xy, xyz).
(D
S. f

x
= f

t
+ yf

u
+ yzf

v
,

f

y
= xf

u
+ xzf

v
,
f

z
= xyf

v
t = x, u = xy, v = xyz).
Trong c´ac b`ai to´an sau d
ˆay h˜ay ch´u
.
ng to

r˘a
`
ng h`am f(x, y) tho

a
m˜an phu
.
o

.
ng tr`ınh d
˜a cho tu
.
o
.
ng ´u
.
ng (f(x, y)-kha

vi).
20. f = f(x
2
+ y
2
), y
∂f
∂x
− x
∂f
∂y
=0.
21. f = x
n
f

y
x
2


, x
∂f
∂y
+2y
∂f
∂y
= nf.
22. f = yf(x
2
− y
2
), y
2
∂f
∂x
+ xy
∂f
∂y
= xyf.
23. f =
y
2
3x
+ f(x, y), x
2
∂f
∂x
− xy
∂f
∂y

+ y
2
=0.
122 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
24. f = x
n
f

y
x
α
,
z
x
β

, x
∂f
∂x
+ αy
∂f
∂y

+ βz
∂f
∂z
= nf.
25. f =
xy
z
lnx + xf

y
x
,
z
x

, x
∂f
∂x
+ y
∂f
∂y
+ z
∂f
∂z
= f +
xy
z
.
26. T´ınh


2
f
∂x
2
,

2
f
∂x∂y
,

2
f
∂y
2
nˆe
´
u f = cos(xy)
(D
S. f

xx
= −y
2
cos xy, f

xy
= − sin xy − xy cos xy, f

yy

=
−x
2
cos xy)
27. T´ınh c´ac d
a
.
o h`am riˆeng cˆa
´
p hai cu

a h`am f = sin(x + yz).
(D
S. f

xx
= − sin t, f

xy
= −z sin t, f

xz
= −y sin t, f

yy
= −z
2
sin t,
f


yz
= −yz sin t, f

zz
= −y
2
sin t, t = x + yz)
28. T´ınh

2
f
∂x∂y
nˆe
´
u f =

x
2
+ y
2
e
x+y
.
(D
S.
e
x+y
(x
2
+ y

2
)
3/2

− xy +(x + y)(x
2
+ y
2
)+(x
2
+ y
2
)
2

)
29. T´ınh

2
f
∂x∂y
,

2
f
∂y∂z
,

2
f

∂x∂z
nˆe
´
u f = x
yz
.
(D
S. f

xy
= x
yz−1
z(1 + yzlnx), f

xz
= x
yz−1
y(1 + yzlnx),
f

yz
=lnx · x
yz
(1 + yzlnx))
30. T´ınh

2
f
∂x∂y
nˆe

´
u f = arctg
x + y
1 − xy
.(D
S.

2
f
∂x∂y
=0)
31. T´ınh f

xx
(0, 0), f

xy
(0, 0), f

yy
(0, 0) nˆe
´
u
f(x, y)=(1+x)
m
(1 + y)
n
.
(D
S. f


xx
(0, 0) = m(m− 1), f

xy
(0, 0) = mn, f

yy
(0, 0) = n(n − 1))
32. T´ınh

2
r
∂x
2
nˆe
´
u r =

x
2
+ y
2
+ z
2
.(DS.
r
2
− x
2

r
3
)
33. T´ınh f

xy
, f

yz
, f

xz
nˆe
´
u f =

x
y

z
.
(D
S. f

xy
= −z
2
y
−2


xy
−1

z−1
, f

xz
=

1
y

x
y

z−1

1+zln
x
y

,
9.1. D
-
a
.
o h`am riˆeng 123
f

yz

= −
1
y

x
y

z
·

1+zln
x
y

)
34. Ch´u
.
ng minh r˘a
`
ng

2
f
∂x∂y
=

2
f
∂y∂x
nˆe

´
u f = arc sin

x − y
x
.
T´ınh c´ac d
a
.
o h`am cˆa
´
p hai cu

a c´ac h`am (gia

thiˆe
´
t hai lˆa
`
n kha

vi)
35. u = f(x + y,x
2
+ y
2
).
(D
S. u


xx
= f

tt
+4xf

tv
+4x
2
f

vv
+2f

v
,
u

xy
= f

tt
+2(x + y)f

tv
+4xyf

vv
,
u


yy
= f

tt
+4yf

tv
+4y
2
f

vv
+2f

v
,
t = x + y, v = x
2
+ y
2
.)
36. u = f

xy,
x
y

.
(D

S. u

xx
= y
2
f

tt
+2f

tv
+
1
y
2
f

vv
,
u

xy
= xyf

tt

x
y
3
f


vv
+ f

t

1
y
2
f

v
,
u

yy
= x
2
f

tt
− 2
x
2
y
2
f

tv
+

x
2
y
4
f

vv
+
2x
y
3
f

v
,
t = xy, v =
x
y
)
37. u = f(sin x + cos y).
(D
S. u

xx
= cos
2
x · f

− sin x · f


, u

xy
= − sin y cos x· f

,
u

yy
= sin
2
y · f

− cos y · f

)
38. Ch´u
.
ng minh r˘a
`
ng h`am
f =
1
2a

πt
e

(x−x
0

)
2
4a
2
t
(trong d´o a, x
0
l`a c´ac sˆo
´
) tho

a m˜an phu
.
o
.
ng tr`ınh truyˆe
`
n nhiˆe
.
t
∂f
∂t
= a
2

2
f
∂x
2
·

124 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
39. Ch´u
.
ng minh r˘a
`
ng h`am f =
1
r
trong d
´o
r =

(x − x
0
)
2
+(y − y
0
)
2
+(z − z
0

)
2
tho

a m˜an phu
.
o
.
ng tr`ınh Laplace:
∆f ≡

2
f
∂x
2
+

2
f
∂y
2
+

2
f
∂z
2
=0,r=0.
Trong c´ac b`ai to´an 40 - 44 ch´u
.

ng minh r˘a
`
ng c´ac h`am d
˜a cho tho

a
m˜an phu
.
o
.
ng tr`ınh tu
.
o
.
ng ´u
.
ng (gia

thiˆe
´
t f v`a g l`a nh˜u
.
ng h`am hai lˆa
`
n
kha

vi)
40. u = f(x − at)+g(x + at),


2
u
∂t
2
= a
2

2
u
∂x
2
41. u = xf(x + y)+yg(x + y),

2
u
∂x
2
− 2

2
u
∂x∂y
+

2
u
∂y
2
=0.
42. u = f


y
x

+ xg

y
x

, x
2

2
u
∂x
2
+2xy

2
u
∂x∂y
+ y
2

2
u
∂y
2
=0.
43. u = x

n
f

y
x

+ x
1−n
g

y
x

,
x
2

2
u
∂x
2
+2xy

2
u
∂x∂y
+ y
2

2

u
∂y
2
= n(n − 1)u.
44. u = f(x + g(y)),
∂u
∂x
·

2
u
∂x∂y
=
∂u
∂y
·

2
u
∂x
2
·
45. T`ım d
a
.
o h`am theo hu
.
´o
.
ng ϕ = 135


cu

a h`am sˆo
´
f(x, y)=3x
4
+ xy + y
3
ta
.
idiˆe

m M(1, 2). (DS. −

2
2
)
46. T`ım d
a
.
o h`am cu

a h`am f(x, y)=x
3
− 3x
2
y +3xy
2
+1 ta

.
idiˆe

m
M(3, 1) theo hu
.
´o
.
ng t`u
.
d
iˆe

m n`ay dˆe
´
ndiˆe

m(6, 5). (DS. 0)
47. T`ım d
a
.
o h`am cu

a h`am f(x, y)=ln

x
2
+ y
2
ta

.
idiˆe

m M(1, 1)
theo hu
.
´o
.
ng phˆan gi´ac cu

a g´oc phˆa
`
ntu
.
th´u
.
nhˆa
´
t. (D
S.

2
2
)
9.2. Vi phˆan cu

a h`am nhiˆe
`
ubiˆe
´

n 125
48. T`ım da
.
o h`am cu

a h`am f(x, y, z)=z
2
− 3xy +5 ta
.
idiˆe

m
M(1, 2,−1) theo hu
.
´o
.
ng lˆa
.
pv´o
.
i c´ac tru
.
cto
.
ad
ˆo
.
nh˜u
.
ng g´oc b˘a

`
ng nhau.
(D
S. −

3
3
)
49. T`ım d
a
.
o h`am cu

a h`am f(x, y, z)=ln(e
x
+ e
y
+ e
z
)ta
.
igˆo
´
cto
.
adˆo
.
v`a hu
.
´o

.
ng lˆa
.
pv´o
.
i c´ac tru
.
cto
.
ad
ˆo
.
x, y, z c´ac g´oc tu
.
o
.
ng ´u
.
ng l`a α, β, γ.
(D
S.
cos α + cos β + cos γ
3
)
50. T´ınh d
a
.
o h`am cu

a h`am f(x, y)=2x

2
− 3y
2
ta
.
idiˆe

m M(1, 0) theo
hu
.
´o
.
ng lˆa
.
pv´o
.
i tru
.
c ho`anh g´oc b˘a
`
ng 120

.(DS. −2)
51. T`ım d
a
.
o h`am cu

a h`am z = x
2

− y
2
ta
.
idiˆe

m M
0
(1, 1) theo hu
.
´o
.
ng
vecto
.
e lˆa
.
pv´o
.
ihu
.
´o
.
ng du
.
o
.
ng tru
.
c ho`anh g´oc α =60


.(DS. 1 −

3)
52. T`ım d
a
.
o h`am cu

a h`am z = ln(x
2
+ y
2
)ta
.
idiˆe

m M
0
(3, 4) theo
hu
.
´o
.
ng gradien cu

a h`am d
´o. (DS.
2
5

)
53. T`ım gi´a tri
.
v`a hu
.
´o
.
ng cu

a vecto
.
gradien cu

a h`am
w =tgx − x + 3 sin y − sin
3
y + z + cotgz
ta
.
id
iˆe

m M
0

π
4
,
π
3

,
π
2

.
(D
S. (gradw)
M
=

i +
3
8

j, cos α =
8

73
, cos β =
3

73
)
54. T`ım d
a
.
o h`am cu

a h`am w = arc sin
z


x
2
+ y
2
ta
.
idiˆe

m M
0
(1, 1, 1)
theo hu
.
´o
.
ng vecto
.
−→
M
0
M, trong d´o M =(3, 2, 3). (DS.
1
6
)
9.2 Vi phˆan cu

ah`am nhiˆe
`
ubiˆe

´
n
Trong mu
.
c n`ay ta x´et vi phˆan cu

a h`am nhiˆe
`
ubiˆe
´
nm`adˆe

cho go
.
nta
chı

cˆa
`
n tr`ınh b`ay cho h`am hai biˆe
´
nl`ad
u

.Tru
.
`o
.
ng ho
.

.
psˆo
´
biˆe
´
nl´o
.
n
ho
.
nhaid
u
.
o
.
.
c tr`ınh b`ay ho`an to`an tu
.
o
.
ng tu
.
.
.
126 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`

ubiˆe
´
n
9.2.1 Vi phˆan cˆa
´
p1
Gia

su
.

h`am w = f(x, y) kha

vi ta
.
id
iˆe

m M(x, y), t´u
.
cl`ata
.
id
´o s ˆo
´
gia
to`an phˆa
`
ncu


a h`am c´o thˆe

biˆe

udiˆe
˜
ndu
.
´o
.
ida
.
ng
∆f(M)=f(x +∆x, y +∆y) − f(x, y)
= D
1
∆x + D
2
∆y + o(ρ) (9.5)
trong d
´o ρ =

∆x
2
+∆y
2
, D
1
v`a D
2

khˆong phu
.
thuˆo
.
cv`ao∆x v`a
∆y. Khi d
´obiˆe

uth´u
.
c (go
.
il`aphˆa
`
nch´ınh tuyˆe
´
n t´ınh d
ˆo
´
iv´o
.
i ∆x v`a ∆y
cu

asˆo
´
gia ∆f)
D
1
∆x + D

2
∆y
d
u
.
o
.
.
cgo
.
il`avi phˆan (hay vi phˆan to`an phˆa
`
n ≡ hay vi phˆan th´u
.
nhˆa
´
t)
cu

a h`am w = f(x, y)v`ad
u
.
o
.
.
ck´yhiˆe
.
ul`adf :
df = D
1

∆x + D
2
∆y.
V`ı∆x = dx,∆y = dy v`a v`ı f(x, y) kha

vi ta
.
i M nˆen D
1
=
∂f
∂y
,
D
2
=
∂f
∂y
v`a
df =
∂f
∂x
dx +
∂f
∂y
dy (9.6)
Nhu
.
vˆa
.

y, nˆe
´
u w = f(x, y) kha

vi ta
.
i M(x, y)th`ıt`u
.
(9.5) v`a (9.6)
ta c´o
∆f(M)=df (M)+o(ρ)hay∆f(M)=df (M)+ε(ρ)ρ (9.7)
trong d
´o ε(ρ) → 0 khi ρ → 0.
9.2.2
´
Ap du
.
ng vi phˆan dˆe

t´ınh gˆa
`
nd´ung
Dˆo
´
iv´o
.
i∆x v`a ∆y d
u

b´e ta c´o thˆe


thay xˆa
´
pxı

sˆo
´
gia ∆f(M)bo
.

ivi
phˆan df (M), t´u
.
cl`a
∆f(M) ≈ df (M)
9.2. Vi phˆan cu

a h`am nhiˆe
`
ubiˆe
´
n 127
hay l`a
f(x +∆x, y +∆y) ≈ f(x, y)+
∂f
∂x
(M)∆x +
∂f
∂y
(M)∆y

(9.8)
Cˆong th´u
.
c (9.8) l`a co
.
so
.

d
ˆe

´ap du
.
ng vi phˆan t´ınh gˆa
`
nd´ung. Dˆo
´
i
v´o
.
i h`am c´o sˆo
´
biˆe
´
n nhiˆe
`
uho
.
n2tac˜ung c´o cˆong th´u
.

ctu
.
o
.
ng tu
.
.
.
9.2.3 C´ac t´ınh chˆa
´
tcu

a vi phˆan
Dˆo
´
iv´o
.
i c´ac h`am kha

vi f v`a g ta c´o:
(i) d(f ± g)=df ± dg;
(ii) d(fg)=fdg + gdf, d(αf)=αdf, α ∈ R;
(iii) d

f
g

=
gdf − fdg
g

2
, g =0;
(iv) Vi phˆan cˆa
´
p1cu

a h`am hai biˆe
´
n f(x, y)bˆa
´
tbiˆe
´
nvˆe
`
da
.
ng bˆa
´
t
luˆa
.
n x v`a y l`a biˆe
´
nd
ˆo
.
clˆa
.
p hay l`a h`am cu


a c´ac biˆe
´
ndˆo
.
clˆa
.
p kh´ac.
9.2.4 Vi phˆan cˆa
´
p cao
Gia

su
.

h`am w = f(x, y) kha

vi trong miˆe
`
n D. Khi d
´o vi phˆan cˆa
´
p1
cu

a n´o ta
.
id
iˆe


m(x, y) ∈ D tu
.
o
.
ng ´u
.
ng v´o
.
i c´ac sˆo
´
gia dx v`a dy cu

a c´ac
biˆe
´
nd
ˆo
.
clˆa
.
pdu
.
o
.
.
cbiˆe

udiˆe
˜
nbo

.

i cˆong th´u
.
c
df =
∂f
∂x
dx +
∂f
∂y
dy. (9.9)
O
.

d
ˆa y , dx =∆x, dy =∆y l`a nh˜u
.
ng sˆo
´
gia t`uy ´y cu

abiˆe
´
nd
ˆo
.
clˆa
.
p, d´o

l`a nh˜u
.
ng sˆo
´
khˆong phu
.
thuˆo
.
c v`ao x v`a y.Nhu
.
vˆa
.
y, khi cˆo
´
d
i
.
nh dx v`a
dy vi phˆan df l`a h`am cu

a x v`a y.
Theo d
i
.
nh ngh˜ıa: Vi phˆan th´u
.
hai d
2
f (hay vi phˆan cˆa
´

p 2) cu

a
h`am f(x, y)ta
.
id
iˆe

m M(x, y)du
.
o
.
.
cd
i
.
nh ngh˜ıa nhu
.
l`a vi phˆan cu

avi
phˆan th´u
.
nhˆa
´
tta
.
id
iˆe


m M v´o
.
i c´ac d
iˆe
`
ukiˆe
.
n sau dˆay:
(1) Vi phˆan df l`a h`am chı

cu

a c´ac biˆe
´
nd
ˆo
.
clˆa
.
p x v`a y.
128 Chu
.
o
.
ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe
`
ubiˆe
´
n
(2) Sˆo

´
gia cu

a c´ac biˆe
´
ndˆo
.
clˆa
.
p x v`a y xuˆa
´
thiˆe
.
n khi t´ınh vi phˆan
cu

a f

x
v`a f

y
du
.
o
.
.
c xem l`a b˘a
`
ng sˆo

´
gia d
ˆa
`
u tiˆen, t´u
.
cl`ab˘a
`
ng dx v`a dy.
T`u
.
d
´o
d
2
f(M)=

2
f(M)
∂x
2
dx
2
+2

2
f
∂x∂y
(M)dxdy +


2
f
∂y
2
(M)dy
2
(9.10)
trong d
´o dx
2
=(dx)
2
, dy
2
=(dy)
2
v`a ta xem c´ac da
.
o h`am riˆeng hˆo
˜
n
ho
.
.
pb˘a
`
ng nhau.
Mˆo
.
t c´ach h`ınh th´u

.
c d
˘a

ng th´u
.
c (9.10) c´o thˆe

viˆe
´
tdu
.
´o
.
ida
.
ng
d
2
f =


∂x
dx +

∂y
dy

2
f(x, y)

t´u
.
c l`a sau khi thu
.
.
chiˆe
.
n ph´ep “b`ınh phu
.
o
.
ng” ta cˆa
`
nd
iˆe
`
n f(x, y) v`ao
“ˆo trˆo
´
ng”.
Tu
.
o
.
ng tu
.
.
d
3
f =



∂x
dx +

∂y
dy

3
f(x, y)
=

3
f
∂x
3
dx
3
+3

3
f
∂x
2
∂y
dx
2
dy +3

3

f
∂x∂y
2
dxdy
2
+

3
f
∂y
3
dy
3
,
v.v... Mˆo
.
t c´ach quy na
.
p ta c´o
d
n
f(x, y)=
n

k=0
C
k
n

n

f
∂x
n−k
∂y
k
dx
n−k
dy
k
. (9.11)
Trong tru
.
`o
.
ng ho
.
.
pnˆe
´
u
w = f(t, v),t= ϕ(x, y),v= ψ(x, y)
th`ı
dw =
∂f
∂t
dt +
∂f
∂v
dx (t´ınh bˆa
´

tbiˆe
´
nvˆe
`
da
.
ng !)
d
2
w =

2
f
∂t
2
dt
2
+2

2
f
∂t∂v
dtdy +

2
f
∂v
2
dv
2

+
∂f
∂t
d
2
t +
∂f
∂v
d
2
v. (9.12)

×