Ngày dạy: Thứ 2 ngày 14 tháng 9 năm 2009
Buổi 1: Cộng trừ đơn thức đồng dạng, cộng trừ đa thức.
Phép nhân đơn thức, phép nhân đa thức.
A.MC TIấU:
1. Kin thc: - Bit v nm chc cỏch cng, tr n thc, a thc.
- Củng cố các qui tắc nhân đơn thức với đơn thức, nhân đơn thức với đa
thức, nhân đa thức với đa thức
2. K nng: - Rèn kỹ năng nhân đơn thức với đa thức, nhân đa thức với đa thức.
- HS thành thạo làm các dạng toán : rút gọn biểu thức, tìm x, tính giá
trị của biểu thức ại số. Hiu v thc hin c cỏc phộp tớnh trờn
mt cỏch linh hot.
3.Thỏi : Cú k nng vn dng cỏc kin thc trờn vo bi toỏn tng hp.
B. CHUN B:
1. Giỏo viờn: Ni dung
2. Hc sinh: Nắm vững các quy tắc.
C.TIN TRèNH:
i. cộng, trừ đơn thức đồng dạng, cộng trừ đa thức
1. Cng, tr n thc ng dng.
a. Quy tắc: - Cộng (trừ) hệ số với hệ số.
- Giữ nguyên phần biến.
b. Vớ d:
Vớ d 1: Tớnh : a) 2x
3
+ 5x
3
4x
3
b) -6xy
2
6xy
2
Gii:
a) 2x
3
+ 5x
3
4x
3
= (2 + 5 4)x
3
= 3x
3
b) -6xy
2
6 xy
2
= (- 6 6)xy
2
= - 12xy
2
Vớ d 2: in cỏc n thc thớch hp vo ụ trng:
a) + 6xy
2
= 5xy
2
b) + - = x
2
y
2
Gii
a) (-xy
2
) + 6xy
2
= 5xy
2
b) 3x
2
y
2
+ 2x
2
y
2
- 4x
2
y
2
= x
2
y
2
2. Cng, tr a thc
a. Quy tắc: - Đặt phép tính.
- Bỏ dấu ngoặc.
- Nhóm các hạng tử đồng dạng vào một nhóm(nếu có)
- Thu gọn đa thức (Cộng (trừ) các hạng tử đồng dạng).
b. Vớ d:
Vớ d 1: Cho hai a thc
M = x
5
-2x
4
y + x
2
y
2
- x + 1 N = -x
5
+ 3x
4
y + 3x
3
- 2x + y
Tớnh: a) M + N; b) M N
Gii:
a) M + N = (x
5
-2x
4
y + x
2
y
2
- x + 1) + (-x
5
+ 3x
4
y + 3x
3
- 2x + y)
= x
5
-2x
4
y + x
2
y
2
- x + 1- x
5
+ 3x
4
y + 3x
3
- 2x + y
= (x
5
- x
5
)+( -2x
4
y+ 3x
4
y) + (- x - 2x) + x
2
y
2
+ 1+ y+ 3x
3
1
= x
4
y - 3x + x
2
y
2
+ 1+ y+ 3x
3
b) M - N = (x
5
-2x
4
y + x
2
y
2
- x + 1) - (-x
5
+ 3x
4
y + 3x
3
- 2x + y)
= 2x
5
-5x
4
y+ x
2
y
2
+x - 3x
3
y + 1
ii. phép nhân đơn thức, đa thức
1. Nhân n thc với n thc.
a. Quy tắc: - Nhân hệ số với hệ số.
- Nhân phần biến với phần biến.
Lu ý: x
1
= x; x
m
.x
n
= x
m + n
;
( )
n
m
x
= x
m.n
b. Vớ d:
Vớ d 1: Tớnh: a) 2x
4
.3xy = 6x
5
y b) 5xy
2
.(-
3
1
x
2
y)
Gii:
a) 2x
4
.3xy = (2.3).(x
4
.x)(1.y) = 6x
5
y
b) 5xy
2
.(-
3
1
x
2
y) = [5.(-
3
1
)] (x.x
2
).(y
2
.y) = -
5
3
x
3
y
3
2. Nhân đơn thức với a thc:
a. Quy tắc: Nhân đơn thức với tong hạng tử của đa thức.
A(B + C) = AB + AC
b. Vớ d: Thực hiện phép tính: a) 2x
3
(2xy + 6x
5
y) b) 4x
2
(5x
3
+ 3x 1)
Gii: a) 2x
3
(2xy + 6x
5
y) = 2x
3
.2xy + 2x
3
.6x
5
y = 4x
4
y + 12x
8
y
b) 4x
2
(5x
3
+ 3x 1)
( )
2 3 2 2 2 3 2 2 5 3 2
4x .5x 4x .3x 4x .1 4.5 (x .x ) (4.3)(x .x) (4.1)x 20x 12x 4x
= + = + = +
3. Nhân đa thức với a thc:
a. Quy tắc: Nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia.
(A + B)(C + D) = AC + AD + BC + BD
b. Vớ d: Tớnh tớch ca cỏc a thc sau:
( )
( )
2
a) 5x 4x x 2
b) (3x + 4x
2
2)(x
2
+1+ 2x)
Gii:
( )
( ) ( ) ( ) ( )
2 2 2 2
a) 5x 4x x 2 5x . x 2 4x. x 2 5x .x 5x .2 4x.x 4x. 2
= =
3 2 2 3 2 3 2
5x 10x 4x 8x 5x (10 4)x 8x 5x 14x 8x
= + = + + = +
b) (3x + 4x
2
2)(x
2
+1+ 2x)=3x(x
2
+1+ 2x) + 4x
2
(x
2
+1+ 2x) -2(x
2
+1+ 2x)
2 2 2 2 2 2
3 2 4 2 3 2
3x.( x ) 3x.1 3x.2x 4x ( x ) 4x .1 4x .2x 2.( x ) 2.1 2.2x
3x 3x 6x 4x 4x 8x 2x 2 4x
= + + + + +
= + + + + +
( ) ( )
4 3 3 2 2 2
4 3 2
4x 3x 8x 6x 4x 2x (3x 4x) 2
4x 5x 12x x 2
= + + + + + +
= + +
3
1
x
5
y
3
v 4xy
2
b)
4
1
x
3
yz v -2x
2
y
4
Vớ d 2: Tớnh tớch ca cỏc n thc sau:
a)
3
1
x
5
y
3
.4xy
2
=
3
4
x
6
y
5
b)
4
1
x
3
yz. (-2x
2
y
4
) =
2
1
x
5
y
5
z
Dạng 1/ Thực hiện phếp tính:
1. -3ab.(a
2
-3b)
2. (x
2
2xy +y
2
)(x-2y)
2
3. (x+y+z)(x-y+z)
4, 12a
2
b(a-b)(a+b)
5, (2x
2
-3x+5)(x
2
-8x+2)
Dạng 2:Tìm x
1/
.14
2
1
).4
2
1
(
4
1
2
=
xxx
2/ 3(1-4x)(x-1) + 4(3x-2)(x+3) = - 27
3/ (x+3)(x
2
-3x+9) x(x-1)(x+1) = 27.
Dạng 3: Rút gọn rồi tính giá trị của biểu thức:
1/ A=5x(4x
2
-2x+1) 2x(10x
2
-5x -2) với x= 15.
2/ B = 5x(x-4y) -4y(y -5x) với x=
5
1
; y=
2
1
3/ C = 6xy(xy y
2
) -8x
2
(x-y
2
) =5y
2
(x
2
-xy) với x=
2
1
; y= 2.
4/ D = (y
2
+2)(y- 4) (2y
2
+1)(
2
1
y 2) với y=-
3
2
Dạng 4: CM biểu thức có giá trị không phụ thuộc vào giá trị của
biến số.
1/ (3x-5)(2x+11)-(2x+3)(3x+7)
2/ (x-5)(2x+3) 2x(x 3) +x +7
Dạng 5: Toán liên quan với nội dung số học.
Bài 1. Tìm 3 số chẵn liên tiếp, biết rằng tích của hai số đầu ít hơn tích của hai
số cuối 192 đơn vị.
Bài 2. tìm 4 số tự nhiên liên tiếp, biết rằng tích của hai số đầu ít hơn tích của hai
số cuối 146 đơn vị.
Đáp số: 35,36,37,38
Dạng 6: Toán nâng cao
Bài1/ Cho biểu thức :
+=
)
433
1
2.(
229
3
M
433.229
4
433
432
.
229
1
. Tính giá trị của M
Bài 2/ Tính giá trị của biểu thức :
39
8
119.117
5
119
118
5.
117
4
119
1
.
117
1
.3
+=
N
Bài 3/ Tính giá trị của các biểu thức :
a) A=x5-5x4+5x3-5x2+5x-1 tại x= 4.
b) B = x
2006
8.x
2005
+ 8.x
2004
- ...+8x
2
-8x 5 tại x= 7.
Bài 4/a) CMR với mọi số nguyên n thì : (n
2
-3n +1)(n+2) n
3
+2
chia hết cho 5.
b) CMR với mọi số nguyên n thì : (6n + 1)(n+5) (3n + 5)(2n 10) chia hết cho 2
Đáp án: a) Rút gọn BT ta đợc 5n
2
+5n chia hết cho 5
b) Rút gọn BT ta đợc 24n + 10 chia hết cho 2.
Hớng dẫn về nhà:
- Xem li cỏc dng BT ó gii, lm cỏc BT tng t trong SGK.
- Làm các bài tập về nhà đã dặn.
Ngày dạy: Thứ 2 ngày 14 tháng 9 năm 2009
Buổi 2: ôn tập về những hằng đẳng thức đáng nhớ
3
I. MỤC TIÊU:
- Củng cố lại những hằng đẳng thức đã học.
- Vận dụng những HĐT trên vào giải toán.
- Giáo dục HS tính cẩn thận, chính xác, suy luận logíc
II. TÀI LIỆU THAM KHẢO:
SGV, SBT, SGK toán 8
III. NỘI DUNG:
- GV: gọi lần lượt 7 HS lên bảng ghi lại 7 HĐT đã học
- HS: lên bảng ghi và nêu lại tên của HĐT đó:
1) (A+B)
2
= A
2
+ 2AB + B
2
2) (A-B)
2
= A
2
- 2AB + B
2
3) A
2
– B
2
= (A + B) (A - B)
4) (A+B)
3
= A
3
+ 3A
2
B + 3AB
2
+ B
3
5) (A-B)
3
= A
3
- 3A
2
B + 3AB
2
- B
3
6) A
3
+ B
3
= (A+B) (A
2
- AB + B
2
)
7) A
3
- B
3
= (A-B) (A
2
+ AB + B
2
)
D¹ng 1: Tr¾c nghiƯm
Bµi 1. GhÐp mçi BT ë cét A vµ mét BT ë cét B ®Ĩ ®ỵc mét ®¼ng thøc ®óng.
Cét A Cét B
1/ (A+B)
2
= a/ A
3
+3A
2
B+3AB
2
+B
3
2/ (A+B)
3
= b/ A
2
- 2AB+B
2
3/ (A - B)
2
= c/ A
2
+2AB+B
2
4/ (A - B)
3
= d/ (A+B)( A
2
- AB +B
2
)
5/ A
2
– B
2
= e/ A
3
-3A
2
B+3AB
2
-B
3
6/ A
3
+ B
3
= f/ (A-B)( A
2
+AB+B
2
)
7/ A
3
– B
3
= g/ (A-B) (A+B)
h/ (A+B)(A
2
+B
2
)
Bµi 2: §iỊn vµo chç ... ®Ĩ ®ỵc kh¼ng ®Þnh ®óng.(¸p dơng c¸c H§T)
1/ (x-1)
3
= ...
2/ (1 + y)
3
= ...
3/ x
3
+y
3
= ...
4/ a
3
- 1 = ...
5/ a
3
+8 = ...
6/ (x+1)(x
2
-x+1) = ...
7/ (...+...)
2
= x
2
+ ...+ 4y
4
8/ (1- x)(1+x+x
2
) = ...
9/ (...- ...)
2
= a
2
– 6ab + ...
10/ (x -2)(x
2
+ 2x +4) = ...
4
11/ (...+...)
2
= ... +m +
4
1
12/ a
3
+3a
2
+3a + 1 = ...
13/ 25a
2
- ... = ( ...+
b
2
1
) ( ...-
b
2
1
)
14/ b
3
- 6b
2
+12b -8 = ...
D¹ng 2: Dïng H§T triĨn khai c¸c tÝch sau.
Bài 1: Tính:
a/ (x + 2y)
2
Đáp số: a/ x
4
+ 4xy + 4y
2
b/ (x-3y) (x+3y) b/ x
2
-9y
2
c/ (5 - x)
2
c/ 25-10x + x
2
d/ (2x – 3y) (2x + 3y)
e/ (1+ 5a) (1+ 5a)
f/ (2a + 3b) (2a + 3b)
g/ (a+b-c) (a+b+c)
h/ (x + y – 1) (x - y - 1)
(Gợi ý: Áp dụng hằng đẳng thức)
D¹ng 3: Rót gän råi tÝnh gi¸ trÞ cđa biĨu thøc
1/ M = (2x + y)
2
– (2x + y) (2x - y) y(x - y) víi x= - 2; y= 3.
2/. N = (a – 3b)
2
- (a + 3b)
2
– (a -1)(b -2 ) víi a =
2
1
; b = -3.
3/ P = (2x – 5) (2x + 5) – (2x + 1)
2
víi x= - 2005.
4/ Q = (y – 3) (y + 3)(y
2
+9) – (y
2
+2) (y
2
- 2).
D¹ng 4: T×m x, biÕt:
1/ (x – 2)
2
- (x+3)
2
– 4(x+1) = 5.
2/ (2x – 3) (2x + 3) – (x – 1)
2
– 3x(x – 5) = - 44
3/ (5x + 1)
2
- (5x + 3) (5x - 3) = 30.
4/ (x + 3)
2
+ (x-2)(x+2) – 2(x- 1)
2
= 7.
D¹ng 5. So s¸nh.
a/ A=2005.2007 vµ B = 20062
b/ B = (2+1)(22+1)(24+1)(28+1)(216+1) vµ B = 232
c/ C = (3+1)(32+1)(34+1)(38+1)(316+1) vµ B= 332-1
D¹ng 6: TÝnh nhanh.
a/ 1272 + 146.127 + 732
b/ 98.28 – (184 – 1)(184 + 1)
c/ 1002- 992 + 982 – 972 + ... + 22 – 12
e/
22
22
75125.150125
220180
++
−
f/ (202+182+162+ ... +42+22)-( 192+172+ ... +32+12)
D¹ng 7: Chøng minh ®¼ng thøc.
1/ (x + y)
3
= x(x-3y)
2
+y(y-3x)
2
2/ (a+b)(a
2
– ab + b
2
) + (a- b)(a
2
+ ab + b
2
) =2a
3
3/ (a+b)(a
2
– ab + b
2
) - (a- b)(a
2
+ ab + b
2
) =2b
3
4/ a
3
+ b
3
=(a+b)[(a-b)
2
+ ab]
5
5/ a
3
- b
3
=(a-b)[(a-b)
2
- ab]
6/ (a+b)
3
= a
3
+ b
3
+3ab(a+b)
7/ (a- b)
3
= a
3
- b
3
+3ab(a- b)
8/ x
3
- y
3
+xy(x-y) = (x-y)(x+y)
2
9/ x
3
+ y
3
- xy(x+y) = (x+ y)(x y)
2
Dạng 8: Một số bài tập khác
Bài 1: CM các BT sau có giá trị không âm.
A = x
2
4x +9.
B = 4x
2
+4x + 2007.
C = 9 6x +x
2
.
D = 1 x + x
2
.
Bài 2 .a) Cho a>b>0 ; 3a
2
+3b
2
= 10ab.
Tính P =
ba
ba
+
b) Cho a>b>0 ; 2a
2
+2b
2
= 5ab.
T ính E =
ba
ba
+
c) Cho a+b+c = 0 ; a
2
+b
2
+c
2
= 14.
Tính M = a
4
+b
4
+c
4
.
Hớng dẫn về nhà:
- Xem lại các bài tập đã giải.
- Làm các bài tập về nhà.
- áp dụng làm các bài tập tơng tự trong SGK và SBT.
Ngày dạy: Thứ 2 ngày 14 tháng 9 năm 2009
Buổi 3: ôn tập về Hình thang, hình thang cân
Đờng trung bình của tam giác, của hình thang.
I. Mục tiêu :
Kiến thức :- Hs cần nắm đợc định nghĩa , tính chất, cách chứng minh một tứ giác là
hình thang cân.
Kĩ năng : - Rèn kĩ năng chứng minh hình học.
Biết trình bày một bài chứng minh.
T duy: - Rèn cho HS thao tác phân tích, tổng hợp, t duy lôgíc.
- Rèn cho hs khả năng t duy, óc quan sát, khả năng kháI quát hoá,.
Thái độ : - Giúp hs yêu thích môn học, thái độ say mê nghiên cứu.
II- Chuẩn bị
GV: ê ke, thớc thẳng.
HS: ê ke, thớc thẳng.
III. Tiến trình bài dạy
I. Hình thang cân:
1. Đ/n: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
6
2. T/c: Trong hình thang cân :
- Hai cạnh bên bằng nhau
- Hai đờng chéo bằng nhau.
3. Dấu hiệu nhận biết hình thang cân :
- Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
- Hình thang có hai đờng chéo bằng nhau là hình thang cân.
4. Một số dạng toán:
Dạng 1 : Nhận biết hình thang cân.
Phơng pháp giải :
Chứng minh tứ giác là hình thang, rồi chứng minh hình thang đó có hai góc kề một
đáy bằng nhau, hoặc có hai đờng chéo bằng nhau.
Bài 1 : Hình thang ABCD ( AB // CD ) cogcs ACD = góc BDC. Chứng minh rằng
ABCD là hình thang. Bài giải
Gọi E là giao điểm của AC và BD.
ECD
có góc C
1
= góc D
1
nên là tam giác cân, suy ra EC = ED ( 1 )
Chứng minh tơng tự : EA = EB ( 2 )
Từ (1 ) và ( 2 ) ta suy ra:
AC = BD. Hình thang ABCD có hai đờng chéo bằng nhau nên là hình thang cân.
Bài 2 :
Cho hình thang ABCD ( AB / CD ) có AC = BD. Qua B kẻ đờng thẳng song song với
AC, cắt đờng thẳng DC tại E.
Chứng minh rằng :
a.
BDE
cân.
b.
BDCACD
=
.
c. Hình thang ABCD là hình thang cân.
Bài giải
a. Hình thang ABEC ( AB // CE ) có hai cạnh bên song song nên chúng bằng
nhau: AC = BE. Theo gt AC = BD nên BE = BD, do đó
BDE
cân.
b. AC // BD suy ra góc C
1
= góc E.
BDE
cân tại B ( câu a ) suy ra góc D
1
= góc E . Suy ra góc C
1
= góc D
1
.
BCDACD
=
( c.g.c).
c.
BDCACD
=
suy ra góc ADC = góc BCD. Hình thang ABCD có hai góc kề
một đáy bằng nhau nên là hình thang cân.
Dạng 2 : Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đoạn
thẳng.
Bài 1
Cho tam giác cân ABC ( AB = AC ). Trên các cạnh bên AB,AC lấy theo thứ tự
các điểm D và E sao cho AD = AE.
a. Chứng minh rằng BDEC là hình thang cân.
b. Tính các góc của hình thang cân đó, biết rằng góc A = 50
0
.
7
Bài giải
a. Góc D
1
= góc B ( cùng bằng
2
180
0
A
) suy ra DE // BC.
Hình thang BDEC có góc B = góc C nên là hình thang cân.
b. Góc B = góc C = 65
0
, góc D
2
= góc E
2
= 115
0
.
II. Đờng trung bình của tam giác, của hình thang.
A. Đờng trung bình của tam giác
1. Đ/n: Đờng trung bình của tam giác là đoạn thẳng nổi trung điểm hai cạnh của tam
giác.
2. T/c:
- Đờng thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ
hai thì đi qua trung điểm cạnh thứ ba.
- Đờng trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh
ấy.
B. Đờng trung bình của hình thang.
1. Đ/n: Đờng trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên
của hình thang
2. T/c: Đờng thẳng đI qua trung điểm một cạnh bên của hình thang và song song với
hai đáy thì đi qua trung điểm của cạnh bên thứ hai.
Đờng trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
C. Một số dạng toán:
Dạng 1: Sử dụng đờng trung bình của tam giác để tính độ dài và chứng
minhcác quan hệ về độ dài.
Bài 1 : Cho tam giác ABC. Gọi M,N,P theo thứ tự trung điểm các cạnh AB,AC,BC.
Tính chu vi của tam giác MNP, biết AB = 8cm,AC =10cm,BC = 12cm.
Bài giải
Tam giác ABC có AM = MB, AN = NC nên MN là đờng trung bình. Suy ra :
).(4
2
8
2
).(5
2
10
2
)(6
2
12
2
cm
AB
NP
cm
AC
MP
cm
BC
MN
===
===
===
Vậy chu vi tam giác MNP bằng : 6 + 5 + 4 = 15(cm ).
Dạng 2 : Sử dụng đờng trung bình của tam giác để chứng minh hai đờng thẳng
song song.
Bài tập :
Cho hình vẽ bên, chứng minh : AI = AM.
Bài giải:
BDC
có BE = ED và BM = MC nên EM // DC nên suy ra DI // EM.
AEM
có AD = DE và DI // EM nên AI = IM.( đpcm)
8
D¹ng 3 : Sư dơng ®êng trung b×nh cđa h×nh thang ®Ĩ tÝnh ®é dµi vµ chøng minh
c¸c quan hƯ vỊ ®é dµi .
Bµi tËp :
TÝnh x,y trªn h×nh bªn, trong ®ã AB //CD/EF// GH
Bµi gi¶i
CD lµ ®êng trung b×nh cđa h×nh thang ABFE nªn :
)(12
2
168
2
cmCDx
FEAB
=
+
===
+
EF lµ ®êng trung b×nh cđa h×nh thang CDHG nªn :
).(20
2
12
16
2
cmy
yHGCD
EF
=⇒
+
=⇒
+
=
Bµi tËp: Cho hình thang cân ABCD (AB = CD và AB // CD). Gọi M, N, P, Q
la n lượt là trung điểm của AB, BC, CD, DA.à
a) CM: MP là phân giác của
·
QMN
.
b) Hình thang cân ABCD phải có thêm đie u kiện gì đối với đường à
chéo để
·
MNQ
= 45
0
.
c) CMR: Nếu có thêm đie u kiện đó thì hình thang cân có đường cao à
bằng đường trung bình của nó.
Giải
a) Ta có:
MA = MB (gt)
NB = NC (gt)
MN là đường TB
∆
ABC
MN // AC và MN =
1
2
AC (1)
CM tương tự ta có:
QP // AC và QP =
1
2
AC (2)
MNPQ là HBH (*)
Ta lại có:
QM =
1
2
BD (QM là đường TB
∆
ABD)
Mà: AC = BD (2 đường chéo HT cân)
QM = MN (**)
Từ (*) và (**) => MNPQ là hình thoi.
MP là phân giác
·
QMN
.
b)
·
0
45MNQ =
·
0
90MNP =
MN
⊥
NP
AC
⊥
BD
b) Từ
·
0
45MNQ =
AC
⊥
BD
MNPQ là hình vuông
MP = QN
Mà: MP = AH
9
H
Q
P
N
M
C
B
D
A
AH = QN
Hớng dẫn về nhà:
1. Học thuộc định nghĩa, định lí về đờng trung bình của tam giác, của hình
thang.
2. Các dạng toán và phơng pháp giải
3. Bài tập áp dụng:
Bài 1 :
Tam giác ABC có AB = 12 cm, AC = 18cm. Gọi H là chân đờng vuông góc kẻ từ B
đến tia phân giác của góc A. Gọi M là trung điểm của BC. Tính độ dài HM.
Bài 2 :
Cho hình thang cân ABCD có AB // CD, AB = 4 cm, CD = 10cm, AD = 5cm. Trên
tia đối của tia BD lấy điểm E sao cho BE = BD. Gọi H là chân đờng vuông góc kẻ từ
E đến DC. Tính độ dài HC.
Bài 3 : Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA.
Trên tia đối của tia CB lấy điểm E sao cho CE = CA, kẻ BH vuông góc với AD, CK
vuông góc với AE. Chứng minh :
a. AH = HD.
HK // BC.
Ngày soạn: /2006 Ngày giảng: /2006
Tiết : 12;13;14.: chủ đề:
phân tích đa thức thành nhân tử
I. Mục tiêu:
*HS có kỹ năng phân tích đa thức thành nhân tử.
* HS áp dụng phân tích đa thức thành nhân tử vào giải các bài toán tính
nhanh;tìm x;tính giá trị của biểu thức...
II. Bài tập:
Dạng 1:Phân tích các đa thức sau thành nhân tử
Bài 1: Phân tích các đa thức sau thành nhân tử bằng phơng pháp đặt nhân tử
chung.
1/ 2x 4
2/ x
2
+ x
3/ 2a
2
b 4ab
4/ x(y +1) - y(y+1)
5/ a(x+y)
2
(x+y)
6/ 5(x 7) a(7 - x)
Bài 2 : Phân tích các đa thức sau thành nhân tử bằng phơng pháp dùng hằng
đẳng thức.
1/ x
2
16
2/ 4a
2
1
3/ x
2
3
4/ 25 9y
2
9/ x
2
4x +4
10/ x
2
-6xy + 9y
2
11/ x
3
+8
12/ a
3
+27b
3
10
5/ (a + 1)
2
-16
6/ x
2
– (2 + y)
2
7/ (a + b)
2
- (a – b)
2
8/ a
2
+ 2ax + x
2
13/ 27x
3
– 1
14/
8
1
- b
3
15/ a
3
- (a + b)
3
Bµi 3: Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tư b»ng ph¬ng ph¸p nhãm c¸c h¹ng
tư.
1/ 2x + 2y + ax+ ay 5/ a
2
+ab +2b - 4
2/ ab + b
2
– 3a – 3b 6/ x
3
– 4x
2
– 8x +8
3/ a
2
+ 2ab +b
2
– c
2
7/ x
3
- x
4/ x
2
– y
2
-4x + 4 8/ 5x
3
- 10x
2
+5x
Bµi 4: Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tư b»ng ph¬ng ph¸p t¸ch mét h¹ng
tư thµnh hai.
1/ x
2
– 6x +8
2/ 9x
2
+ 6x – 8
3/ 3x
2
- 8x + 4
4/ 4x
2
– 4x – 3
5/ x
2
- 7x + 12
6/ x
2
– 5x - 14
D¹ng 2: TÝnh nhanh :
1/ 36
2
+ 26
2
– 52.36
2/ 99
3
+1 + 3.(99
2
+ 99)
3/ 10,2 + 9,8 -9,8.0,2+ 10,2
2
-10,2.0,2
4/ 892
2
+ 892.216 +108
2
D¹ng 3:T×m x
1/36x
2
- 49 =0
2/ x
3
-16x =0
3/ (x – 1)(x+2) –x – 2 = 0
4/ 3x
3
-27x = 0
5/ x
2
(x+1) + 2x(x + 1) = 0
6/ x(2x – 3) -2(3 – 2x) = 0
D¹ng 4: To¸n chia hÕt:
1/ 8
5
+ 2
11
chia hÕt cho 17
2/ 69
2
– 69.5 chia hÕt cho 32
3/ 328
3
+ 172
3
chia hÕt cho 2000
4/ 19
19
+69
19
chia hÕt cho 44
5/ HiƯu c¸c b×nh ph¬ng cđa hai sè lỴ liªn tiÕp chia hÕt cho 8.
I. MỤC TIÊU:
- HS củng cố lại các PP phân tích đa thức thành nhân tử: đặt
nhân tử chung, dùng HĐT, nhóm hạng tử.
- Rèn kỹ năng phối hợp các phương pháp trên vào giải toán.
- Giáo dục HS tính cẩn thận, chính xác.
II. TÀI LIE U THAM KHA O:Ä Û
SGK, SGV, SBT (Toán 8)
III. NỘI DUNG:
Hoạt động 1: Ôn lại các kiến thức về phân tích đa thức thành nhân tử
11
- Gọi lần lượt HS nhắc lại các kiến thức
về phân tích đa thức thành nhân tử.
-HS lần lượt nhắc lại các phương
pháp phân tích đa thức đã học.
+ Đặt nhân tử chung
+ Dùng hằng đẳng thức
+ Nhóm hạng tử
- Tóm tắt lại các PP nêu trên.
+ Tách hạng tử
Hoạt động 2: Bài tập áp dụng:
Bài 34 - SBT: Phân tích các đa thức sau
thành nhân tử.
Gọi 2 HS lên bảng thực hiện cả lớp
cùng làm vào vở.
a/ x
4
+ 2x
3
+ x
2
Đáp án:
a/ x
2
(x+1)
2
b/ x
3
- x + 3x
2
y + 3xy
2
+ y
3-y
c/ 5x
2
- 10xy + 5y
2
- 20z
2
b/ (x +y)(x+y-1)(x+y+1)
c/ 5 (x - y)
2
- 20z
2
= 5(x-y-2z)(x-y+2z)
Bài 35: SBT. Phân tích thành nhân tử
a/ x
2
+ 5x - 6
b/5x
2
+ 5xy - x - y
c/ 7x - 6x
2
- 2
Gợi ý: Câu a, c áp dụng PP tách hạng tử.
- 3 HS lên bảng thực hiện
cả lớp làm vào vở,
Sau đó nhận xét bài làm của bạn.
Đáp án:
a/ x
2
+ 5x - 6
= (x
2
-x)+(6x - 6)
= x (x-1)+6(x-1)
= (x-1)(x+6)
b/ (5x-1)(x+y)
c/ 4x - 6x
2
- 2 + 3x (2x -1)(2 - 3x)
Bài 36-SBT: Phân tích thành nhân tử
a/ x
2
+ 4x + 3
b/ 2x
2
+ 3x - 5
c/ 16x - 5x
2
- 3
Gợi ý: Áp dụng PP tách hạng tử
- Gọi 3 HS lên bảng thực hiện
Đáp án:
a/ x
2
+ 4x + 3
= (x
2
+ x)+(3x+3)
=x(x+1) +3(x+1)
= (x+1)(x+3)
b/ (2x
2
- 2x)+(5x 5) = (x-1) (2x + 5)
- Nhận xét - đánh giá bài gảii c/ 15x -5x
2
-3+x = (5x-1)(2x-3)
Bài 57- SBT: Phân tích thành nhân tử
a/ x
3
- 3x
2
- 4x + 12
-Gọi 2 HS lên bảng tính
Đáp án:
12
b/ x
4
- 5x
2
+ 4 a/ (x-2_(X+2)(x-3)
b/ x
4
-4x
2
-x
2
+4
= (x
4
-4x
2
)- (x
2
-4)
-GV hướng dẫn HD thực hiện câu b
Tách: -5x
2
= -x
2
- 4x
2
=(x
2
-4)(x
2
-1)
= (x-2)(x+2+)(x-1)(x+1)
HS khác nhận xét bài làm của bạn.
Bài 37: Tìm x, biết:
a/ 5x (x-1) = x-1
b/ 2(x+5) - x
2
-5x = 0
-Gọi 2 HS lên bảng thực hiện
Đáp án:
a/ 5x (x-1)-(x-1) = 0
↔ (x-1)(5x-1) = 0
x = 1; x = 1/5
b/ 2 (x+5)-x(x+5) = 0
↔ (x + 5) (2 - x) = 0
Nhận xét - sửa sai (nếu có) x = - 5; x = 2
Hoạt động 3: Củng cố:
- GV tóm tắt lại cách giải các bài toán:
+ Phân tích đa thức (phối hợp nhiều PP)
+ Phân tích đa thức tìm x.
Hoạt động 4: Hướng dẫn về nhà
- Xem lại cách giải bài tập trên.
- Xem lại các kiến thức về tứ giác.
III. Ph©n tÝch ®a thøc thµnh nh©n tư
+ Ph¬ng ph¸p ®Ỉt nh©n tư chung.
+ Ph¬ng ph¸p dïng h»ng ®¼ng thøc.
+ Ph¬ng ph¸p nhãm h¹ng tư.
+ Phèi hỵp c¸c ph¬ng ph¸p ph©n tÝch thµnh nh©n tư ë trªn.
VÝ dơ. Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tư:
1) 15x
2
y + 20xy
2
− 25xy = 5xy.3x + 5xy.4y - 5xy.5 = 5xy(3x + 4y - 5)
2) a. 1 − 2y + y
2
= 1
2
- 2.1.y + y
2
= (1- y)
2
;
b. 27 + 27x + 9x
2
+ x
3
= 3
3
+ 3.3
2
.x + 3.3.x
2
+ x
3
= (3 + x)
3
;
c. 8 − 27x
3
= 2
3
- (3x)
3
= (2 - 3x)(4 + 6x + 9x
2
)
d. 1 − 4x
2
= 1
2
- (2x)
2
= (1 - 2x)(1 + 2x);
e.(x + y)
2
− 25 = (x + y)
2
- 5
2
= (x+ y + 5)(x + y - 5) ;
3) a. 4x
2
+ 8xy − 3x − 6y = (4x
2
+ 8xy) - (3x + 6y) = 4x(x + 2y) - 3(3 + 2y)
= (x + 2y)(4x - 3);
b. 2x
2
+ 2y
2
− x
2
z + z − y
2
z − 2 = (2x
2
+ 2y
2
- 2) - (x
2
z + y
2
z - z)
13
= 2(x
2
+ y
2
- 1) - z(x
2
+ y
2
- 1) = (x
2
+ y
2
- 1)(2 - z)
4)a) 3x
2
− 6xy + 3y
2
= 3(x
2
- 2xy + y
2
) = 3(x - y)
2
;
b) 16x
3
+ 54y
3
= 2(8x
3
+ 27y
3
)
( ) ( ) ( ) ( ) ( )
( )
( )
3 3 2 2
2 2
2 2x 3y 2 2x 3y 2x 2x.3y 3y
2 2x 3y 4x 6xy 9y
= + = + − +
= + − +
;
c) x
2
− 2xy + y
2
− 16 = (x
2
- 2xy + y
2
) - 4
2
= (x - y)
2
- 4
2
= (x - y + 4)(x - y - 4);
Bµi tËp: 1. TÝnh nhanh:
a)34.76 + 34.24 = 34( 76 + 24 ) = 34.100 = 3400
b)105
2
– 25 = 105
2
– 5
2
= ( 105 + 5)(105 – 5)= 110.100 = 11000
c)15.64+ 25.100+ 36.15+ 60.100
15.64+ 25.100+ 36.15+ 60.100 = (15.64+ 36.15)+ (25.100+ 60.100)
= 15(64+ 36)+ 100(25+ 60) = 15.100+ 100.85 = 100.100 = 10 000
2. T×m x biÕt:
3x
2
– 6x = 0
⇔
3x(x – 2) = 0
⇔
3x = 0 hc x – 2 = 0
⇔
x = 0 hc x = 2
VËy khi x = 0 hc x = 2
3. TÝnh gi¸ trÞ cđa biĨu thøc
2 2
x 2 1 yx+ + −
t¹i x = 94,5 vµ y = 4,5
2 2
x 2 1 yx+ + − + + − − = + + + −
2 2 2 2
= (x 2 1) y = (x +1) y ( 1 )( 1 )x x y x y
Víi x = 94,5, y = 4,5 ta cã:
( ) ( )
94,5 1 4,5 94,5 1 4,5 100.91 9100+ + + − = =
4. Ph©n tich ®a thøc thµnh nh©n tư:
x
6
− x
4
+ 2x
3
+ 2x
2
= x
2
(x
4
- x
2
+ 2x + 2)
( )
( )
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( )
2 4 2 2 2 2
2 2
2 2 2 3 2
x x x 2x 2 x x x 1 2 x 1
x x x 1 x 1 2 x 1
x x 1 x x 1 2 x x 1 x x 2
= − + + = − + +
= − + + +
= + + + = + + +
Ngµy d¹y: Thø 2 ngµy 14 th¸ng 9 n¨m 2009
Bi 2: «n tËp vỊ nh÷ng h»ng ®¼ng thøc ®¸ng nhí
I. MỤC TIÊU:
- Củng cố lại những hằng đẳng thức đã học.
- Vận dụng những HĐT trên vào giải toán.
- Giáo dục HS tính cẩn thận, chính xác, suy luận logíc
II. TÀI LIỆU THAM KHẢO:
SGV, SBT, SGK toán 8
III. NỘI DUNG:
- GV: gọi lần lượt 7 HS lên bảng ghi lại 7 HĐT đã học
- HS: lên bảng ghi và nêu lại tên của HĐT đó:
1) (A+B)
2
= A
2
+ 2AB + B
2
14