Tải bản đầy đủ (.pdf) (6 trang)

Jensen’s Inequality

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (161.72 KB, 6 trang )

Chapter 7
Jensen’s Inequality
7.1 Jensen’s Inequality for Conditional Expectations
Lemma 1.23 If
' : IR!IR
is convex and
IE j'X j  1
,then
IE 'X jG  'IE X jG:
For instance, if
G = f; g;'x= x
2
:
IEX
2
 IEX
2
:
Proof: Since
'
is convex we can express it as follows (See Fig. 7.1):
'x= max
h'
h
is linear
hx:
Now let
hx=ax + b
lie below
'
. Then,


IE 'X jG  IE aX + bjG 
= aIE X jG+b
= hIEXjG
This implies
IE 'X jG  max
h'
h
is linear
hIE X jG
= 'IE X jG:
91
92
ϕ
Figure 7.1: Expressing a convex function as a max over linear functions.
Theorem 1.24 If
fY
k
g
n
k=0
is a martingale and

is convex then
f'Y
k
g
n
k=0
is a submartingale.
Proof:

IE 'Y
k+1
jF
k
  'IE Y
k+1
jF
k

= 'Y
k
:
7.2 Optimal Exercise of an American Call
This follows from Jensen’s inequality.
Corollary 2.25 Given a convex function
g :0;1!IR
where
g 0 = 0
. For instance,
g x=
x,K
+
is the payoff function for an American call. Assume that
r  0
. Consider the American
derivative security with payoff
g S
k

in period

k
. The value of this security is the same as the value
of the simple European derivative security with final payoff
g S
n

, i.e.,
f
IE 1 + r
,n
g S
n
 = max

f
IE 1 + r
,
g S

 ;
where the LHS is the European value and the RHS is the American value. In particular
 = n
is an
optimal exercise time.
Proof: Because
g
is convex, for all
 2 0; 1
we have (see Fig. 7.2):
g x = g x +1,:0

 g x+1, :g 0
= g x:
CHAPTER 7. Jensen’s Inequality
93
( x, g(x))λλ
( x, g( x))λλ
(x,g(x))
x
Figure 7.2: Proof of Cor. 2.25
Therefore,
g

1
1+r
S
k+1


1
1+r
gS
k+1

and
f
IE
h
1 + r
,k+1
g S

k+1
jF
k
i
= 1 + r
,k
f
IE

1
1+r
gS
k+1
jF
k

 1 + r
,k
f
IE

g

1
1+ r
S
k+1

jF
k


 1 + r
,k
g

f
IE

1
1+ r
S
k+1
jF
k

= 1 + r
,k
g S
k
;
So
f1 + r
,k
g S
k
g
n
k=0
is a submartingale. Let


be a stopping time satisfying
0    n
.The
optional sampling theorem implies
1 + r
,
g S

 
f
IE 1 + r
,n
g S
n
jF

 :
Taking expectations, we obtain
f
IE 1 + r
,
g S

 
f
IE

f
IE 1 + r
,n

g S
n
jF



=
f
IE 1 + r
,n
g S
n
 :
Therefore, the value of the American derivative security is
max

f
IE 1 + r
,
g S

 
f
IE 1 + r
,n
g S
n
 ;
and this last expression is the value of the European derivative security. Of course, the LHS cannot
be strictly less than the RHS above, since stopping at time

n
is always allowed, and we conclude
that
max

f
IE 1 + r
,
g S

 =
f
IE 1 + r
,n
g S
n
 :
94
S = 4
0
S (H) = 8
S (T) = 2
S (HH) = 16
S (TT) = 1
S (HT) = 4
S (TH) = 4
1
1
2
2

2
2
Figure 7.3: A three period binomial model.
7.3 Stopped Martingales
Let
fY
k
g
n
k=0
be a stochastic process and let

be a stopping time. We denote by
fY
k^
g
n
k=0
the
stopped process
Y
k^ !
! ;k=0;1;::: ;n:
Example 7.1 (Stopped Process) Figure 7.3 shows our familiar 3-period binomial example.
Define
 ! =

1
if
!

1
= T;
2
if
!
1
= H:
Then
S
2^ ! 
! =
8





:
S
2
HH=16
if
! = HH;
S
2
HT =4
if
! = HT;
S
1

T =2
if
! = TH;
S
1
T=2
if
! = TT:
Theorem 3.26 A stopped martingale (or submartingale, or supermartingale) is still a martingale
(or submartingale, or supermartingale respectively).
Proof: Let
fY
k
g
n
k=0
be a martingale, and

be a stopping time. Choose some
k 2f0;1;::: ;ng
.
The set
f  kg
is in
F
k
,sotheset
f  k +1g= f  kg
c
is also in

F
k
. We compute
IE
h
Y
k+1^
jF
k
i
= IE
h
I
f kg
Y

+ I
f k+1g
Y
k+1
jF
k
i
= I
f kg
Y

+ I
f k+1g
IE Y

k+1
jF
k

= I
f kg
Y

+ I
f k+1g
Y
k
= Y
k^
:
CHAPTER 7. Jensen’s Inequality
95

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×