Tải bản đầy đủ (.pdf) (14 trang)

Pricing Exotic Options

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.28 KB, 14 trang )

Chapter 20
Pricing Exotic Options
20.1 Reflection principle for Brownian motion
Without drift.
Define
M T  = max
0tT
B t:
Then we have:
IP fM T  m;BTbg
=IPfBT2m,bg
=
1
p
2T
Z
1
2m,b
exp

,
x
2
2T

dx; m0;bm
So the joint density is
IP fM T  2 dm; B T  2 dbg = ,
@
2
@m @b



1
p
2T
Z
1
2m,b
exp

,
x
2
2T

dx
!
dm db
= ,
@
@m

1
p
2T
exp

,
2m , b
2
2T

!
dm db;
=
22m , b
T
p
2T
exp

,
2m , b
2
2T

dm db; m0;b  m:
With drift. Let
e
B t=t + Bt;
209
210
shadow path
m
Brownian motion
2m-b
b
Figure 20.1: Reflection Principle for Brownian motion without drift
m=b
b
m
(B(T), M(T)) lies in here

Figure 20.2: Possible values of
B T ;MT
.
CHAPTER 20. Pricing Exotic Options
211
where
B t; 0  t  T
, is a Brownian motion (without drift) on
; F ; P
.Define
Z T  = expf,B T  ,
1
2

2
T g
= expf, B T +T +
1
2

2
Tg
= expf,
e
B t+
1
2

2
Tg;

f
IPA=
Z
A
ZTdIP; 8A 2F:
Set
f
M T  = max
0tT
e
B T :
Under
f
IP;
e
B
is a Brownian motion (without drift), so
f
IP f
f
M T  2 d ~m;
e
B T  2 d
~
bg =
22 ~m ,
~
b
T
p

2T
exp

,
2 ~m ,
~
b
2
2T

d ~md
~
b; ~m0;
~
b ~m:
Let
h~m;
~
b
be a function of two variables. Then
IEh
f
M T ;
e
BT  =
f
IE
h
f
M T ;

e
B T 
Z T 
=
f
IE
h
h
f
M T ;
e
B T  expf
e
B T  ,
1
2

2
T g
i
=
~m=1
Z
~m=0
~
b=~m
Z
~
b=,1
h~m;

~
b expf
~
b ,
1
2

2
T g
f
IP f
f
M T  2 d ~m;
e
B T  2 d
~
bg:
But also,
IEh
f
M T ;
e
BT  =
~m=1
Z
~m=0
~
b=~m
Z
~

b=,1
h~m;
~
b IPf
f
MT 2 d~m;
e
BT 2 d
~
bg:
Since
h
is arbitrary, we conclude that
(MPR)
IP f
f
M T  2 d ~m;
e
B T  2 d
~
bg
= expf
~
b ,
1
2

2
T g
f

IP f
f
M T  2 d ~m;
e
B T  2 d
~
bg
=
22 ~m ,
~
b
T
p
2T
exp

,
2 ~m ,
~
b
2
2T

: expf
~
b ,
1
2

2

T gd ~md
~
b; ~m0;
~
b ~m:
212
20.2 Up and out European call.
Let
0 K L
be given. The payoff at time
T
is
S T  , K 
+
1
fS

T Lg
;
where
S

T  = max
0tT
S t:
To simplify notation, assume that
IP
is already the risk-neutral measure, so the value at time zero of
the option is
v 0;S0 = e

,rT
IE
h
ST  , K 
+
1
fS

T Lg
i
:
Because
IP
is the risk-neutral measure,
dS t=rS t dt + S t dB t
S t=S
0
expfBt+r,
1
2

2
tg
= S
0
exp
8








:

2
6
6
6
4
B t+

r

,

2

| z 

t
3
7
7
7
5
9




=



;
= S
0
expf
e
B tg;
where
 =

r

,

2

;
e
B t=t + Bt:
Consequently,
S

t=S
0
expf
f

M tg;
where,
f
M t = max
0ut
e
B u:
We compute,
v 0;S0 = e
,rT
IE
h
ST  , K 
+
1
fS

T Lg
i
= e
,rT
IE


S 0 expf
e
B T g, K

+
1

fS0 expf
e
M T g Lg

= e
,rT
IE
"

S 0 expf
e
B T g,K

1

e
BT
1

log
K
S 0
| z 
~
b
;
e
M T 
1


log
L
S 0
| z 
~m


CHAPTER 20. Pricing Exotic Options
213
(B(T), M(T)) lies in here
M(T)
B(T)
x
y
b
m
~
~
~
~
x=y
Figure 20.3: Possible values of
e
B T ;
f
M T 
.
We consider only the case
S 0  KL;
so

0 
~
b ~m:
The other case,
KS0  L
leads to
~
b0  ~m
and the analysis is similar.
We compute
R
~m
~
b
R
~m
x
: : : dy dx
:
v 0;S0 = e
,rT
Z
~m
~
b
Z
~m
x
S0 expfxg, K
22y , x

T
p
2T
exp

,
2y , x
2
2T
+ x ,
1
2

2
T

dy dx
= ,e
,rT
Z
~m
~
b
S0 expfxg,K
1
p
2T
exp

,

2y , x
2
2T
+ x ,
1
2

2
T





y=~m
y=x
dx
= e
,rT
Z
~m
~
b
S 0 expfxg,K
1
p
2T
"
exp


,
x
2
2T
+ x ,
1
2

2
T

, exp

,
2 ~m , x
2
2T
+ x ,
1
2

2
T

dx
=
1
p
2T
e

,rT
S 0
Z
~m
~
b
exp

x ,
x
2
2T
+ x ,
1
2

2
T

dx
,
1
p
2T
e
,rT
K
Z
~m
~

b
exp

,
x
2
2T
+ x ,
1
2

2
T

dx
,
1
p
2T
e
,rT
S 0
Z
~m
~
b
exp

x ,
2 ~m , x

2
2T
+ x ,
1
2

2
T

dx
+
1
p
2T
e
,rT
K
Z
~m
~
b
exp

,
2 ~m , x
2
2T
+ x ,
1
2


2
T

dx:
The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×