Tải bản đầy đủ (.pdf) (14 trang)

The Itˆo Integral

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (199.86 KB, 14 trang )

Chapter 14
The It
ˆ
o Integral
The following chapters deal with Stochastic Differential Equationsin Finance. References:
1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag,1995
2. J. Hull, Options, Futures and other Derivative Securities, Prentice Hall, 1993.
14.1 Brownian Motion
(See Fig. 13.3.)
; F ; P
is given, always in the background, even when not explicitly mentioned.
Brownian motion,
B t; ! :0;1!IR
, has the following properties:
1.
B 0 = 0;
Technically,
IP f! ; B 0;!=0g=1
,
2.
B t
is a continuous function of
t
,
3. If
0=t
0
t
1
:::  t
n


, then the increments
B t
1
 , B t
0
; ::: ; Bt
n
 , Bt
n,1

are independent,normal, and
IE B t
k+1
 , B t
k
=0;
IEBt
k+1
 , B t
k

2
= t
k+1
, t
k
:
14.2 First Variation
Quadratic variation is a measure of volatility. First we will consider first variation,
FV f

,ofa
function
f t
.
153
154
t
t
1
2
t
f(t)
T
Figure 14.1: Example function
f t
.
For the function pictured in Fig. 14.1, the first variation over the interval
0;T
is given by:
FV
0;T 
f =ft
1
,f0 , f t
2
 , f t
1
 + f T  , f t
2


=
t
1
Z
0
f
0
t dt +
t
2
Z
t
1
,f
0
t dt +
T
Z
t
2
f
0
t dt:
=
T
Z
0
jf
0
tj dt:

Thus, first variation measures the total amount of up and down motion of the path.
The general definition of first variation is as follows:
Definition 14.1 (First Variation) Let
=ft
0
;t
1
;::: ;t
n
g
be a partition of
0;T
, i.e.,
0=t
0
t
1
:::  t
n
= T:
The mesh of the partition is defined to be
jjjj = max
k=0;::: ;n,1
t
k+1
, t
k
:
We then define
FV

0;T 
f = lim
jjjj!0
n,1
X
k=0
jf t
k+1
 , f t
k
j:
Suppose
f
is differentiable. Then the Mean Value Theorem implies that in each subinterval
t
k
;t
k+1

,
there is a point
t

k
such that
f t
k+1
 , f t
k
=f

0
t

k
t
k+1
, t
k
:
CHAPTER 14. The ItˆoIntegral
155
Then
n,1
X
k=0
jf t
k+1
 , f t
k
j =
n,1
X
k=0
jf
0
t

k
jt
k+1

, t
k
;
and
FV
0;T 
f = lim
jjjj!0
n,1
X
k=0
jf
0
t

k
jt
k+1
, t
k

=
T
Z
0
jf
0
tj dt:
14.3 Quadratic Variation
Definition 14.2 (Quadratic Variation) Thequadraticvariationof a function

f
on an interval
0;T
is
hf iT = lim
jjjj!0
n,1
X
k=0
jf t
k+1
 , f t
k
j
2
:
Remark 14.1 (Quadratic Variation of Differentiable Functions) If
f
is differentiable, then
hf iT =
0
, because
n,1
X
k=0
jf t
k+1
 , f t
k
j

2
=
n,1
X
k=0
jf
0
t

k
j
2
t
k+1
, t
k

2
jjjj:
n,1
X
k=0
jf
0
t

k
j
2
t

k+1
, t
k

and
hf iT   lim
jjjj!0
jjjj: lim
jjjj!0
n,1
X
k=0
jf
0
t

k
j
2
t
k+1
, t
k

= lim
jjjj!0
jjjj
T
Z
0

jf
0
tj
2
dt
=0:
Theorem 3.44
hB iT =T;
or more precisely,
IP f! 2 ; hB :; !iT = Tg =1:
In particular, the paths of Brownian motion are not differentiable.
156
Proof: (Outline) Let
=ft
0
;t
1
;::: ;t
n
g
be a partition of
0;T
. To simplify notation, set
D
k
=
B t
k+1
 , B t
k


.Definethesample quadratic variation
Q

=
n,1
X
k=0
D
2
k
:
Then
Q

, T =
n,1
X
k=0
D
2
k
, t
k+1
, t
k
:
We want to show that
lim
jjjj!0

Q

, T =0:
Consider an individual summand
D
2
k
, t
k+1
, t
k
=Bt
k+1
 , B t
k

2
, t
k+1
, t
k
:
This has expectation 0, so
IE Q

, T =IE
n,1
X
k=0
D

2
k
, t
k+1
, t
k
 = 0:
For
j 6= k
,theterms
D
2
j
, t
j +1
, t
j

and
D
2
k
, t
k+1
, t
k

are independent, so
varQ


, T =
n,1
X
k=0
varD
2
k
, t
k+1
, t
k

=
n,1
X
k=0
IE D
4
k
, 2t
k+1
, t
k
D
2
k
+t
k+1
, t
k


2

=
n,1
X
k=0
3t
k+1
, t
k

2
, 2t
k+1
, t
k

2
+t
k+1
, t
k

2

(if
X
is normal with mean 0 and variance


2
,then
IE X
4
=3
4
)
=2
n,1
X
k=0
t
k+1
, t
k

2
 2jjjj
n,1
X
k=0
t
k+1
, t
k

=2jjjj T:
Thus we have
IE Q


, T =0;
varQ

, T   2jjjj:T :
CHAPTER 14. The ItˆoIntegral
157
As
jjjj!0
,
varQ

, T !0
,so
lim
jjjj!0
Q

, T =0:
Remark 14.2 (Differential Representation) We know that
IE B t
k+1
 , B t
k

2
, t
k+1
, t
k
 = 0:

We showed above that
varB t
k+1
 , B t
k

2
, t
k+1
, t
k
 = 2t
k+1
, t
k

2
:
When
t
k+1
, t
k

is small,
t
k+1
, t
k


2
is very small, and we have the approximate equation
B t
k+1
 , B t
k

2
' t
k+1
, t
k
;
which we can write informally as
dB t dB t=dt:
14.4 Quadratic Variation as Absolute Volatility
On any time interval
T
1
;T
2

, we can sample the Brownian motion at times
T
1
= t
0
 t
1
 :::  t

n
= T
2
and compute the squared sample absolute volatility
1
T
2
, T
1
n,1
X
k=0
B t
k+1
 , B t
k

2
:
This is approximately equal to
1
T
2
, T
1
hB iT
2
 ,hBiT
1
 =

T
2
, T
1
T
2
, T
1
=1:
As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion has absolute volatility 1.
Furthermore, consider the equation
hB iT =T =
T
Z
0
1dt; 8T  0:
This says that quadratic variation for Brownian motion accumulates at rate 1 at all times along
almost every path.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×