Tải bản đầy đủ (.pdf) (59 trang)

Không gian Euclide Rn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (385.38 KB, 59 trang )

Chu
.
o
.
ng 5
Khˆong gian Euclide
R
n
5.1 D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe
.
mco
.
ba

nvˆe
`
vecto
.
..........177
5.2 Co
.


so
.

.D
-
ˆo

ico
.
so
.

................188
5.3 Khˆong gian vecto
.
Euclid. Co
.
so
.

tru
.
.
c chuˆa

n201
5.4 Ph´ep biˆe
´
nd
ˆo


i tuyˆe
´
nt´ınh...........213
5.4.1 D
-
i
.
nhngh˜ıa ..................213
5.4.2 Ma trˆa
.
ncu

aph´epbdtt ...........213
5.4.3 C´ac ph´ep to´an . . . . . . . . . . . . . . . . 215
5.4.4 Vecto
.
riˆeng v`a gi´a tri
.
riˆeng . . . . . . . . . 216
5.1 D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`a
mˆo
.
tsˆo

´
kh´ai niˆe
.
mco
.
ba

nvˆe
`
vecto
.
1

. Gia

su
.

n ∈ N.Tˆa
.
pho
.
.
pmo
.
ibˆo
.
c´o thˆe

c´o (x

1
,x
2
,...,x
n
)gˆo
`
m n
sˆo
´
thu
.
.
c (ph´u
.
c) d
u
.
o
.
.
cgo
.
il`akhˆong gian thu
.
.
c (ph´u
.
c) n-chiˆe
`

u v`a d
u
.
o
.
.
c
178 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
k´yhiˆe
.
ul`aR
n
(C
n
). Mˆo
˜
ibˆo
.
sˆo
´
d´odu
.
o
.

.
cchı

bo
.

i
x =(x
1
,x
2
,...,x
n
)
v`a d
u
.
o
.
.
cgo
.
il`ad
iˆe

m hay vecto
.
cu

a R

n
(C
n
). C´ac sˆo
´
x
1
,...,x
n
du
.
o
.
.
c
go
.
il`ato
.
ad
ˆo
.
cu

adiˆe

m (cu

a vecto
.

) x hay c´ac th`anh phˆa
`
ncu

a vecto
.
x.
Hai vecto
.
x =(x
1
,...,x
n
)v`ay =(y
1
,...,y
n
)cu

a R
n
du
.
o
.
.
c xem l`a
b˘a
`
ng nhau nˆe

´
u c´ac to
.
ad
ˆo
.
tu
.
o
.
ng ´u
.
ng cu

ach´ung b˘a
`
ng nhau
x
i
= y
i
∀ i = 1,n.
C´ac vecto
.
x =(x
1
,...,x
n
), y =(y
1

,...,y
n
) c´o thˆe

cˆo
.
ng v´o
.
i nhau
v`a c´o thˆe

nhˆan v´o
.
i c´ac sˆo
´
α,β,... l`a sˆo
´
thu
.
.
cnˆe
´
u khˆong gian d
u
.
o
.
.
cx´et
l`a khˆong gian thu

.
.
cv`al`asˆo
´
ph´u
.
cnˆe
´
u khˆong gian d
u
.
o
.
.
cx´et l`a khˆong
gian ph´u
.
c.
Theo d
i
.
nh ngh˜ıa: 1
+
tˆo

ng cu

a vecto
.
x v`a y l`a vecto

.
x + y
def
=(x
1
+ y
1
,x
2
+ y
2
,...,x
n
+ y
n
). (5.1)
2
+
t´ıch cu

a vecto
.
x v´o
.
isˆo
´
α hay t´ıch sˆo
´
α v´o
.

i vecto
.
x l`a vecto
.
αx = xα
def
=(αx
1
,αx
2
,...,αx
n
). (5.2)
Hai ph´ep to´an 1
+
v`a 2
+
tho

a m˜an c´ac t´ınh chˆa
´
t (tiˆen dˆe
`
) sau dˆay
I. x + y = y + x, ∀ x, y ∈ R
n
(C
n
),
II. (x + y)+z = x +(y + z) ∀ x, y, z ∈= R

n
(C
n
),
III. Tˆo
`
nta
.
i vecto
.
- khˆong θ =(0, 0,...,0

 
n
) ∈ R
n
sao cho
x + θ = θ + x = x,
IV. Tˆo
`
nta
.
i vecto
.
d
ˆo
´
i −x =(−1)x =(−x
1
,−x

2
,...,−x
n
) sao cho
x +(−x)=θ,
V. 1 · x = x,
5.1. D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe
.
mco
.
ba

nvˆe
`
vecto
.
179
VI. α(βx)=(αβ)x, α, β ∈ R (C),
VII. (α + β)x = αx + βx,
VIII. α(x + y)=αx + αy

trong d
´o α v`a β l`a c´ac sˆo
´
, c`on x, y ∈ R
n
(C
n
).
D
-
i
.
nh ngh˜ıa 5.1.1. 1
+
Gia

su
.

V l`a tˆa
.
pho
.
.
p khˆong rˆo
˜
ng t`uy ´y v´o
.
i c´ac
phˆa

`
ntu
.

d
u
.
o
.
.
ck´yhiˆe
.
ul`ax,y,z,... Tˆa
.
pho
.
.
p V d
u
.
o
.
.
cgo
.
i l`a khˆong gian
tuyˆe
´
n t´ınh (hay khˆong gian vecto
.

) nˆe
´
u ∀ x, y ∈Vx´ac d
i
.
nh du
.
o
.
.
c phˆa
`
n
tu
.

x + y ∈V(go
.
i l`a tˆo

ng cu

a x v`a y)v`a∀ α ∈ R (C)v`a∀ x ∈Vx´ac
d
i
.
nh du
.
o
.

.
c phˆa
`
ntu
.

αx ∈V(go
.
i l`a t´ıch cu

asˆo
´
α v´o
.
i phˆa
`
ntu
.

x) sao
cho c´ac tiˆen d
ˆe
`
I-VIII du
.
o
.
.
c tho


a m˜an.
Khˆong gian tuyˆe
´
n t´ınh v´o
.
i ph´ep nhˆan c´ac phˆa
`
ntu
.

cu

an´ov´o
.
i c´ac
sˆo
´
thu
.
.
c (ph´u
.
c) d
u
.
o
.
.
cgo
.

i l`a khˆong gian tuyˆe
´
n t´ınh thu
.
.
c (tu
.
o
.
ng ´u
.
ng:
ph´u
.
c).
Khˆong gian R
n
c´o thˆe

xem nhu
.
mˆo
.
tv´ıdu
.
vˆe
`
khˆong gian tuyˆe
´
n

t´ınh, c´ac v´ı du
.
kh´ac s˜e d
u
.
o
.
.
cx´et vˆe
`
sau. V`a trong gi´ao tr`ınh n`ay ta
luˆon gia

thiˆe
´
tr˘a
`
ng c´ac khˆong gian d
u
.
o
.
.
cx´et l`a nh˜u
.
ng khˆong gian thu
.
.
c.
2


. Cho hˆe
.
gˆo
`
m m vecto
.
n-chiˆe
`
u
x
1
,x
2
,...,x
m
. (5.3)
Khi d
´o vecto
.
da
.
ng
y = α
1
x
1
+ α
2
x

2
+ ···+ α
m
x
m
; α
1

2
,...,α
m
∈ R.
d
u
.
o
.
.
cgo
.
il`atˆo

ho
.
.
p tuyˆe
´
nt´ınh cu

a c´ac vecto

.
d
˜a cho hay vecto
.
y biˆe

u
diˆe
˜
n tuyˆe
´
n t´ınh d
u
.
o
.
.
c qua c´ac vecto
.
(5.3).
D
-
i
.
nh ngh˜ıa 5.1.2. 1
+
Hˆe
.
vecto
.

(5.3) d
u
.
o
.
.
cgo
.
il`ahˆe
.
d
ˆo
.
clˆa
.
p tuyˆe
´
n
t´ınh (d
ltt) nˆe
´
ut`u
.
d
˘a

ng th´u
.
c vecto
.

λ
1
x
1
+ λ
2
x
2
+ ···+ λ
m
x
m
= θ (5.4)
k´eo theo λ
1
= λ
2
= ··· = λ
m
=0.
180 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
2
+
Hˆe

.
(5.3) go
.
il`ahˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh (pttt) nˆe
´
utˆo
`
nta
.
i c´ac sˆo
´
λ
1

2
,...,λ
m
khˆong dˆo
`
ng th`o
.
ib˘a

`
ng 0 sao cho d
˘a

ng th´u
.
c (5.4) d
u
.
o
.
.
c
tho

a m˜an.
Sˆo
´
nguyˆen du
.
o
.
ng r d
u
.
o
.
.
cgo
.

il`aha
.
ng cu

ahˆe
.
vecto
.
(5.3) nˆe
´
u
a) C´o mˆo
.
ttˆa
.
pho
.
.
p con gˆo
`
m r vecto
.
cu

ahˆe
.
(5.3) lˆa
.
p th`anh hˆe
.

d
ltt.
b) Mo
.
itˆa
.
p con gˆo
`
m nhiˆe
`
uho
.
n r vecto
.
cu

ahˆe
.
(5.3) d
ˆe
`
u phu
.
thuˆo
.
c
tuyˆe
´
n t´ınh.
D

ˆe

t`ım ha
.
ng cu

ahˆe
.
vecto
.
ta lˆa
.
p ma trˆa
.
n c´ac to
.
ad
ˆo
.
cu

an´o
A =






a

11
a
12
... a
1n
a
21
a
22
... a
2n
.
.
.
.
.
.
.
.
.
.
.
.
a
m1
a
m2
... a
mn







D
-
i
.
nh l´y. Ha
.
ng cu

ahˆe
.
vecto
.
(5.3) b˘a
`
ng ha
.
ng cu

a ma trˆa
.
n A c´ac to
.
a
d
ˆo

.
cu

a n´o.
T`u
.
d
´o, dˆe

kˆe
´
t luˆa
.
nhˆe
.
vecto
.
(5.3) d
ltt hay pttt ta cˆa
`
nlˆa
.
p ma trˆa
.
n
to
.
ad
ˆo
.

A cu

ach´ung v`a t´ınh r(A):
1) Nˆe
´
u r(A)=m th`ı hˆe
.
(5.3) d
ˆo
.
clˆa
.
p tuyˆe
´
n t´ınh.
2) Nˆe
´
u r(A)=s<mth`ı hˆe
.
(5.3) phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
C
´
AC V
´

IDU
.
V´ı d u
.
1. Ch´u
.
ng minh r˘a
`
ng hˆe
.
vecto
.
a
1
,a
2
,...,a
m
(m>1) phu
.
thuˆo
.
c
tuyˆe
´
n t´ınh khi v`a chı

khi ´ıt nhˆa
´
tmˆo

.
t trong c´ac vecto
.
cu

ahˆe
.
l`a tˆo

ho
.
.
p
tuyˆe
´
n t´ınh cu

a c´ac vecto
.
c`on la
.
i.
Gia

i. 1
+
Gia

su
.


hˆe
.
a
1
,a
2
,...,a
m
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh. Khi d´o
tˆo
`
nta
.
i c´ac sˆo
´
α
1

2
,...,α
m
khˆong dˆo
`

ng th`o
.
ib˘a
`
ng 0 sao cho
α
1
a
1
+ α
2
a
2
+ ···+ α
m
a
m
= θ.
Gia

su
.

α
m
= 0. Khi d´o
a
m
= β
1

a
1
+ β
2
a
2
+ ···+ β
m−1
a
m−1

i
=
α
i
α
m
5.1. D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe
.
mco

.
ba

nvˆe
`
vecto
.
181
t´u
.
cl`aa
m
biˆe

udiˆe
˜
n tuyˆe
´
n t´ınh qua c´ac vecto
.
c`on la
.
i.
2
+
Ngu
.
o
.
.

cla
.
i, ch˘a

ng ha
.
nnˆe
´
u vecto
.
a
m
biˆe

udiˆe
˜
n tuyˆe
´
n t´ınh qua
a
1
,a
2
,...,a
m−1
a
m
= β
1
a

1
+ β
2
a
2
+ ···+ β
m−1
a
m−1
th`ı ta c´o
β
1
a
1
+ β
2
a
2
+ ···+ β
m−1
a
m−1
+(−1)a
m
= θ.
Do d
´ohˆe
.
d˜a cho phu
.

thuˆo
.
c tuyˆe
´
n t´ınh v`ı trong d˘a

ng th´u
.
ctrˆenc´ohˆe
.
sˆo
´
cu

a a
m
l`a kh´ac 0 (cu
.
thˆe

l`a = −1). 
V´ı d u
.
2. Ch´u
.
ng minh r˘a
`
ng mo
.
ihˆe

.
vecto
.
c´o ch´u
.
a vecto
.
-khˆong l`a hˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
Gia

i. Vecto
.
- khˆong luˆon luˆon biˆe

udiˆe
˜
nd
u
.
o
.
.

cdu
.
´o
.
ida
.
ng tˆo

ho
.
.
p
tuyˆe
´
n t´ınh cu

a c´ac vecto
.
a
1
,a
2
,...,a
m
:
θ =0· a
1
+0· a
2
+ ···+0· a

m
Do d´o theo di
.
nh ngh˜ıa hˆe
.
θ, a
1
,...,a
m
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh (xem v´ı
du
.
1). 
V´ı d u
.
3. Ch´u
.
ng minh r˘a
`
ng mo
.
ihˆe
.
vecto

.
c´o ch´u
.
a hai vecto
.
b˘a
`
ng
nhau l`a hˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
Gia

i. Gia

su
.

trong hˆe
.
a
1
,a
2

,...,a
n
c´o hai vecto
.
a
1
= a
2
. Khi d´o
ta c´o thˆe

viˆe
´
t
a
1
=1· a
2
+0· a
3
+ ···+0· a
m
t´u
.
c l`a vecto
.
a
1
cu


ahˆe
.
c´o thˆe

biˆe

udiˆe
˜
ndu
.
´o
.
ida
.
ng tˆo

ho
.
.
p tuyˆe
´
n t´ınh
cu

a c´ac vecto
.
c`on la
.
i. Do d
´o h ˆe

.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh (v´ı du
.
1). 
V´ı d u
.
4. Ch´u
.
ng minh r˘a
`
ng nˆe
´
uhˆe
.
m vecto
.
a
1
,a
2
,...,a
m
dˆo
.

clˆa
.
p
tuyˆe
´
n t´ınh th`ı mo
.
ihˆe
.
con cu

ahˆe
.
d
´oc˜ung dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh.
Gia

i. D
ˆe

cho x´ac di
.
nh ta x´et hˆe
.

con a
1
,a
2
,...,a
k
, k<mv`a ch´u
.
ng
minh r˘a
`
ng hˆe
.
con n`ay d
ˆo
.
clˆa
.
p tuyˆe
´
n t´ınh.
182 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
Gia


su
.

ngu
.
o
.
.
cla
.
i: hˆe
.
con a
1
,a
2
,...,a
k
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh. Khi
d
´o ta c´o c´ac d˘a

ng th´u
.

c vecto
.
α
1
a
1
+ α
2
a
2
+ ···+ α
k
a
k
= θ
trong d
´o c´o ´ıt nhˆa
´
tmˆo
.
t trong c´ac hˆe
.
sˆo
´
α
1

2
,...,α
k

kh´ac 0. Ta viˆe
´
t
d
˘a

ng th´u
.
cd
´odu
.
´o
.
ida
.
ng
α
1
a
1
+ α
2
A
2
+ ···+ α
k
a
k
+ α
k+1

a
k+1
+ ···+ α
m
a
m
= θ
trong d
´o ta gia

thiˆe
´
t α
k+1
=0,...,α
m
=0. D˘a

ng th´u
.
c sau c`ung n`ay
ch´u
.
ng to

hˆe
.
a
1
,a

2
,...,a
m
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh. Mˆau thuˆa
˜
n. 
V´ı d u
.
5. Ch´u
.
ng minh r˘a
`
ng hˆe
.
vecto
.
cu

a khˆong gian R
n
e
1
=(1, 0,...,0),
e

2
=(0, 1,...,0),
... ... ... ...
e
n
=(0,...,0, 1)
l`a d
ˆo
.
clˆa
.
p tuyˆe
´
n t´ınh.
Gia

i. T`u
.
d
˘a

ng th´u
.
c vecto
.
α
1
e
1
+ α

2
e
2
+ ···+ α
n
e
n
= θ
suy ra r˘a
`
ng

1

2
,...,α
n
)=(0, 0,...,0) ⇒ α
1
= α
2
= ···= α
n
=0.
v`a do d
´ohˆe
.
e
1
,e

2
,...,e
n
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh. 
V´ı d u
.
6. Ch´u
.
ng minh r˘a
`
ng mo
.
ihˆe
.
gˆo
`
m n + 1 vecto
.
cu

a R
n
l`a hˆe
.

phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
Gia

i. Gia

su
.

n + 1 vecto
.
cu

ahˆe
.
l`a:
a
1
=(a
11
,a
21
,...,a
n1
)

a
2
=(a
12
,a
22
,...,a
n2
)
... ... ... ...
a
n+1
=(a
1,n+1
,a
2,n+1
,...,a
n,n+1
).
5.1. D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe

.
mco
.
ba

nvˆe
`
vecto
.
183
Khi d´ot`u
.
d
˘a

ng th´u
.
c vecto
.
x
1
a
1
+ x
2
a
2
+ ···+ x
n
a

n
+ x
n+1
a
n+1
= θ
suy ra
a
11
x
1
+ a
12
x
2
+ ···+ a
1n+1
x
n+1
=0,
... ... ... ... ... ...
a
n1
x
1
+ a
n2
x
2
+ ···+ a

nn+1
x
n+1
=0.





D
´ol`ahˆe
.
thuˆa
`
n nhˆa
´
t n phu
.
o
.
ng tr`ınh v´o
.
i(n +1) ˆa

n nˆen hˆe
.
c´o nghiˆe
.
m
khˆong tˆa

`
mthu
.
`o
.
ng v`a
(x
1
,x
2
,...,x
n
,x
n+1
) =(0, 0,...,0).
Do d
´o theo di
.
nh ngh˜ıa hˆe
.
d˜a x´et l`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh. 
V´ı d u
.
7. T`ım ha

.
ng cu

ahˆe
.
vecto
.
trong R
4
a
1
=(1, 1, 1, 1); a
2
=(1, 2, 3, 4);
a
3
=(2, 3, 2, 3); a
4
=(2, 4, 5, 6).
Gia

i. Ta lˆa
.
p ma trˆa
.
n c´ac to
.
ad
ˆo
.

v`a t`ım ha
.
ng cu

a n´o. Ta c´o
A =





1111
1234
2323
3456





h
2
− h
1
→ h

2
h
3
− 2h

1
→ h

3
h
4
− 3h
1
→ h

4
−→





1111
0123
0101
0123





h
3
− h
2

→ h

3
h
4
− h
2
→ h

4

−→





11 1 1
01 2 3
00−2 −3
00 0 0





.
T`u
.
d

´o suy r˘a
`
ng r(A) = 3. Theo di
.
nh l´yd˜a nˆeu ha
.
ng cu

ahˆe
.
vecto
.
b˘a
`
ng 3. 
184 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
V´ı d u
.
8. Kha

o s´at su
.
.
phu

.
thuˆo
.
c tuyˆe
´
n t´ınh gi˜u
.
a c´ac vecto
.
cu

a R
4
:
a
1
=(1, 4, 1, 1); a
2
=(2, 3,−1, 1);
a
3
=(1, 9, 4, 2); a
4
=(1,−6,−5,−1).
Gia

i. Lˆa
.
p ma trˆa
.

n m`a c´ac h`ang cu

a n´o l`a c´ac vecto
.
d
˜a cho v`a t`ım
ha
.
ng cu

an´o
S =





1411
23−11
1942
1 −6 −5 −1





⇒ r(A)=2.
Do d
´oha
.

ng cu

ahˆe
.
vecto
.
b˘a
`
ng 2. V`ı c´ac phˆa
`
ntu
.

cu

ad
i
.
nh th´u
.
c con
∆=





14
23






= −5 =0
n˘a
`
mo
.

hai h`ang d
ˆa
`
unˆena
1
v`a a
2
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh, c`on a
3
v`a a
4
biˆe

u

diˆe
˜
n tuyˆe
´
n t´ınh qua a
1
v`a a
2
. [Lu
.
u´yr˘a
`
ng mo
.
ic˘a
.
p vecto
.
cu

ahˆe
.
d
ˆe
`
u
d
ˆo
.
clˆa

.
p tuyˆe
´
n t´ınh v`ı ta c´o c´ac di
.
nh th´u
.
c con cˆa
´
p hai sau d
ˆay =0:





14
19





,





14

1 −6





,





23
19





,





23
1 −6






,





19
1 −6





.]
Ta t`ım c´ac biˆe

uth´u
.
cbiˆe

udiˆe
˜
n a
3
v`a a
4
qua a
1

v`a a
2
.
Ta viˆe
´
t
a
3
= ξ
1
a
1
+ ξ
2
a
2
hay l`a
(1, 9, 4, 2) = ξ
1
· (1, 4, 1, 1) + ξ
2
· (2, 3,−1, 1)
⇒ (1, 9, 4, 2) = (ξ
1
+2ξ
2
, 4ξ
1
+3ξ
2


1
− ξ
2

1
+ ξ
2
)
5.1. D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe
.
mco
.
ba

nvˆe
`
vecto
.
185

v`a thu du
.
o
.
.
chˆe
.
phu
.
o
.
ng tr`ınh
ξ
1
+2ξ
2
=1,

1
+3ξ
2
=9,
ξ
1
− ξ
2
=4,
ξ
1
+ ξ

2
=2.









Ta ha
.
n chˆe
´
hai phu
.
o
.
ng tr`ınh d
ˆa
`
u. Di
.
nh th´u
.
ccu

ac´achˆe
.

sˆo
´
cu

a hai
phu
.
o
.
ng tr`ınh n`ay ch´ınh l`a d
i
.
nh th´u
.
c ∆ chuyˆe

nvi
.
.V`ı∆= 0 nˆen hˆe
.
hai phu
.
o
.
ng tr`ınh
ξ
1
+2ξ
2
=1


1
+3ξ
2
=9
c´o nghiˆe
.
m duy nhˆa
´
tl`aξ
1
=3,ξ
2
= −1. Do d´o
a
3
=3a
1
− a
2
.
Tu
.
o
.
ng tu
.
.
ta c´o
a

4
=2a
2
− 3a
1
. 
B
`
AI T
ˆ
A
.
P
1. Ch´u
.
ng minh r˘a
`
ng trong khˆong gian R
3
:
1) Vecto
.
(x, y, z) l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh cu


a c´ac vecto
.
e
1
=(1, 0, 0),
e
2
=(0, 1, 0), e
3
=(0, 0, 1).
2) Vecto
.
x =(7, 2, 6) l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh cu

a c´ac vecto
.
a
1
=
(−3, 1, 2), a
2
=(−5, 2, 3), a

3
=(1,−1, 1).
2. H˜ay x´ac d
i
.
nh sˆo
´
λ dˆe

vecto
.
x ∈ R
3
l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh cu

a c´ac
vecto
.
a
1
,a
2
,a

3
∈ R
3
nˆe
´
u:
1) x =(1, 3, 5); a
1
=(3, 2, 5); a
2
=(2, 4, 7); a
3
=(5, 6,λ).
186 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
(DS. λ = 12)
2) x =(7,−2,λ); a
1
=(2, 3, 5); a
2
=(3, 7, 8); a
3
=(1,−6, 1).
(D
S. λ = 15)

3) x =(5, 9,λ); a
1
=(4, 4, 3); a
2
=(7, 2, 1); a
3
=(4, 1, 6).
(D
S. ∀ λ ∈ R)
3. Ch´u
.
ng minh r˘a
`
ng trong khˆong gian R
3
:
1) Hˆe
.
ba vecto
.
e
1
=(1, 0, 0), e
2
=(0, 1, 0), e
3
=(0, 0, 1) l`a hˆe
.
dltt.
2) Nˆe

´
u thˆem vecto
.
x ∈ R
3
bˆa
´
tk`y v`ao hˆe
.
th`ı hˆe
.
{e
1
,e
2
,e
3
,x}
l`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
3) Hˆe
.
gˆo
`
mbˆo

´
n vecto
.
bˆa
´
tk`ycu

a R
3
l`a pttt.
4. C´ac hˆe
.
vecto
.
sau d
ˆay trong khˆong gian R
3
l`a dltt hay pttt:
1) a
1
=(1, 2, 1); a
2
=(0, 1, 2); a
3
=(0, 0, 2). (DS. Dltt)
2) a
1
=(1, 1, 0); a
2
=(1, 0, 1); a

3
=(1,−2, 0). (DS. Dltt)
3) a
1
=(1, 3, 3); a
2
=(1, 1, 1); a
3
=(−2,−4,−4). (DS. Pttt)
4) a
1
=1,−3, 0); a
2
=(3,−3, 1); a
3
=(2, 0, 1). (DS. Pttt)
5) a
1
=(2, 3, 1); a
2
=(1, 1, 1); a
3
=(1, 2, 0). (DS. Pttt)
5. Gia

su
.

v
1

, v
2
v`a v
3
l`a hˆe
.
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh. Ch´u
.
ng minh r˘a
`
ng hˆe
.
sau d
ˆay c˜ung l`a dltt:
1) a
1
= v
1
+ v
2
; a
2
= v
1

+ v
3
; a
3
= v
1
− 2v
2
.
2) a
1
= v
1
+ v
3
; a
2
= v
3
− v
1
; a
3
= v
1
+ v
2
− v
3
.

6. Ch´u
.
ng minh r˘a
`
ng c´ac hˆe
.
vecto
.
sau d
ˆay l`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
D
ˆo
´
iv´o
.
ihˆe
.
vecto
.
n`ao th`ı vecto
.
b l`a tˆo

ho

.
.
p tuyˆe
´
n t´ınh cu

a c´ac vecto
.
c`on la
.
i?
1) a
1
=(2, 0,−1), a
2
=(3, 0,−2), a
3
=(−1, 0, 1), b =(1, 2, 0).
(D
S. b khˆong l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh)
2) a
1
=(−2, 0, 1), a

2
=(1,−1, 0), a
3
=(0, 1, 2); b =(2, 3, 6).
(D
S. b l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh)
5.1. D
-
i
.
nh ngh˜ıa khˆong gian n-chiˆe
`
uv`amˆo
.
tsˆo
´
kh´ai niˆe
.
mco
.
ba

nvˆe

`
vecto
.
187
7. T`ım sˆo
´
cu
.
.
cd
a
.
i c´ac vecto
.
d
ltt trong c´ac hˆe
.
vecto
.
sau d
ˆay
1) a
1
=(2, 3,−1, 4); a
2
=(−1, 1, 2, 0); a
3
=(0, 0, 1, 1);
a
4

=(1, 4, 1, 4); a
5
=(2, 3, 0, 5). (DS. = 3)
2) a
1
=(1, 0, 0, 0); a
2
=(0, 1, 0, 0); a
3
=(0, 0, 1, 0)
a
4
=(0, 0, 0, 1); a
5
=(1, 2, 3, 4). (DS. = 4)
3) a
1
=(1, 1, 1, 1); a
2
=(1, 1, 1, 0); a
3
=(1, 1, 0, 0);
a
4
=(1, 0, 0, 0); a
5
=(1, 2, 3, 4). (DS. = 4)
Chı

dˆa

˜
n. Lˆa
.
p ma trˆa
.
n c´ac to
.
ad
ˆo
.
m`a mˆo
˜
icˆo
.
tcu

an´ol`ato
.
adˆo
.
cu

a
vecto
.
cu

ahˆe
.
rˆo

`
i t´ınh ha
.
ng cu

a ma trˆa
.
n.
8. C´ac hˆe
.
vecto
.
sau d
ˆay trong khˆong gian R
4
l`a dltt hay pttt
1) a
1
=(1, 2, 3, 4), a
2
=(1, 2, 3, 4). (DS. Pttt)
2) a
1
=(1, 2, 3, 4), a
2
=(1,−2,−3,−4). (DS. Pttt)
3) a
1
=(1, 2, 3, 4), a
2

=(3, 6, 9, 12). (DS. Pttt)
4) a
1
=(1, 2, 3, 4), (a
2
=(1, 2, 3, 5). (DS. Dltt)
5) a
1
=(1, 0, 0, 0), a
2
=(0, 1, 0, 0), a
3
=(0, 0, 1, 0), a
4
=(0, 0, 0, 1)
v`a a l`a vecto
.
t`uy ´y cu

a R
4
.(DS. Pttt)
6) a
1
=(1, 1, 1, 1), a
2
=(0, 1, 1, 1), a
3
=(0, 0, 1, 1), a
4

=(0, 0, 0, 1).
(D
S. Dltt)
7) a
1
=(1, 2, 3, 4), a
2
=(3, 6, 9, 12), a
3
=(1, 2, 3, 6). (DS. Pttt)
9. C´ac hˆe
.
vecto
.
sau d
ˆay dltt hay pttt. Trong tru
.
`o
.
ng ho
.
.
p pttt h˜ay chı

ra mˆo
.
tsu
.
.
pttt. H˜ay chı


ra mˆo
.
thˆe
.
con cu
.
.
cd
a
.
i n`ao d´ol`adltt.
1) a
1
=(2, 1,−2,−1), a
2
=(−9, 5,−6, 21), a
3
=(2,−5,−1, 3),
a
4
=(−1,−1,−1, 5), a
5
=(−1, 2,−3, 4).
(D
S. a
1
+ a
2
+ a

3
− 3a
4
− 2a
5
= θ; a
1
,a
2
,a
3
,a
4
)
2) a
1
=(1, 1, 1, 1), a
2
=(2, 0, 1,−1), a
3
=(3,−4, 0,−1),
a
4
= (13,−10, 3,−2). (DS. 2a
1
+ a
2
+3a
3
− a

4
= θ; a
1
,a
2
,a
3
)
3) a
1
=(1,−1, 1,−1), a
2
=(2, 0, 1,−1), a
3
=(3,−1, 1,−1),
a
4
=(4,−2, 1,−2). (DS. Hˆe
.
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh)
4) a
1
=(1, 2,−2,−1), a
2

=(−1, 0, 2, 1), a
3
=(0, 1, 0, 1),
a
4
=(3, 6, 0, 4). (DS. Hˆe
.
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh)
188 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
10. T´ınh ha
.
ng r cu

ahˆe
.
vecto
.
v`a chı


r˜o hˆe
.
d
˜a cho l`a pttt hay dltt:
1) a
1
=(1,−2, 2,−8, 2), a
2
=(1,−2, 1, 5, 3), a
3
=(1,−2, 4,−7, 0).
(D
S. r =3,hˆe
.
dˆo
.
clˆa
.
p tuyˆe
´
n t´ınh)
2) a
1
=(2, 3, 1,−1), a
2
=(3, 1, 4, 2), a
3
=(1, 2, 3,−1),
a

4
=(1,−4,−7, 5). (DS. r =3,hˆe
.
pttt)
3) a
1
=(2,−1,−3, 2,−6), a
2
=(1, 5,−2, 3, 4), a
3
=(3, 4,−1, 5, 7),
a
4
=(3,−7, 4, 1,−7), a
5
=(0, 11,−5, 4,−4). (DS. r =3hˆe
.
pttt)
4) a
1
=(2, 1, 4,−4, 17), a
2
=(0, 0, 5,−7, 9), a
3
=
(2, 1,−6, 10,−11),
a
4
=(8, 4, 1, 5, 11), a
5

=(2, 2, 9,−11, 10). (DS. r =5,hˆe
.
dltt)
5.2 Co
.
so
.

.D
-
ˆo

ico
.
so
.

D
-
i
.
nh ngh˜ıa 5.2.1. Hˆe
.
vecto
.
E
1
,E
2
,...,E

n
gˆo
`
m n vecto
.
cu

a khˆong
gian vecto
.
R
n
du
.
o
.
.
cgo
.
il`amˆo
.
tco
.
so
.

cu

an´onˆe
´

u
1) hˆe
.
E
1
,E
2
,...,E
n
l`a hˆe
.
dltt;
2) mo
.
i vecto
.
x ∈ R
n
dˆe
`
ubiˆe

udiˆe
˜
n tuyˆe
´
n t´ınh du
.
o
.

.
c qua c´ac vecto
.
cu

ahˆe
.
E
1
,...,E
n
.
Ch´u´yr˘a
`
ng co
.
so
.

cu

a R
n
l`a mˆo
.
t hˆe
.
c´o th´u
.
tu

.
.
bˆa
´
tk`ygˆo
`
m n vecto
.
d
ˆo
.
clˆa
.
p tuyˆe
´
n t´ınh cu

a n´o.
D
iˆe
`
ukiˆe
.
n 2) c´o ngh˜ıa r˘a
`
ng ∀ x ∈ R
n
, ∃(x
1
,x

2
,...,x
n
) sao cho
x = x
1
E
1
+ x
2
E
2
+ ···+ x
n
E
n
, (5.5)
trong d
´o x
1
,x
2
,...,x
n
l`a to
.
adˆo
.
cu


a vecto
.
x trong co
.
so
.

E
1
,E
2
,...,E
n
v`a (5.5) go
.
il`akhai triˆe

n vecto
.
x theo co
.
so
.

E
1
,E
2
,...,E
n

.
´
Y ngh˜ıa co
.
ba

ncu

a kh´ai niˆe
.
mco
.
so
.

l`a: c´ac ph´ep to´an tuyˆe
´
n t´ınh
trˆen c´ac vecto
.
trong co
.
so
.

cho tru
.
´o
.
c chuyˆe


n th`anh c´ac ph´ep to´an trˆen
c´ac sˆo
´
l`a to
.
ad
ˆo
.
cu

ach´ung.
D
-
i
.
nh l´y 5.2.1. Trong khˆong gian R
n
:
1) To
.
ad
ˆo
.
cu

amˆo
.
t vecto
.

d
ˆo
´
iv´o
.
imˆo
.
tco
.
so
.

l`a duy nhˆa
´
t.
5.2. Co
.
so
.

.D
-
ˆo

ico
.
so
.

189

2) Mo
.
ihˆe
.
dltt gˆo
`
m n vecto
.
d
ˆe
`
ulˆa
.
p th`anh co
.
so
.

cu

a khˆong gian
R
n
.
Ta x´et vˆa
´
nd
ˆe
`
: Khi co

.
so
.

thay d
ˆo

i th`ı to
.
adˆo
.
cu

amˆo
.
t vecto
.
trong
khˆong gian R
n
thay dˆo

ithˆe
´
n`ao ?
Gia

su
.


trong khˆong gian R
n
c´o hai co
.
so
.

E :E
1
,E
2
,...,E
n
- “co
.
so
.

c˜u” (5.6)
E :E
1
,E
2
,...,E
n
- “co
.
so
.


m´o
.
i” (5.7)
V`ı E
1
,E
2
,...,E
n
∈ R
n
nˆen
E
1
= t
11
ε
1
+ t
21
ε
2
+ ···+ t
n1
ε
n
,
E
2
= t

12
ε
1
+ t
22
ε
2
+ ···+ t
n2
ε
n
,
... ... ... ... ...
E
n
= t
1n
ε
1
+ t
2n
ε
2
+ ···+ t
nn
ε
n
.










(5.8)
C´o thˆe

n´oi r˘a
`
ng co
.
so
.

E
1
,...,E
n
thu du
.
o
.
.
ct`u
.
co
.

so
.

E
1
,E
2
,...,E
n
nh`o
.
ma trˆa
.
n
T
EE
=






t
11
t
12
... t
1n
t

21
t
22
... t
2n
.
.
.
.
.
.
.
.
.
.
.
.
t
n1
t
n2
... t
nn






(5.9)

trong d
´ocˆo
.
tth´u
.
i cu

a ma trˆa
.
n (5.9) ch´ınh l`a c´ac to
.
ad
ˆo
.
cu

a vecto
.
E
i
trong co
.
so
.

(5.6).
Ma trˆa
.
n T = T
EE

trong (5.9) du
.
o
.
.
cgo
.
il`ama trˆa
.
n chuyˆe

n t`u
.
co
.
so
.

(5.6) d
ˆe
´
nco
.
so
.

(5.7). D
i
.
nh th´u

.
ccu

a ma trˆa
.
n chuyˆe

n detT =0
v`ı trong tru
.
`o
.
ng ho
.
.
p ngu
.
o
.
.
cla
.
i th`ı c´ac vecto
.
cˆo
.
t (v`a do d
´o c´ac vecto
.
E

1
,...,E
n
) l`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
Nhu
.
vˆa
.
yd
ˆe

t`ım ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

c˜u sang co
.

so
.

m´o
.
id
ˆa
`
u
tiˆen ta cˆa
`
n khai triˆe

n c´ac vecto
.
cu

aco
.
so
.

m´o
.
i theo co
.
so
.

c˜u. Tiˆe

´
pd
´o
ta lˆa
.
p ma trˆa
.
nm`acˆo
.
tth´u
.
i cu

a n´o l`a c´ac to
.
ad
ˆo
.
cu

a vecto
.
th´u
.
i cu

a
co
.
so

.

m´o
.
i trong co
.
so
.

c˜u. D
´och´ınh l`a ma trˆa
.
n chuyˆe

n.
190 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
Gia

su
.

vecto
.
a ∈ R

n
v`a
a = x
1
ε
1
+ x
2
ε
2
+ ···+ x
n
ε
n
,
a = y
1
E
1
+ y
2
E
2
+ ···+ y
n
E
n
.
Khi d
´o quan hˆe

.
gi˜u
.
a c´ac to
.
ad
ˆo
.
cu

ac`ung mˆo
.
t vecto
.
d
ˆo
´
iv´o
.
i hai co
.
so
.

kh´ac nhau (5.6) v`a (5.7) d
u
.
o
.
.

cmˆota

nhu
.
sau
x
1
= t
11
y
1
+ t
12
y
2
+ ···+ t
1n
y
n
,
x
2
= t
21
y
1
+ t
22
y
2

+ ···+ t
2n
y
n
,
... ... ... ... ...
x
n
= t
n1
y
1
+ t
n2
y
2
+ ···+ t
nn
y
n
.










(5.10)
hay l`a
X = T
EE
Y, (5.11)
X =






x
1
x
2
.
.
.
x
n






,Y=







y
1
y
2
.
.
.
y
n






T`u
.
d
´oc˜ung suy ra
Y = T
−1
EE
X. (5.11*)
C
´
AC V

´
IDU
.
V´ı du
.
1. Trong khˆong gian R
3
hˆe
.
c´ac vecto
.
E
1
(1, 0, 0), E
2
(0, 2, 0),
E
3
(0, 0, 3) l`a co
.
so
.

cu

a n´o.
Gia

i. 1) Hˆe
.

vecto
.
E
1
,E
2
,E
3
l`a hˆe
.
dˆo
.
clˆa
.
p tuyˆe
´
nt´ınh. Thˆa
.
tvˆa
.
y,
d
˘a

ng th´u
.
c vecto
.
α
1

E
1
+ α
2
E
2
+ α
3
E
3
=(0, 0, 0)
⇔ α
1
(1, 0, 0) + α
2
(0, 2, 0) + α
3
(0, 0, 3) = (0, 0, 0)
⇔ (α
1
, 2α
2
, 3α
3
)=(0, 0, 0)
⇔ α
1
= α
2
= α

3
=0.
5.2. Co
.
so
.

.D
-
ˆo

ico
.
so
.

191
2) Gia

su
.

x ∈ R
3
, x =(ξ
1

2

3

). Khi d´o
x = ξ
1
(1, 0, 0) +
ξ
2
2
(0, 2, 0) +
ξ
3
3
(0, 0, 3)
= ξ
1
E
1
+
ξ
2
2
E
2
+
ξ
3
3
E
3
t´u
.

cl`ax l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh cu

a E
1
,E
2
,E
3
. 
V´ı d u
.
2. Ch´u
.
ng minh r˘a
`
ng trong khˆong gian R
3
c´ac vecto
.
E
1
=
(2, 1, 1), E

2
=(1, 3, 1), E
3
=(−2, 1, 3) lˆa
.
p th`anh mˆo
.
tco
.
so
.

.T`ım to
.
a
d
ˆo
.
cu

a vecto
.
x =(−2,−4, 2) theo co
.
so
.

d
´o.
Gia


i. 1) Hˆe
.
E
1
,E
2
,E
3
l`a dltt. Thˆa
.
tvˆa
.
y gia

su
.

α
1
E
1
+ α
2
E
2
+ α
3
E
3

=
θ ⇔

1
+ α
2
− 2α
3
=0,
α
1
+3α
2
+ α
3
=0,
α
1
+ α
2
+3α
3
=0.





Hˆe
.

n`ay c´o detA =0v`al`ahˆe
.
thuˆa
`
n nhˆa
´
tnˆen n´o chı

c´o nghiˆe
.
mtˆa
`
m
thu
.
`o
.
ng α
1
= α
2
= α
3
=0v`adod´o E
1
,E
2
,E
3
dˆo

.
clˆa
.
p tuyˆe
´
n t´ınh. Theo
d
i
.
nh l´y 1 (phˆa
`
n 2) c´ac vecto
.
n`ay lˆa
.
p th`anh co
.
so
.

cu

a R
3
.
2) D
ˆe

khai triˆe


n vecto
.
x =(−2,−4, 2) theo co
.
so
.

E
1
,E
2
,E
3
ta d˘a
.
t
x = λ
1
E
1
+ λ
2
E
2
+ λ
3
E
3
v`a t`u
.

d
´o

1
+ λ
2
− 2λ
3
= −2,
λ
1
+3λ
2
+ λ
3
= −4,
λ
1
+ λ
2
+3λ
3
=2.





Hˆe
.

n`ay c´o nghiˆe
.
ml`aλ
1
=1,λ
2
= −2, λ
3
= 1. Vˆa
.
y trong co
.
so
.

E
1
,E
2
,E
3
vecto
.
x c´o to
.
ad
ˆo
.
l`a (1,−2, 1). 
V´ı d u

.
3. Ch´u
.
ng minh r˘a
`
ng ba vecto
.
E
1
=(1, 0,−2), E
2
=(−4,−1, 5),
E
3
=(1, 3, 4) lˆa
.
p th`anh co
.
so
.

cu

a R
3
.
192 Chu
.
o
.

ng 5. Khˆong gian Euclide
R
n
Gia

i. Ta c´o thˆe

t`ım ha
.
ng cu

ahˆe
.
ba vecto
.
d
˜a cho. Ta c´o



10−2
4 −15
13 4



−→




10−2
0 −113
03 6



−→



10−2
0 −113
00 45



.
T`u
.
d
´o suy ra r˘a
`
ng ha
.
ng cu

ahˆe
.
vecto
.

d
˜a cho b˘a
`
ng 3 v`a do vˆa
.
yhˆe
.
d´o
l`a d
ˆo
.
clˆa
.
p tuyˆe
´
n t´ınh. Theo di
.
nh l´y 1 n´o lˆa
.
p th`anh mˆo
.
tco
.
so
.

. 
V´ı d u
.
4. Gia


su
.

trong co
.
so
.

E
1
, E
2
vecto
.
x c´o to
.
ad
ˆo
.
l`a 1;−2. T`ım
to
.
ad
ˆo
.
cu

a vecto
.

d
´o trong co
.
so
.

E
1
= E
1
, E
2
= E
1
+ E
2
.
Gia

i. D
ˆa
`
u tiˆen ta viˆe
´
t ma trˆa
.
n chuyˆe

nt`u
.

co
.
so
.

E
1
, E
2
dˆe
´
n E
1
,E
2
.
Ta c´o
E
1
=1· e
1
+0· e
2
,
E
2
=1· e
1
+1· e
2

.
Do d
´o
T =

11
021

⇒ T
−1
=

1 −1
01

.
´
Ap du
.
ng cˆong th´u
.
c (11*) ta c´o

y
1
y
2

= T
−1


x
1
x
2

=

1 −1
01

1
−2

=

3
−2

.
Do d
´o y
1
=3,y
2
= −2. 
V´ı d u
.
5 (ph´ep quay tru
.

cto
.
ad
ˆo
.
). H˜ay dˆa
˜
n ra cˆong th´u
.
cbiˆe
´
nd
ˆo

i c´ac
to
.
ad
ˆo
.
cu

a vecto
.
trong R
2
trong mˆo
.
tco
.

so
.

thu d
u
.
o
.
.
ct`u
.
co
.
so
.

ch´ınh
t˘a
´
c e
1
=(1, 0), e
2
=(0, 1) sau ph´ep quay tru
.
cto
.
adˆo
.
g´oc ϕ.

5.2. Co
.
so
.

.D
-
ˆo

ico
.
so
.

193
H`ınh 5.1
Gia

i. T`u
.
h`ınh v˜e suy ra r˘a
`
ng vecto
.
e

1
lˆa
.
pv´o

.
i c´ac vecto
.
e
1
v`a e
2
c´ac g´oc tu
.
o
.
ng ´u
.
ng b˘a
`
ng ϕ v`a ϕ−
π
2
.Dod
´oto
.
adˆo
.
cu

a e

1
trong co
.

so
.

e
1
,e
2
l`a cos ϕ v`a cos

ϕ −
π
2

= sin ϕ:
e

1
= cos ϕ · e
1
+ sin ϕ · e
2
Vecto
.
e

2
lˆa
.
pv´o
.

i e
1
v`a e
2
c´ac g´oc tu
.
o
.
ng ´u
.
ng b˘a
`
ng
π
2
+ ϕ v`a ϕ.Dod
´o
to
.
ad
ˆo
.
cu

a n´o trong co
.
so
.

e

1
,e
2
l`a cos

π
2
+ ϕ

= − sin ϕ v`a cos ϕ:
e

2
= − sin ϕ · e
1
+ cos ϕ · e
2
.
Nhu
.
vˆa
.
y
e

1
= cos ϕ · e
1
+ sin ϕ · e
2

,
e

2
= − sin ϕ · e
1
+ cos ϕ · e
2
.
v`a t`u
.
d
´o
T
ee

=

cos ϕ − sin ϕ
sin ϕ cos ϕ

T
−1
ee

=

cos ϕ sin ϕ
− sin ϕ cos ϕ


.
Do vˆa
.
y c´ac to
.
ad
ˆo
.
cu

a vecto
.
trong co
.
so
.

c˜u v`a m´o
.
i liˆen hˆe
.
bo
.

i c´ac hˆe
.
th´u
.
c
x = x


cos ϕ − y

sin ϕ,
y = x

sin ϕ + y

cos ϕ.

x

= x cos ϕ + y sin ϕ,
y

= −x sin ϕ + y cos ϕ.


194 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
V´ı d u
.
6. Gia

su

.

x =(3,−1, 0) l`a vecto
.
cu

a R
3
v´o
.
ico
.
so
.

E
1
, E
2
, E
3
.
T`ım to
.
ad
ˆo
.
cu

a x dˆo

´
iv´o
.
ico
.
so
.

E
1
=2E
1
−E
2
+3E
3
,
E
2
= E
1
+ E
3
,
E
3
= −E
2
+2E
3

.
Gia

i. T`u
.
c´ac khai triˆe

n E
1
,E
2
v`a E
3
theo co
.
so
.

E
1
,E
2
,E
3
ta c´o ma
trˆa
.
n chuyˆe

n

T =



210
−10−1
312



t`u
.
co
.
so
.

E
1
,E
2
,E
3
sang co
.
so
.

E
1

,E
2
,E
3
.
Ta k´y hiˆe
.
u x
1
,x
2
,x
3
l`a to
.
adˆo
.
cu

a x trong co
.
so
.

E
1
,E
2
,E
3

.Tac´o



x
1
x
2
x
3



= T
−1



3
−1
0



V`ı T
−1
=




1 −2 −1
−14 2
−11 1



nˆen



x
1
x
2
x
3



=



1 −2 −1
−14 2
−11 1







3
−1
0



=



5
−7
−4



.
Vˆa
.
y trong co
.
so
.

m´o
.
i E
1

,E
2
,E
3
ta c´o
x =(5,−7,−4). 
V´ı d u
.
7. Trong khˆong gian R
2
cho co
.
so
.

E
1
,E
2
v`a c´ac vecto
.
E
1
=
e
1
− 2e
2
, E
2

=2e
1
+ e
2
, x =3e
1
− 4e
2
.
5.2. Co
.
so
.

.D
-
ˆo

ico
.
so
.

195
1
+
Ch´u
.
ng minh r˘a
`

ng E
1
,E
2
lˆa
.
p th`anh co
.
so
.

cu

a R
2
.
2
+
T`ım to
.
adˆo
.
vecto
.
x trong co
.
so
.

E

1
,E
2
.
3
+
T`ım to
.
adˆo
.
cu

a vecto
.
x trong co
.
so
.

E
2
,E
1
.
Gia

i. 1
+
Ta lˆa
.

p ma trˆa
.
n c´ac to
.
adˆo
.
cu

a E
1
v`a E
2
:
A =

1 −2
21

⇒ detA =5=0.
Do d
´ohˆe
.
hai vecto
.
E
1
,E
2
l`a dltt trong khˆong gian 2-chiˆe
`

u R
2
nˆen n´o
lˆa
.
p th`anh co
.
so
.

.
2
+
Trong co
.
so
.

d
˜a cho vecto
.
x c´o to
.
ad
ˆo
.
l`a (3,−4). Gia

su
.


trong
co
.
so
.

E
1
,E
2
vecto
.
x c´o to
.
ad
ˆo
.
(x
1
,x
2
). Ta lˆa
.
p ma trˆa
.
n chuyˆe

nt`u
.

co
.
so
.

E
1
,E
2
dˆe
´
nco
.
so
.

E
1
,E
2
:
T =

12
−21

⇒ T
−1
=
1

5

12
−21

Khi d
´o

x
1
x
2

= T
−1

3
−4



x
1
x
2

=
1
5


1 −2
21

3
−4

=
1
5

11
2

=



11
5
2
5



.
Vˆa
.
y x
1
=

11
5
, x
2
=
+2
5
.
3
+
V`ı E
1
,E
2
l`a co
.
so
.

cu

a R
2
nˆen E
2
,E
1
c˜ung l`a co
.
so

.

cu

a R
2
.Ma
trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

E
1
,E
2
dˆe
´
nco
.
so
.

E

2
,E
1
c´o da
.
ng
A

=

21
1 −2

,A

−1
= −
1
5

−2 −1
−12

3
−4

= −
1
5


−2
−11

=



2
5
11
5



Do d
´o x
1
=
2
5
, x
2
=
11
5
trong co
.
so
.


E
2
,E
1
.
V´ı d u
.
8. Trong khˆong gian R
3
cho co
.
so
.

E
1
,E
2
,E
3
n`ao d´o v`a trong
co
.
so
.

d
´o c´ac vecto
.
E

1
,E
2
,E
3
v`a x c´o to
.
adˆo
.
l`a E
1
=(1, 1, 1); E
2
=
(1, 2, 2), E
3
=(1, 1, 3) v`a x =(6, 9, 14).
196 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
1
+
Ch´u
.
ng minh r˘a
`

ng E
1
,E
2
,E
3
c˜ung lˆa
.
p th`anh co
.
so
.

trong R
3
.
2
+
T`ım to
.
adˆo
.
cu

a x trong co
.
so
.

E

1
,E
2
,E
3
.
Gia

i. 1
+
tu
.
o
.
ng tu
.
.
nhu
.
trong v´ı du
.
7, ha
.
ng cu

ahˆe
.
ba vecto
.
E

1
,E
2
,E
3
b˘a
`
ng 3 nˆen hˆe
.
vecto
.
d
´odˆo
.
clˆa
.
p tuyˆe
´
n t´ınh trong khˆong
gian 3-chiˆe
`
u nˆen n´o lˆa
.
p th`anh co
.
so
.

cu


a R
3
.
2+ D
ˆe

t`ım to
.
adˆo
.
cu

a x trong co
.
so
.

E
1
,E
2
,E
3
ta c´o thˆe

tiˆe
´
n h`anh
theo hai phu
.

o
.
ng ph´ap sau.
(I) V`ı E
1
,E
2
,E
3
lˆa
.
p th`anh co
.
so
.

cu

a R
3
nˆen
x = x
1
E
1
+ x
2
E
2
+ x

3
E
3
⇒ (6, 9, 14) = x
1
(1, 1, 1) + x
2
(1, 2, 2) + x
3
(1, 1, 3)
v`a do d
´o x
1
,x
2
,x
3
l`a nghiˆe
.
mcu

ahˆe
.
x
1
+ x
2
+ x
3
=6,

x
1
+2x + x
3
=9,
x
1
+2x
2
+3x
3
=14.





⇒ x
1
=
1
2
,x
2
=3,x
3
=
5
2
·

(II) Lˆa
.
p ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

E
1
,E
2
,E
3
sang co
.
so
.

E
1
,E
2
,E
3

:
T
EE
=



111
121
123



⇒ T
−1
EE
=
1
2



4 −1 −1
−22 0
0 −11



.
Do d

´o



x
1
x
2
x
3



= T
−1
EE



6
9
14



=
1
2




1
6
5



=





1
2
3
5
2





v`a thu d
u
.
o
.
.
ckˆe

´
t qua

nhu
.
tronng (I). 
B
`
AI T
ˆ
A
.
P
5.2. Co
.
so
.

.D
-
ˆo

ico
.
so
.

197
1. Ch´u
.

ng minh r˘a
`
ng c´ac hˆe
.
vecto
.
sau d
ˆay l`a nh˜u
.
ng co
.
so
.

trong khˆong
gian R
4
:
1) e
1
=(1, 0, 0, 0); e
2
=(0, 1, 0, 0); e
3
=(0, 0, 1, 0); e
4
=(0, 0, 0, 1).
2) E
1
=(1, 1, 1, 1); E

2
=(0, 1, 1, 1); E
3
=(0, 0, 1, 1); E
4
=(0, 0, 0, 1).
2. Ch´u
.
ng minh r˘a
`
ng hˆe
.
vecto
.
d
o
.
nvi
.
:
e
1
=(1, 0,...,0

 
n−1
); e
2
=(0, 1, 0,...,0),...,e
n

=(0, 0,...,0

 
n−1
, 1)
lˆa
.
p th`anh co
.
so
.

trong R
n
.Co
.
so
.

n`ay d
u
.
o
.
.
cgo
.
il`aco
.
so

.

ch´ınh t˘a
´
c.
3. Ch´u
.
ng minh r˘a
`
ng hˆe
.
vecto
.
E
1
=(1, 0,...,0),
E
2
=(1, 1,...,0),
... ... ...
E
n
=(1, 1,...,1)
l`a mˆo
.
tco
.
so
.


trong R
n
.
4. Ch´u
.
ng minh r˘a
`
ng hˆe
.
vecto
.
E
1
=(1, 2, 3,...,n− 1,n),
E
2
=(1, 2, 3,...,n− 1, 0),
... ... ... ... ...
E
n
=(1, 0, 0,...,0, 0)
lˆa
.
p th`anh co
.
so
.

trong khˆong gian R
n

.
5. H˜ay kiˆe

m tra xem mˆo
˜
ihˆe
.
vecto
.
sau d
ˆa y c ´o l ˆa
.
p th`anh co
.
so
.

trong
khˆong gian R
4
khˆong v`a t`ım c´ac to
.
adˆo
.
cu

a vecto
.
x =(1, 2, 3, 4) trong
mˆo

˜
ico
.
so
.

d
´o.
1) a
1
=(0, 1, 0, 1); a
2
=(0, 1, 0,−1); a
3
=(1, 0, 1, 0);
a
4
=(1, 0,−1, 0). (DS. 3,−1, 2,−1)
2) a
1
=(1, 2, 3, 0); a
2
=(1, 2, 0, 3); a
3
=(1, 0, 2, 3);
198 Chu
.
o
.
ng 5. Khˆong gian Euclide

R
n
a
4
=(0, 1, 2, 3). (DS.
2
3
,−
1
6
,
1
2
, 1)
3) a
1
=(1, 1, 1, 1); a
2
=(1,−1, 1,−1); a
3
=(1,−1, 1, 1);
a
4
=(1,−1,−1,−1). (DS.
3
2
,−
1
2
, 1,−1)

4) a
1
=(1,−2, 3,−4); a
2
=(−4, 1,−2, 3); a
3
=(3,−4, 1,−2);
a
4
=(−2, 3,−4, 1). (DS. −
13
10
,−
7
10
,−
13
10
,−
17
10
)
Nhˆa
.
nx´et. Ta nh˘a
´
cla
.
ir˘a
`

ng c´ac k´y hiˆe
.
u e
1
,e
2
,...,e
n
du
.
o
.
.
cd`ung d
ˆe

chı

c´ac vecto
.
d
o
.
nvi
.
cu

a tru
.
c x

i
(i =1, 2,...,n):
e
i
=(1, 0,...,0

 
n−1
),e
2
=(0, 1, 0,...,0),...,e
n
=(0,...,0

 
n−1
, 1)
6. T`ım ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1

,e
2
,e
3
dˆe
´
nco
.
so
.

e
2
,e
3
,e
1
.
(D
S.



001
100
010



)

7. T`ım ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3
,e
4
dˆe
´
nco
.
so
.

e
3
,e
4

,e
2
,e
1
.
(D
S.





0001
0010
1000
0100





)
8. Cho ma trˆa
.
n

−11
20

l`a ma trˆa

.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
dˆe
´
nco
.
so
.

E
1
,E
2
.T`ım to
.
adˆo
.
cu


a vecto
.
E
1
, E
2
.
(D
S. E
1
=(−1, 2); E
2
=(1, 0))
9. Gia

su
.




12−1
31 0
20 1



5.2. Co
.

so
.

.D
-
ˆo

ico
.
so
.

199
l`a ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3

dˆe
´
nco
.
so
.

E
1
,E
2
,E
3
.T`ım to
.
adˆo
.
cu

a vecto
.
E
2
trong co
.
so
.

e
1

,e
2
,e
3
.(DS. E
2
=(2, 1, 0))
10. T`ım ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3
dˆe
´
nco
.
so
.


E
1
=2e
1
− e
3
+ e
2
; E
2
=3e
1
− e
2
+ e
3
; E
3
= e
3
.
(D
S.



230
1 −10
−111




)
11. T`ım ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3
dˆe
´
nco
.
so
.

E
1

= e
2
+ e
3
; E
2
= −e
1
+2e
3
; E
3
= e
1
+ e
2
.
(D
S.



0 −11
101
120



)
12. T`ım ma trˆa

.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3
,e
4
dˆe
´
nco
.
so
.

E
1
=2e
2
+3e

3
+ e
4
; E
2
= e
1
− 2e
2
+3e
3
− e
4
; E
3
= e
1
+ e
4
;
E
4
=2e
1
+ e
2
− e
3
+ e
4

.
(D
S.





0112
2 −20 1
330−1
1 −11 1





)
13. Cho

21
−12

l`a ma trˆa
.
n chuyˆe

nt`u
.
co

.
so
.

e
1
,e
2
dˆe
´
nco
.
so
.

E
1
,E
2
.T`ım to
.
adˆo
.
cu

a c´ac
vecto
.
e
1

, e
2
trong co
.
so
.

E
1
, E
2
.
(D
S. e
1
=

2
5
,
1
5

. e
2
=


1
5

,
2
5

)
Chı

dˆa
˜
n. T`u
.
ma trˆa
.
nd
˜a cho t`ım khai triˆe

n E
1
,E
2
theo co
.
so
.

e
1
,e
2
.

T`u
.
d
´o t`ım khai triˆe

n e
1
,e
2
theo co
.
so
.

E
1
,E
2
.
200 Chu
.
o
.
ng 5. Khˆong gian Euclide
R
n
14. Cho ma trˆa
.
n




1 −13
51 2
14−1



l`a ma trˆa
.
n chuyˆe

nt`u
.
co
.
so
.

e
1
,e
2
,e
3
dˆe
´
nco
.
so

.

E
1
,E
2
,E
3
.T`ım to
.
adˆo
.
vecto
.
e
2
trong co
.
so
.

E
1
,E
2
,E
3
.
(D
S. e

2
=

11
41
,−
4
41
,−
5
41

)
15. Cho ma trˆa
.
n



101
002
−131



l`a ma trˆa
.
n chuyˆe

nt`u

.
co
.
so
.

e
1
,e
2
,e
3
dˆe
´
nco
.
so
.

E
1
,E
2
,E
3
.T`ım to
.
adˆo
.
c´ac vecto

.
e
1
,e
2
,e
3
trong co
.
so
.

E
1
,E
2
,E
3
.
(D
S. e
1
=

1,
1
3
, 0

, e

2
=


1
2
,−
1
3
,
1
2

, e
3
=

0,
1
3
, 0

)
16. Trong co
.
so
.

e
1

,e
2
vecto
.
x c´o to
.
ad
ˆo
.
l`a (1; 2). T`ım to
.
adˆo
.
cu

a
vecto
.
d
´o trong co
.
so
.

E
1
= e
1
+2e
2

; E
2
= −e
1
+ e
2
.
(D
S. x =


1
3
,−
4
3

)
17. Trong co
.
so
.

e
1
,e
2
vecto
.
x c´o to

.
ad
ˆo
.
l`a (−3; 1). T`ım to
.
adˆo
.
cu

a
vecto
.
d
´o trong co
.
so
.

E
1
= −2e
1
+ e
2
; E
2
= e
2
.

(D
S. x =

3
2
,−
1
2

)
18. Trong co
.
so
.

e
1
,e
2
,e
3
vecto
.
x c´o to
.
ad
ˆo
.
l`a (−1; 2; 0). T`ım to
.

adˆo
.
cu

a vecto
.
d
´o trong co
.
so
.

E
1
=2e
1
− e
2
+3e
3
, E
2
= −3e
1
+ e
2
− 2e
3
;
E

3
=4e
2
+5e
3
.(DS. (−0, 68;−0, 12; 0, 36))
19. Trong co
.
so
.

e
1
,e
2
,e
3
vecto
.
x c´o to
.
ad
ˆo
.
l`a (1,−1, 0). T`ım to
.
adˆo
.
cu


a vecto
.
d
´o trong co
.
so
.

: E
1
=3e
1
+ e
2
+6e
3
, E
2
=5e
1
− 3e
2
+7e
3
,
E
3
= −2e
1
+2e

2
− 3e
3
.
5.3. Khˆong gian vecto
.
Euclid. Co
.
so
.

tru
.
.
cchuˆa

n 201
(DS. x =(−0, 6; 1, 2; 1, 6))
20. Trong co
.
so
.

e
1
,e
2
,e
3
vecto

.
x c´o to
.
ad
ˆo
.
l`a (4, 0,−12). T`ım to
.
a
d
ˆo
.
cu

a vecto
.
d
´o trong co
.
so
.

E
1
= e
1
+2e
2
+ e
3

, E
2
=2e
1
+3e
2
+4e
3
,
E
3
=3e
1
+4e
2
+3e
3
.
(D
S. x =(−4,−8, 8))
21. Trong khˆong gian v´o
.
imˆo
.
tco
.
so
.

l`a e

1
,e
2
,e
3
cho c´ac vecto
.
E
1
=
e
1
+ e
2
, E
2
=2e
1
− e
2
+ e
3
, E
3
= e
2
− e
3
.
1) Ch´u

.
ng minh r˘a
`
ng E
1
,E
2
,E
3
lˆa
.
p th`anh co
.
so
.

.
2) T`ım to
.
ad
ˆo
.
cu

a vecto
.
x = e
1
+8e
2

− 5e
3
trong co
.
so
.

E
1
,E
2
,E
3
.
(D
S. x =(3,−1, 4))
22. Trong co
.
so
.

e
1
,e
2
,e
3
cho c´ac vecto
.
a =(1, 2, 3), b =(0, 3, 1),

c =(0, 0, 2), d =(4, 3, 1). Ch´u
.
ng minh r˘a
`
ng c´ac vecto
.
a, b, c lˆa
.
p th`anh
co
.
so
.

v`a t`ım to
.
ad
ˆo
.
cu

a vecto
.
d trong co
.
so
.

d
´o.

(D
S. d

4,−
5
3
,−
14
3

)
5.3 Khˆong gian vecto
.
Euclid. Co
.
so
.

tru
.
.
c
chuˆa

n
Khˆong gian tuyˆe
´
n t´ınh thu
.
.

c V d
u
.
o
.
.
cgo
.
i l`a khˆong gian Euclid nˆe
´
u trong
V d
u
.
o
.
.
c trang bi
.
mˆo
.
t t´ıch vˆo hu
.
´o
.
ng, t´u
.
cl`anˆe
´
uv´o

.
imˆo
˜
ic˘a
.
p phˆa
`
ntu
.

x, y ∈Vd
ˆe
`
utu
.
o
.
ng ´u
.
ng v´o
.
imˆo
.
tsˆo
´
thu
.
.
c (k´y hiˆe
.

ul`ax, y) sao cho
∀ x, y, z ∈Vv`a sˆo
´
α ∈ R ph´ep tu
.
o
.
ng ´u
.
ng d
´o tho

a m˜an c´ac tiˆen dˆe
`
sau
d
ˆa y
(I) x, y = y, x;
(II) x + y, z = x, z + y, z;
(III) αx, y = αx, y;
(IV) x, x > 0nˆe
´
u x = θ.
Trong khˆong gian vecto
.
R
n
dˆo
´
iv´o

.
ic˘a
.
p vecto
.
a =(a
1
,a
2
,...,a
n
),

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×