Tải bản đầy đủ (.doc) (23 trang)

108 BT+ 7 ĐỀ ÔN HK I - T 9.@

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (382.39 KB, 23 trang )

CNG ễN TP MễN TON
HC Kè 1 NM HC 2010 -2011
Đại số
CHủ đề 1: Căn thức rút gọn biểu thức
I. căn thức:
Kiến thức cơ bản:
1. Điều kiện tồn tại :
A
Có nghĩa

0

A
2. Hằng đẳng thức:
AA
=
2
3. Liên hệ giữa phép nhân và phép khai phơng:
BABA ..
=

)0;0(

BA
4. Liên hệ giữa phép chia và phép khai phơng:
B
A
B
A
=


)0;0(
>
BA
5. Đa thừa số ra ngoài căn:
..
2
BABA
=

)0(

B
6. Đa thừa số vào trong căn:
BABA .
2
=

)0;0(

BA

BABA .
2
=

)0;0(
<
BA
7. Khử căn thức ở mẫu:
B

BA
B
A .
=

)0(
>
B
8. Trục căn thức ở mẫu:
BA
BAC
BA
C

=

)(
Bài tập:
Tìm điều kiện xác định: Với giá trị nào của x thì các biểu thức sau đây xác định:
1)
32
+
x
2)
2
2
x
3)
3
4

+
x
4)
6
5
2
+

x
5)
43
+
x
6)
2
1 x
+
7)
x21
3

8)
53
3
+

x
Rỳt gn biu thc
Bài1
1)

483512
+
2)
4532055
+
3)
18584322
+
4)
485274123
+
5)
277512
+
6)
16227182
+
7)
54452203
+
8)
222)22(
+
9)
15
1
15
1
+



10)
25
1
25
1
+
+

11)
234
2
234
2
+


12)
21
22
+
+
13)
877)714228(
++
14)
286)2314(
2
+
15)

120)56(
2

16)
24362)2332(
2
++
17)
22
)32()21(
++
18)
22
)13()23(
+
19)
22
)25()35(
+
20)
)319)(319(
+
21)
)2()12(4
2
+
xxx
22)
57
57

57
57
+

+

+
23)
)2()44(2
222
yxyxyxyx
++
Bài2:

Nguyn Thanh Vinh THCS NGUYN DU
1)
( ) ( )
22
2323
++
2)
( ) ( )
22
3232
+
3)
( )
( )
2
2

3535
++
4)
1528
+
-
1528

5)
(
)
625
+
+
1528

6)
83
5
223
5
324324
+


++
Gii phng trỡnh:
1)
512
=

x
2)
35
=
x
3)
21)1(9
=
x
4)
0502
=
x
5)
0123
2
=
x
6)
9)3(
2
=
x
7)
6144
2
=++
xx
8)
3)12(

2
=
x
9)
64
2
=
x
10)
06)1(4
2
=
x
11)
21
3
=+
x
12)
223
3
=
x
II. các bài toán rút gọn:
A.các b ớc thực hiên :
Phân tích tử và mẫu thành nhân tử (rồi rút gọn nếu đợc)
Tìm ĐKXĐ của biểu thức: là tìm TXĐ của từng phân thức rồi kết luận lại.
Quy đồng, gồm các bớc:
+ Chọn mẫu chung : là tích các nhân tử chung và riêng, mỗi nhân tử lấy số mũ lớn nhất.
+ Tìm nhân tử phụ: lấy mẫu chung chia cho từng mẫu để đợc nhân tử phụ tơng ứng.

+ Nhân nhân tử phụ với tử Giữ nguyên mẫu chung.
Bỏ ngoặc: bằng cách nhân đa thức hoặc dùng hằng đẳng thức.
Thu gọn: là cộng trừ các hạng tử đồng dạng.
Phân tích tử thành nhân tử ( mẫu giữ nguyên).
Rút gọn.
B.Bài tập luyện tập:
Bi 1 Cho biu thc : A =
2
1
x x x
x x x



vi ( x >0 v x 1)
1) Rỳt gn biu thc A.
2) Tớnh giỏ tr ca biu thc A ti
3 2 2x = +
Bi 2. Cho biu thc : P =
4 4 4
2 2
a a a
a a
+ +
+
+
( Vi a

0 ; a


4 )
1) Rỳt gn biu thc P.
2) Tỡm giỏ tr ca a sao cho P = a + 1.
Bi 3: Cho biu thc A =
1 2
1 1
x x x x
x x
+ +
+
+
1/.t iu kin biu thc A cú ngha
2/.Rỳt gn biu thc A
3/.Vi giỏ tr no ca x thỡ A< -1
Bài 4: Cho biu thc A =
(1 )(1 )
1 1
x x x x
x x
+
+
+
( Vi
0; 1x x
)
a) Rỳt gn A
b) Tỡm x A = - 1
Bài 5 : Cho biểu thức : B =
x
x

xx

+
+


1
22
1
22
1


Nguyn Thanh Vinh THCS NGUYN DU
a; Tìm TXĐ rồi rút gọn biểu thức B
b; Tính giá trị của B với x =3
c; Tìm giá trị của x để
2
1
=
A
Bài 6: Cho biểu thức : P =
x
x
x
x
x
x

+

+
+
+

+
4
52
2
2
2
1
a; Tìm TXĐ
b; Rút gọn P
c; Tìm x để P = 2
Bài 7: Cho biểu thức: Q = (
)
1
2
2
1
(:)
1
1
1

+


+



a
a
a
a
aa
a; Tìm TXĐ rồi rút gọn Q
b; Tìm a để Q dơng
c; Tính giá trị của Biểu thức biết a = 9- 4
5
Bài 8: Cho biểu thức: M =









+

+











112
1
2
a
aa
a
aa
a
a

a/ Tìm ĐKXĐ của M.
b/ Rút gọn M
Tìm giá trị của a để M = - 4
Bài 9 : Cho biểu thức : K =
3x
3x2
x1
x3
3x2x
11x15
+
+


+
+


a. Tìm x để K có nghĩa
b. Rút gọn K
c. Tìm x khi K=
2
1
d. Tìm giá trị lớn nhất của K
Bài 10 : Cho biểu thức: G=
2
1x2x
.
1x2x
2x
1x
2x
2
+








++
+



1. Xác định x để G tồn tại

2. Rút gọn biểu thức G
3. Tính số trị của G khi x = 0,16
4. Tìm gía trị lớn nhất của G
5. Tìm x Z để G nhận giá trị nguyên
6. Chứng minh rằng : Nếu 0 < x < 1 thì M nhận giá trị dơng
7. Tìm x để G nhận giá trị âm
Bài 11 : Cho biểu thức: P=
2
1x
:
x1
1
1xx
x
1xx
2x










+
++
+


+
Với x 0 ; x 1
a. Rút gọn biểu thức trên
b. Chứng minh rằng P > 0 với mọi x 0 và x 1
Bài 12 : cho biểu thức Q=






+









+


+
+
a
1
1.
a1

1a
a22
1
a22
1
2
2
a. Tìm a dể Q tồn tại
b. Chứng minh rằng : Q không phụ thuộc vào giá trị của a
Bài 13: Cho biểu thức :

Nguyn Thanh Vinh THCS NGUYN DU
A=
x
x
xxyxy
x
yxy
x


+
+

1
1
.
22
2
2

3
a) Rút gọn A
b) Tìm các số nguyên dơng x để y = 625 và A < 0,2
Bài 14:Xét biểu thức: P=
( )








+
+








+
+

+
+
4a
5a2

1:
a16
2a4
4a
a
4a
a3
(Với a 0 ; a 16)
1)Rút gọn P 2)Tìm a để P =-3 3)Tìm các số tự nhiên a để P là số nguyên tố
----------------------------------
CHủ đề 2: hàm số - hàm số bậc nhất
I. hàm số:
Khái niệm hàm số
* Nếu đại lợng y phụ thuộc vào đại lợng x sao cho mỗi giá trị của x, ta luôn xác định đợc chỉ
một giá trị tơng ứng của y thì y đợc gọi là hàm số của x và x đợc gọi là biến số.
* Hàm số có thể cho bởi công thức hoặc cho bởi bảng.
II. hàm số bậc nhất:
Kiến thức cơ bản:
Định nghĩa:
Hàm số bậc nhất có dạng:
baxy
+=
Trong đó a; b là các hệ số
0

a
Nh vậy: Điều kiện để hàm số dạng:
baxy
+=
là hàm số bậc nhất là:

0

a
Ví dụ: Cho hàm số: y = (3 m) x - 2 (1)
Tìm các giá trị của m để hàm số (1) là hàm số bậc nhất.
Giải: Hàm số (1) là bậc nhất

3003

mm
Tính chất:
+ TXĐ:
Rx

+ Đồng biến khi
0
>
a
. Nghịch biến khi
0
<
a
Ví dụ: Cho hàm số: y = (3 m) x - 2 (2)
Tìm các giá trị của m để hàm số (2):
+ Đồng biến trên R
+ Nghịch biến trên R
Giải: + Hàm số (1) Đồng biến

3003
<>

mm
+ Hàm số (1) Nghịch biến

3003
><
mm
Đồ thị:
+ Đặc điểm: Đồ thị hàm số bậc nhất là đờng thẳng cắt trục tung tại điểm
có tung độ bằng b.
cắt trục hoành tại điểm có hoành độ bằng
a
b

.
+ Từ đặc điểm đó ta có cách vẽ đồ thị hàm số y= ax+b:
Cho x=0 => y=b => điểm (0;b) thuộc đồ thị hàm số y= ax+b
Cho y=0 => x=-b/a => điểm (-b/a;0) thuộc đồ thị hàm số y= ax+b
Đờng thẳng qua hai điểm (o;b) và (-b/a;0) là đồ thị hàm số y= ax+b
Ví dụ: Vẽ đồ thị hàm số : y = 2x + 1
Giải: Cho x=0 => y=1 => điểm (0;1) thuộc đồ thị hàm số y = 2x + 1
Cho y=0 => x=-1/2 => điểm (-1/2;0) thuộc đồ thị hàm số y = 2x + 1
Đờng thẳng qua hai điểm (0;1) và (-1/2;0) là đồ thị hàm số y = 2x + 1

Nguyn Thanh Vinh THCS NGUYN DU
Điều kiện để hai đờng thẳng: (d
1
): y = ax + b; (d
2
): y = a
,

x + b
,
:
+ Cắt nhau: (d
1
) cắt (d
2
)
,
aa

.
*/. Để hai đờng thẳng cắt nhau trên trục tung thì cân thêm điều kiện
'
bb
=
.
*/. Để hai đờng thẳng vuông góc với nhau thì :
.1.
'
=
aa
+ Song song với nhau: (d
1
) // (d
2
)
',
; bbaa
=

.
+ Trùng nhau: (d
1
)

(d
2
)
',
; bbaa
==
.
Ví dụ: Cho hai hàm số bậc nhất: y = (3 m) x + 2 (d
1
)
V y = 2 x m (d
2
)
a/ Tìm giá trị của m để đồ thị hai hàm số song song với nhau.
b/ Tìm giá trị của m để đồ thị hai hàm số cắt nhau
c/ Tìm giá trị của m để đồ thị hai hàm số cắt nhau tại một điểm trên trục tung.
Giải:
a/ (d
1
)//(d
2
)

{
1

2
1
2
23
=




=





=
m
m
m
m
m
b/ (d
1
) cắt (d
2
)

123

mm

c/ (d
1
) cắt (d
2
) tại một điểm trên trục tung

22
==
mm
Hệ số góc của đờng thẳng y = ax + b là a.
+ Cách tính góc tạo bởi đờng thẳng với trục Ox là dựa vào tỉ số lợng giác
atg
=

Trờng hợp: a > 0 thì góc tạo bởi đờng thẳng với trục Ox là góc nhọn.
Trờng hợp: a < 0 thì góc tạo bởi đờng thẳng với trục Ox là góc tù (


0
180
)
Ví dụ 1: Tính góc tạo bởi đờng thẳng y = 2x + 1 với trục Ox
Giải:
Ta có:
.63632
00
===

TgTg
Vậy góc tạo bởi đờng thẳng y = 2x + 1 với trục Ox là:

.63
0
=

Ví dụ 2: Tính góc tạo bởi đờng thẳng y = - 2x + 1 với trục Ox.
Ta có:
.11763)180(632)180(
00000
====

TgTg
Vậy góc tạo bởi đờng thẳng y = - 2x + 1 với trục Ox là:
.117
0
=


Nguyn Thanh Vinh THCS NGUYN DU
Các dạng bài tập th ờng gặp:
-Dng 3: Tớnh gúc

to bi ng thng y = ax + b v trc Ox
Xem lại các ví dụ ở trên.
-Dạng 4: Điểm thuộc đồ thị; điểm không thuộc đồ thị:
Ph ơng pháp: Ví dụ: Cho hàm số bậc nhất: y = ax + b. Điểm M (x
1
; y
1
) có thuộc đồ thị không?
Thay giá trị của x

1
vào hàm số; tính đợc y
0
. Nếu y
0
= y
1
thì điểm M thuộc đồ thị. Nếu y
0

y
1
thì
điểm M không thuộc đồ thị.
-Dạng 5: Viết phơng trình đờng thẳng:
Ví dụ: Viết phơng trình đờng thẳng y = ax + b đi qua điểm P (x
0
; y
0
) và điểm Q(x
1
; y
1
).
Ph ơng pháp: + Thay x
0
; y
0
vào y = ax + b ta đợc phơng trình y
0

= ax
0
+ b (1)
+ Thay x
1
; y
1
vào y = ax + b ta đợc phơng trình y
1
= ax
1
+ b (2)
+ Giải hệ phơng trình ta tìm đợc giá trị của a và b.
+ Thay giá trị của a và b vào y = ax + b ta đợc phơng tri9nhf đờng thẳng cần tìm.
-Dạng 6: Chứng minh đờng thẳng đi qua một điểm cố định hoặc chứng minh đồng quy:
Ví dụ: Cho các đờng thẳng :
(d
1
) : y = (m
2
-1) x + m
2
-5 ( Với m

1; m

-1 )
(d
2
) : y = x +1

(d
3
) : y = -x +3
a) C/m rằng khi m thay đổi thì d
1
luôn đi qua 1điểm cố định .
b) C/m rằng khi d
1
//d
3
thì d
1
vuông góc d
2

c) Xác định m để 3 đờng thẳng d
1
;d
2
;d
3
đồng qui
Giải:
a) Gọi điểm cố định mà đờng thẳng d
1
đi qua là A(x
0
; y
0
) thay vào PT (d

1
) ta có :
y
0
= (m
2
-1 ) x
0
+m
2
-5 Với mọi m
=> m
2
(x
0
+1) -(x
0
+y
0
+5) =0 với mọi m ; Điều này chỉ xảy ra khi :
x
0
+ 1 =0
x
0
+y
0
+5 = 0 suy ra : x
0
=-1

Y
0
= - 4
Vậy điểm cố định là A (-1; - 4)
b) +Ta tìm giao điểm B của (d
2
) và (d
3
)

:

Nguyn Thanh Vinh THCS NGUYN DU
- Dng1: Xỏc dnh cỏc giỏ tr ca cỏc h s hm s ng bin, nghch bin, Hai ng
thng
song song; ct nhau; trựng nhau.
Phơng pháp: Xem lại các ví dụ ở trên.
-Dng 2: V th hm s y = ax + b
Xem lại các ví dụ ở trên.
Xỏc nh to giao im ca hai ng thng (d
1
): y = ax + b; (d
2
): y = a
,
x + b
,
Ph ơng pháp: Đặt ax + b = a
,
x + b

,
giải phơng trình ta tìm đợc giá trị của x; thay giá trị của x vào
(d
1
) hoặc (d
2
) ta tính đợc giá trị của y. Cặp giá trị của x và y là toạ độ giao điểm của hai đờng
thẳng.
Tớnh chu din tớch ca cỏc hỡnh to bi cỏc ng thng:
Ph ơng pháp: +Dựa vào các tam giác vuông và định lý Py ta go để tính độ dài các đoạn thẳng
không biết trực tiếp đợc. Rồi tính chu vi tam giác bằng cách cộng các cạnh.
+ Dựa vào công thức tính diện tích tam giác để tính S
Ta có pt hoành độ : x+1 = - x +3 => x =1
Thay vào y = x +1 = 1 +1 =2 Vậy B (1;2)
Để 3 đờng thẳng đồng qui thì (d
1
)

phải đi qua điểm B nên ta thay x =1 ; y = 2 vào pt (d
1
) ta có:
2 = (m
2
-1) .1 + m
2
-5
m
2
= 4 => m = 2 và m = -2
Vậy với m = 2 hoặc m = - 2 thì 3 đờng thẳng trên đồng qui.

Bài tập:
Bi 1: Cho hai ng thng (d
1
): y = ( 2 + m )x + 1 v (d
2
): y = ( 1 + 2m)x + 2
1) Tỡm m (d
1
) v (d
2
)

ct nhau .
2) Vi m = 1 , v (d
1
) v (d
2
)

trờn cựng mt phng ta Oxy ri tỡm ta giao
im ca hai ng thng (d
1
) v (d
2
)

bng phộp tớnh.
Bi 2: Cho hm s bc nht y = (2 - a)x + a . Bit th hm s i qua im M(3;1), hm s
ng bin hay nghch bin trờn R ? Vỡ sao?
Bi 3: Cho hm s bc nht y = (1- 3m)x + m + 3 i qua N(1;-1) , hm s ng bin hay

nghch bin ? Vỡ sao?
Bi 4: Cho hai ng thng y = mx 2 ;(m
)0

v y = (2 - m)x + 4 ;
)2(

m
. Tỡm iu kin
ca m hai ng thng trờn:
a) Song song.
b) Ct nhau .
Bi 5: Với giỏ tr no ca m thỡ hai ng thng y = 2x + 3+m v y = 3x + 5- m ct nhau ti
mt im trờn trc tung .Vit phng trỡnh ng thng (d) bit (d) song song vi
(d): y =
x
2
1

v ct trc honh ti im cú honh bng 10.
Bi 6: Vit phng trỡnh ng thng (d), bit (d) song song vi (d) : y = - 2x v i qua im
A(2;7).
Bi 7: Vit phng trỡnh ng thng i qua hai im A(2; - 2) v B(-1;3).
Bi 8: Cho hai ng thng : (d
1
): y =
1
2
2
x +

v (d
2
): y =
2x +
a/ V (d
1
) v (d
2
) trờn cựng mt h trc ta Oxy.
b/ Gi A v B ln lt l giao im ca (d
1
) v (d
2
) vi trc Ox , C l giao im ca (d
1
) v
(d
2
) Tớnh chu vi v din tớch ca tam giỏc ABC (n v trờn h trc ta l cm)?
Bi 9: Cho các đờng thẳng (d
1
) : y = 4mx - (m+5) với m

0
(d
2
) : y = (3m
2
+1) x +(m
2

-9)
a; Với giá trị nào của m thì (d
1
) // (d
2
)
b; Với giá trị nào của m thì (d
1
) cắt (d
2
) tìm toạ độ giao điểm Khi m = 2
c; C/m rằng khi m thay đổi thì đờng thẳng (d
1
) luôn đi qua điểm cố định A ;(d
2
) đi qua điểm cố
định B . Tính BA ?
Bi 10: Cho hàm số : y = ax +b
a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,-2)
b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc tạo bởi đờng thẳng trên với trục Ox ?
c; Tìm toạ độ giao điểm của đờng thẳng trên với đờng thẳng y = - 4x +3 ?
d; Tìm giá trị của m để đờng thẳng trên song song với đờng thẳng y = (2m-3)x +2
CHủ đề 3: hệ hai phơng trình bậc nhất hai ẩn

Nguyn Thanh Vinh THCS NGUYN DU
I. các kháI niệm:
Ph ơng trình bậc nhất hai ẩn:
+Dạng: ax + by = c trong đó a; b; c là các hệ số đã biết(
0


a
hoặc
)0

b
+ Một nghiệm của phơng trình là cặp số x
0
; y
0
thỏa mãn : ax
0
+ by
0
= c
+ Phơng trình bậc nhất hai ẩn ax + by = c luôn luôn có vô số nghiệm.
+ Tập nghiệm đợc biểu diễn bởi đờng thẳng (d): ax + by = c. Nếu
0;0

ba
thì đờng thẳng (d)
là đồ thị của hàm số bậc nhất:
b
c
x
b
a
y
+=
.
Hệ hai ph ơng trình bậc nhất hai ẩn:

+ Dạng:



=+
=+
)2.(
)1.(
,,,
cybxa
cbyax
+ Nghiệm của hệ là nghiệm chung của hai phơng trình
+ Nếu hai phơng trình ấy không có nghiệm chung thì ta nói hệ vô nghiệm
+ Quan hệ giữa số nghiệm của hệ và đờng thẳng biểu diễn tập nghiệm:
-Phơng trình (1) đợc biểu diễn bởi đờng thẳng (d)
-Phơng trình (2) đợc biểu diễn bởi đờng thẳng (d')
*Nếu (d) cắt (d') hệ có nghiệm duy nhất
*Nếu (d) song song với (d') thì hệ vô nghiệm
*Nếu (d) trùng (d') thì hệ vô số nghiệm.
Hệ ph ơng trình t ơng đ ơng:
Hai hệ phơng trình đợc gọi là tơng đơng với nhau nếu chúng có cùng tập nghiệm
Ii.ph ơng pháp giảI hệ ph ơng trình:
Giải hệ ph ơng trình bằng ph ơng pháp thế :
a) Quy tắc thế :
+ Bớc 1: Từ một phơng trình của hệ đã cho, ta biểu diễn một ẩn theo ẩn kia, rồi thay vào phơng
trình thứ hai để đợc một phơng trình mới (chỉ còn 1 ẩn).
+ Bớc 2: Dùng phơng trình mới này để thay thế cho phơng trình thứ hai trong hệ (phơng trình thứ
nhất cũng thờng đợc thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có đợc ở bớc 1).
Ví dụ: xét hệ phơng trình:




=+
=
)2.(323
)1.(12
yx
yx
+ Bớc 1: Từ phơng trình (1) ta biểu diễn x theo y ( gọi là rút x) ta có:
.(*)21 yx
+=
Thay
.(*)21 yx
+=
vào phơng trình (2) ta đợc:
.(**)32)21(3
=++
yy
+ Bớc 2: Thế phơng trình
(**)
vào phơng trình hai của hệ ta có:



=++
+=
32)21(3
21
yy
yx


Nguyn Thanh Vinh THCS NGUYN DU
b) Giải hệ :





=
=




=
+=




=++
+=




=++
+=
0
1

0
21
3263
21
32)21(3
21
y
x
y
yx
yy
yx
yy
yx
Vậy hệ phơng trình có một nghiệm (x = 1; y = 0).
Giải hệ ph ơng trình bằng ph ơng pháp cộng đại số :
a)Quy tắc cộng đại số :
+ Bớc 1: Cộng hay trừ từng vế hai phơng trình của hệ của hệ phơng trình đã cho để đợc một ph-
ơng trình mới.
+ Bớc 2: Dùng phơng trình mới ấy thay thế cho một trong hai phơng trình của hệ (và giữ nguyên
phơng trình kia)
L u ý : Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ.
Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ vế theo vế của hệ.
Khi hệ số của cùng một ẩn không bằng nhau cũng không đối nhau thì ta chọn nhân với
số thích hợp để đa về hệ số của cùng một ẩn đối nhau (hoặc bằng nhau).( tạm gọi là quy đồng hệ
số)
bài tập:
Giải hệ phơng trình bằng phơng pháp thế.







=+
=+
538
24
yx
yx






=+
=
42 yx
myx






=
=+
2
623

yx
yx







=+
=
264
132
yx
yx



2 3 5
5 4 1
x y
x y
+ =


=





3 7
2 0
x y
x y
=


+ =





4 2
3 2 4
x y
x y
+ =


+ =




2
2 3 9
x y
x y
=



=



2x 3y 2
4x 6y 2
=


+ =


Giải hệ phơng trình bằng phơng pháp cộng đại số





=+
=
311110
7112
yx
yx







=
=+
72
33
yx
yx






=
=+
032
852
yx
yx

Nguyn Thanh Vinh THCS NGUYN DU

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×