Tải bản đầy đủ (.pdf) (100 trang)

(Luận văn thạc sĩ) nghiên cứu phương pháp xác định lượng vết một số dạng ASEN trong mẫu huyết thanh bằng phương pháp ghép nối HPLC ICP MS

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.94 MB, 100 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-----------------------------------

Nguyễn Thị Liên

NGHIÊN CỨU PHƯƠNG PHÁP XÁC ĐỊNH LƯỢNG VẾT
MỘT SỐ DẠNG ASEN TRONG MẪU HUYẾT THANH BẰNG
PHƯƠNG PHÁP GHÉP NỐI HPLC-ICP/MS
LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – 2019


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------------

Nguyễn Thị Liên

NGHIÊN CỨU PHƯƠNG PHÁP XÁC ĐỊNH LƯỢNG VẾT
MỘT SỐ DẠNG ASEN TRONG MẪU HUYẾT THANH BẰNG
PHƯƠNG PHÁP GHÉP NỐI HPLC-ICP/MS
Ngành: Hóa phân tích
Mã số: 60440118
LUẬN VĂN THẠC SĨ KHOA HỌC

Giáo viên hướng dẫn: PGS.TS Tạ Thị Thảo

Hà Nội – 2019



LỜI CAM ĐOAN
Tôi xin cam đoan nội dung của luận văn là cơng trình nghiên cứu của tơi dưới
sự hướng dẫn của PGS. TS Tạ Thị Thảo. Các số liệu, kết quả trong luận văn hoàn
toàn trung thực, chưa từng được cơng bố trên bất kì tạp chí nào đến thời điểm ngồi
cơng trình của tác giả.
Hà Nội, ngày 17 tháng 01 năm 2020
Tác giả

Nguyễn Thị Liên

Xác nhận

Xác nhận

của giáo viên hướng dẫn

của Chủ tịch HĐ chấm luận văn

Tạ Thị Thảo

PGS.TS. Nguyễn Văn Ri


LỜI CẢM ƠN
Luận văn này được hỗ trợ kinh phí từ đề tài nghiên cứu Khoa học và
Công nghệ cấp ĐHQG Hà Nội trong đề tài mã số: QG. 17. 17.
Bản luận văn được thực hiện và hoàn thành tại trường ĐH Khoa học tự nhiên
Hà Nội với sự hướng dẫn của PGS.TS. Tạ Thị Thảo.
Với lịng kính trọng và biết ơn sâu sắc, em xin chân thành cảm ơn PGS.TS.

Tạ Thị Thảo đã định hướng nghiên cứu, hướng dẫn, góp ý, cung cấp tài liệu giúp em
hồn thành bản luận văn này.
Em xin được gửi lời cảm ơn đến TS. Chu Đình Bính và Ths-NCS Nguyễn
Mạnh Hà cùng các thầy, các cơ trong bộ mơn Hóa Phân tích - Khoa Hóa Học, Trường
Đại học Khoa học Tự nhiên Hà Nội đã giúp đỡ và đóng góp nhiều ý kiến quý báu để
em hoàn thiện luận văn này. Em xin cảm ơn Ban Giám hiệu Trường Đại học Khoa
học Tự nhiên Hà Nội, Phòng Sau đại học, các Phòng, Ban chức năng đã tạo những
điều kiện tốt nhất để em học tập, nghiên cứu và hoàn thành luận văn.
Cuối cùng, em xin gửi lời biết ơn sâu sắc tới gia đình, người thân và các anh,
chị, em, bạn bè, đặc biệt là các thành viên của lớp K26 chuyên ngành Hóa Phân tích
đã ln bên em, động viên giúp em trong học tập cũng như trong q trình hồn thành
luận văn.
Do thời gian thực hiện đề tài có hạn, bản thân cũng còn thiếu kinh nghiệm thực
tiễn cũng như kiến thức chuyên môn sâu nên nội dung bài không tránh khỏi những
thiếu sót. Em rất mong nhận được sự góp ý của các thầy cô, các bạn để bài luận văn
hồn thiện hơn và có ích cho thực tiễn cũng như nghiên cứu sau này.
Em xin trân thành cảm ơn!
Hà Nội, ngày tháng

năm

Tác giả

Nguyễn Thị Liên


MỤC LỤC
MỞ ĐẦU……………………………………………………………………………1
CHƯƠNG I – TỔNG QUAN .....................................................................................3
1.1


Tổng quang về Asen .................................................................................... 3

1.1.1

Trạng thái và nguồn gốc Asen trong tự nhiên ........................................3

1.1.2

Asen trong hệ sinh thái ...........................................................................5

1.1.3

Dạng Asen và chuyển hóa giữa các dạng Asen ......................................8

1.1.4

Độc tính và cơ chế gây độc của Asen ...................................................10

1.2

Các phương pháp phân tích Asen ............................................................ 15

1.2.1

Phương pháp điện di mao quản (CE)....................................................16

1.2.2

Phương pháp điện hóa ..........................................................................18


1.2.3 Phương pháp quang phổ phát xạ nguyên tử nguồn cảm ứng cao tần
plasma (ICP-AES) ..............................................................................................18
1.2.4 Phương pháp khối phổ nguyên tử nguồn ion hóa cảm ứng cao tần
plasma (ICP-MS) ................................................................................................19
1.2.5 Phương pháp Sắc kí lỏng hiệu năng cao ghép nối với hệ Hydrua quang
phổ huỳnh quang nguyên tử (HPLC – UV – HG – AFS) ..................................19
1.2.6 Phương pháp sắc kí lỏng hiệu năng cao ghép nối với hệ quang phổ hấp
thụ nguyên tử sử dụng kĩ thuật hydrua hóa (HPLC-HG-AAS)..........................20
1.2.7 Phương pháp sắc kí lỏng hiệu năng cao ghép nối với cảm ứng cao tần
và quang phổ phát xạ nguyên tử (HPLC – ICP – AES). ....................................22
1.2.8 Sắc ký lỏng hiệu năng cao kết hợp quang phổ cảm ứng cao tần Plasma
HPLC – ICP/MS .................................................................................................23
CHƯƠNG II - THỰC NGHIỆM .............................................................................31
2.1

Hóa chất, dụng cụ, thiết bị ........................................................................ 31

2.1.1

Hóa chất ................................................................................................31

2.1.2

Chuẩn bị hóa chất và dung dịch chuẩn .................................................31

2.1.3

Dụng cụ .................................................................................................33


2.1.4

Thiết bị thí nghiệm ................................................................................34

2.2

Điều kiện phân tích 75As trên hệ ICP/MS ............................................... 34

2.3

Phương pháp lấy mẫu, bảo quản mẫu phân tích.................................... 36


2.3.1

Lấy mẫu và tiền xử lý mẫu ...................................................................36

2.3.2

Bảo quản mẫu .......................................................................................36

2.4

Xử lý mẫu ................................................................................................... 37

2.5

Phương pháp phân tích HPLC – ICP/MS ............................................... 38

2.5.1


Nguyên tắc ............................................................................................38

2.5.2

Phương pháp khảo sát điều kiện tối ưu .................................................38

2.5.3

Đánh giá phương pháp phân tích ..........................................................39

2.5.4

Phương pháp xử lý số liệu ....................................................................41

CHƯƠNG III – KẾT QUẢ VÀ THẢO LUẬN ........................................................42
3.1

Nghiên cứu tối ưu hóa các điều kiện trên hệ thống HPLC .................... 42

3.1.1

Lựa chọn cột tách ..................................................................................42

3.1.2

Khảo sát thời gian lưu của các dạng Asentrên cột tách ........................42

3.1.3


Khảo sát lựa chọn pha động ..................................................................44

3.2 Nghiên cứu ảnh hưởng của các Ion cản trở đến quá trình phân tích
dạng Asen.............................................................................................................. 50
3.2.1

Khảo sát ảnh hưởng của nồng độ Ion Cl- ..............................................50

3.2.2

Nghiên cứu ảnh hưởng của hàm lượng kim loại Ca, Mg, Fe ...............52

3.2.3 Nghiên cứu ảnh hưởng của cacbon trong pha động tới cường độ tín
hiệu Asen ............................................................................................................54
3.3

Tối ưu hóa q trình xử lý mẫu huyết thanh .......................................... 58

3.4

Xác nhận giá trị sử dụng của phương pháp phân tích dạng ................. 61

3.4.1

Xây dựng đường chuẩn xác định 5 dạng Asen .....................................61

3.4.2

Giới hạn phát hiện, giới hạn định lượng và độ lặp lại ..........................65


3.4.3

Độ thu hồi .............................................................................................66

3.4.4

Độ lặp lại ...............................................................................................67

3.5

Ứng dụng phân tích mẫu thực tế.............................................................. 67

KẾT LUẬN ...............................................................................................................71
TÀI LIỆU THAM KHẢO ........................................................................................73


DANH MỤC HÌNH

Hình 1.1. Sơ đồ chuyển hóa các dạng Asen trong mơi trường tự nhiên
Hình 1.2. Sơ đồ chuyển hóa các dạng Asen trong cơ thể người
Hình 1.3. Sự nhiễm độc và tích tụ Asen trong cơ thể người và động vật
Hình 1.4. Quá trình nhiễm độc Asen can thiệp vào quá trình tổng hợp ATP
Hình 1.5 Sự chuyển hóa Asen trong q trình Trao đổi chất
Hình 1.6 Cấu tạo hệ điện di mao quản CE
Hình 1.7. Hệ ghép nối HPLC – UV – HG – AFS
Hình 1.8. Sơ đồ ghép nối hệ HPLC – HG – AAS
Hình 1.9. Sơ đồ ghép nối hệ HPLC – HG – ICP – AES
Hình 1.10. Hệ thống HPLC – ICP/MS
Hình 2.1. Thiết bị phân tích dạng Asen
Hình 2.2. Quy trình xử lý mẫu huyết thanh theo phương pháp 1

Hình 2.3. Quy trình xử lý mẫu huyết thanh theo phương pháp 2 (lần 1)
Hình 2.4. Quy trình xử lý mẫu huyết thanh theo phương pháp 2 (lần 2)
Hình 3.1. Sắc đồ 5 dạng As 50ppb xác định thời gian lưu
Hình 3.2. Sắc đồ 5 dạng As 50ppb khi thay đổi loại pha động
Hình 3.3. Sắc đồ của 5 dạng As 50ppb khi thay đổi nồng độ MeOH
Hình 3.4. Sắc đồ của 5 dạng As 50ppb khi thay đổi pH của pha động
Hình 3.5. Sắc đồ của 5 dạng As 50ppb khi thay đổi tốc độ dịng pha động
Hình 3.6. Sắc đồ của 5 dạng As 50ppb khi thay đổi phương pháp rửa giải
Hình 3.7. Sắc đồ của 5 dạng As 50ppb khi thay đổi nồng độ clorua
Hình 3.8. Sắc đồ của tổng các dạng As ở nồng độ 50ppb


Hình 3.9. Sắc đồ của 5 dạng As 50ppb khi thêm hoặc khơng thêm EDTA.
Hình 3.10. Sắc đồ đường nền
Hình 3.11. Sắc đồ As(V) 50ppb, bơm lặp 2 lần/phút
Hình 3.12. Sắc đồ đường nền, khơng gradient, pha động nước deion
Hình 3.13. Sắc đồ As(V), khơng gradient, pha động nước deion
Hình 3.14. Sắc đồ 5 dạng Asen trong huyết thanh theo phương pháp 1
Hình 3.15. Sắc đồ 5 dạng Asen trong huyết thanh theo phương pháp 2
Hình 3.16. Quy trình xử lý mẫu huyết thanh tối ưu
Hình 3.17. Sắc đồ 5 dạng Asen ở các nồng độ khác nhau
Hình 3.18. Đường hồi quy tuyến tính của 5 dạng Asen
Hình 3.19. Sắc đồ 5 dạng As trong huyết thanh bệnh nhân mã 4387 và 4397


DANH MỤC BẢNG
Bảng 1.1. Các loại cột sắc ký cho hệ HPLC-ICP/MS và pha động tương ứng.
Bảng 2.1. Điều kiện phân tích của thiết bị ICP/MS.
Bảng 3.1. Nồng độ As, Ca, Mg, Fe được thêm vào mẫu chuẩn 5 dạng As
nồng độ 50ppb.

Bảng 3.2. Điều kiện phân tích của thiết bị HPLC-ICP/MS
Bảng 3.3. Phương trình đường chuẩn của 5 dạng Asen
Bảng 3.4. Các đại lượng đặc trưng của phép phân tích dạng Asen bằng
phương pháp HPLC-ICP/MS
Bảng 3.5. Hiệu suất thu hồi của mẫu huyết thanh
Bảng 3.6. Đánh giá độ lặp phương pháp
Bảng 3.7 Nồng độ các dạng Asen trong huyết thanh của bệnh nhân


DANH MỤC TỪ VIẾT TẮT

Tên đầy đủ

Số thứ
tự

Tên viết tắt

1

AAS

Quang phổ hấp thụ nguyên tử

2

AES

Quang phổ phát xạ nguyên tử


3

As

4

AsB

Arsenobetaine

5

AsIII

Arsenite

6

AsV

Arsenate

7

DMA

Dimethylarsonic

13


EDTA

Ethylendiaminetetraacetic acid

8

HPLC

Sắc ký lỏng hiệu năng cao

9

ICP-MS

10

LOD

Giới hạn phát hiện

11

LOQ

Giới hạn định lư

12

MMA


Monomethylarsonic acid

13

ppb

Một phần tỷ

14

ppm

Một phần triệu

14

RSD

Độ lệch tương đối

15

TBHA

Arsen

Quang phổ nguồn plasma cao tần kết hợp khối phổ

Tetrabutylammonium hydroxide



MỞ ĐẦU
Asen (As) hay cịn gọi là Thạch Tín - là chất độc khá phổ biến trong tự nhiên.
Nhưng Asen cũng là một nguyên tố vi lượng rất cần thiết cho sự sinh trưởng, phát
triển của con người cũng như các vi sinh vật.
Ở Việt Nam hiện nay cũng như trên thế giới, qua sự khảo sát của các nhà khoa
học thì có rất nhiều nơi lượng Asen vượt q tiêu chuẩn cho phép gấp nhiều lần.
Nhiều quốc gia bị ô nhiễm Asen nặng nề như Ấn Độ, Ý, Nhật, Mỹ,… Asen không
chỉ tồn tại trong nước, đất mà trong cả các loại cây trồng nông nghiệp như ngũ cốc,
hoa quả, gạo, rau xanh và thủy sản, asen tồn tại trong thực phẩm có nguồn gốc từ q
trình trao đổi chất với môi trường, hấp thu nước và các chất dinh dưỡng từ đất của
các loài động, thực vật. Xuất hiện ngày càng nhiều “làng ung thư” ở rất nhiều nơi, nó
đã trở thành mối quan tâm đáng lo ngại của mọi người và các cơ quan chức năng.
Từ lâu các nhà khoa học khơng chỉ xác nhận vai trị quan trọng của các nguyên
tố hàm lượng vết trong nghiên cứu mơi trường, sinh y học,lương thực thực phẩm, hóa
học, vật liệu mới mà còn quan tâm nghiên cứu kỹ hơn về hóa trị (trạng thái oxi hóa),
dạng liên kết của chúng do độc tính, hoạt tính sinh học, sinh địa hóa,…của lượng vết
các nguyên tố này cũng khác nhau [25; 47]. Do vậy, trong sinh y học, sinh địa hóa,
mơi trường thì việc nghiên cứu về hóa trị, dạng tồn tại của các nguyên tố hàm lượng
vết để hiểu được các q trình tích lũy sinh học, sự vận chuyển, q trình chuyển hóa
sinh hóa, độc tính và sự tiến triển của độc tính, bản chất sinh học của các độc chất
cũng như có hướng điều chỉnh liệu pháp điều trị trên cơ sở mức độ độc các dạng là
rất quan trọng. Tại Việt Nam, tính tới thời điểm hiện tại cũng đã có nhiều cơng trình
nghiên cứu về Asen, tuy nhiên chủ yếu chỉ tập chung vào phân tích tổng hàm lượng
Asen trong gạo, nước ngầm, hải sản, tóc, nước tiểu mà rất ít các cơng trình nghiên
cứu về dạng Asen trong mẫu máu.
Để đánh giá chính xác độc tính của Asen cũng như sự tích lũy của các hợp
chất này trong các mẫu sinh học và đánh giá nguy cơ phơi nhiễm tới con người thông
qua chuỗi thức ăn, nước uống và các nguồn tiếp xúc khác thì việc phân tích các dạng
tồn tại của As bên cạnh hàm lượng tổng số là một yêu cầu rất quan trọng. Thực tế

1


hiện nay việc phân tích dạng Asen có rất nhiều các phương pháp khác nhau. Tuy
nhiên mỗi quy trình, phương pháp phân tích đều bộc lộ những hạn chế nhất định do
vậy các kỹ thuật phân tích cho độ tin cậy cao tập trung vào nhóm phương pháp mới.
Mà chủ yếu là nhóm phương pháp ghép nối với ưu điểm là các dạng chất trong cùng
một mẫu có thể được tách và xác định với độ chọn lọc, độ nhạy thuộc vùng từ ng-pg.
Trên cơ sở đó, nội dung đề tài đã tiến hành nghiên cứu xây dựng quy trình
phân tích các dạng tồn tại của asen trong mẫu sinh học (huyết thanh) với tiêu đề
“NGHIÊN CỨU PHƯƠNG PHÁP XÁC ĐỊNH LƯỢNG VẾT MỘT SỐ DẠNG
ASEN TRONG MẪU HUYẾT THANH BẰNG PHƯƠNG PHÁP GHÉP NỐI
HPLC-ICP/MS”.
Mục tiêu của đề tài:
Xây dựng quy trình phân tích các dạng Asen gồm (AsB, As(III), DMA, MMA,
As(V)) trong các mẫu sinh học mà cụ thể là mẫu huyết thanh bằng phương pháp ghép
nối HPLC-ICP-MS.
Nội dung nghiên cứu của đề tài:
Nghiên cứu các yếu tố ảnh hưởng đến tín hiệu Asen trên hệ ICP-MS, từ đó
chọn điều kiện phân tích các dạng Asen phù hợp.
Tối ưu hóa điều kiện chiết tách các dạng Asen bằng phương pháp ghép nối
thiết bị HPLC – ICP/MS.
Đánh giá phương pháp phân tích và áp dụng để phân tích một số mẫu
huyết thanh.

2


1 CHƯƠNG
1.1 Tổng quang về Asen


I – TỔNG QUAN

1.1.1 Trạng thái và nguồn gốc Asen trong tự nhiên
Asen (ký hiệu hóa học là As), số hiệu nguyên tử Z = 33, khối lượng nguyên tử
74,92159 đv.C. Trong Bảng tuần hoàn các nguyên tố hóa học, Asen thuộc nhóm VA,
chu kỳ 4. Trong tự nhiên Asen không tồn tại dạng đơn chất mà ở dạng hợp chất, nó
có thể kết hợp với nhiều kim loại và phi kim khác nhau để tạo ra các hợp chất vô cơ,
hữu cơ, tồn tại nhiều nhất trong các trầm tích, khống vật tự nhiên đặc biệt là quặng
sunfua.
Asen là nguyên tố phổ biến, nó có mặt ở khắp mọi nơi trong khí quyển, nước,
đất, trong trầm tích cũng như trong sinh vật. Về mức độ phổ biến thì Asen được xếp
thứ 20 trong tự nhiên với hàm lượng trung bình 1,5 – 2mg/kg, chiếm 1,2 – 4,0 % tổng
nguyên tử trong vỏ trái đất [7], thứ 14 trong nước biển và thứ 12 trong cơ thể con
người [76]. Asen rất dễ bị biến đổi với nhiều dạng khác nhau thơng qua khí quyển,
đất, nước, sinh vật trước khi sa lắng thành trầm tích. Nguyên nhân một phần do tự
nhiên, một phần do chính tác động của con người. Theo thống kê các tác nhân tự
nhiên và con người đóng góp 60:40 vào sự lắng đọng Asen, trong khi đó có một số
báo cáo ước tính được là 30:70 [60]. Do đó cần có cơ chế đặc thù để kiểm sốt việc
tích tụ và chuyển hóa asen trong mơi trường.
Asen tồn tại và phân bố rộng trong tự nhiên, phần lớn Asen tồn tại trong địa
quyển ở dạng khống phân tán, là thành phần chính trong hơn 200 khống chất, hầu
hết trong số đó là quặng khống sản hoặc các sản phẩm phong hóa của chúng. Một
số nghiên cứu cho thấy Asen cũng có nhiều trong than đá với hàm lượng tương đối
cao, ví như ở Mỹ hàm lượng trung bình trong than đá là 1 – 10mg/kg, ở Séc là
1500mg/kg. Cịn trong trầm tích tự nhiên là < 10mg/kg trọng lượng khơ [7]. Ngồi ra
Asen cịn được tìm thấy trong hơn 245 khống chất, trong đó 60% là dạng Asenat,
20% là dạng sunfua và muối sunfua, 20% là dạng Asenua, Asenit, oxit và nguyên tố.
Khoáng vật phổ biến nhất là Asenopyrit (FeAsS) [9].


3


Khơng chỉ có trong các khống vật, Asen cịn đi vào trong nước một cách có
chọn lọc, nó phụ thuộc vào các yếu tố như pH, khả năng oxi hóa khử. Nhờ q trình
phong hóa, tác động của các yếu tố khách quan mơi trường,…Asen từ trong các
khống vật bị phân hủy đưa vào môi trường nước, trải qua quá trình sa lắng, trầm tích
Asen đi vào mơi trường đất, chuyển vào vật trung gian như động thực vật và vào cơ
thể con người. Bên cạnh đó Asen xuất hiện trong mơi trường là do q trình cơng
nghiệp, khai thác khống sản, các hoạt động nơng nghiệp cũng như sản phẩm phụ của
quá trình đốt than. Theo Nriagu và Pacyna [40] ước tính thì tổng lượng Asen đầu vào
có nguồn gốc không tự nhiên khoảng 64000 – 132000 tấn mỗi năm tác động lên môi
trường đất.
Asen lần đầu tiên được biết đến bởi Albertus Magnus (Đức) vào năm 1250 thế
kỷ thứ XIII, nó được dùng như một chất độc giết người nhưng cũng là một phương
thuốc chữa bệnh trong dân gian. Cho tới thế kỷ 20 thì Asen đã được sản xuất, dùng
rộng rãi trong nông nghiệp, công nghiệp và cả y học. Sản lượng Asen trên thế giới
ước tính vào khoảng 7500-10300 tấn mỗi năm, trong đó quốc gia Thụy Điển đứng
đầu về việc sản xuất Asen và Hoa Kỳ là quốc gia tiêu thụ Asen lớn nhất thế giới với
một nửa lượng Asen sản xuất ra được dùng để cung cấp cho quốc gia này [31]. Lượng
asen sản xuất ra chủ yếu được phục vụ cho nhu cầu cơng nghiêp và nơng nghiệp là
chính, bên cạnh đó số ít asen được ứng dụng vào trong y học.
Năm 1940 Asen hữu cơ được dùng làm thuốc chữa bệnh. Loại được biết nhiều
nhất những năm đó là Salvarsan (Asen phenamin) dùng để trị bệnh giang mai và một
số bệnh lây nhiễm qua đường tình dục [56]. Ngày nay Asen vẫn được dùng như tác
nhân chống ký sinh trùng trong thú y và trong các phương thuốc dân gian. Gần đây,
các nhà khoa học còn nghiên cứu Asen trioxit để điều trị bệnh bạch cầu máu.
Lượng asen dùng trong nông nghiệp chủ yếu là sản xuất các chế phẩm thuốc trừ
sâu. Từ những năm 1970 tại Hoa Kỳ người ta đã biết dùng muối Natri asenit để kiểm
soát cỏ dại thủy sinh, dù rằng phát kiến đó cũng đã gây ra khơng ít hậu quả xấu và

tiềm tàng nguy cơ gây mất an tồn nhưng nó cũng là một phát kiến lớn có giá trị ngay
thời bấy giờ. Do tính chất độc hại của Asen nên hiện nay tổng lượng Asen dùng trong

4


nông nghiệp đang giảm dần ở các nước đang phát triển và tiến tới loại bỏ hoàn toàn
ở các nước phát triển. Asen được ứng dụng nhiều vào những năm đầu thế kỷ 20 nhưng
phần lớn đã được thay thế bởi Asen hữu cơ để giảm thiểu tính độc hại. Mức độ độc
hại của asen vô cơ và hữu cơ là khác nhau, ảnh hưởng của Asen phụ thuộc nhiều vào
tính chất lý, hóa, độ độc, dạng và sự chuyển hóa cũng như biến đổi sinh học qua lại
của các dạng Asen [64]. Do đó việc xây dựng, nghiên cứu các phương pháp, quy trình
phân tích dạng Asen trong các đối tượng khác nhau đã trở thành đề tài cần thiết và
cũng là thách thức cho các nhà khoa học trong nghiên cứu môi trường, sức khỏe tại
các nước chậm phát triển và đang phát triển, trong đó có Việt Nam.
1.1.2 Asen trong hệ sinh thái
1.1.2.1 Asen trong đất
Hàm lượng của As tự nhiên trong đất phụ thuộc vào loại đất, đá, hàm lượng
bình thường từ 1-40µg As/g [31]. Nói chung, hàm lượng asen trong đất không bị ô
nhiễm và khơng được xử lý hiếm khi vượt q 10µg/g.
Hàm lượng Asen cao thường được tìm thấy trong đất phèn do sự phong hóa
của pyrit. Nồng độ Asen trong pyrit, chalcopyrit, galena và marcasit có thể rất khác
nhau nhưng có khả năng đạt tới vài % trọng lượng nếu đất đó được hình thành là sản
phẩm phong hóa của khống chất sunfua, khoáng chất oxit và các oxit kim loại màu
[62]. Ở các khu vực nơng nghiệp, dư lượng asen có thể tích lũy tới 600µg/g. Đất ơ
nhiễm cao có thể là đất trong khu vực của các nhà máy khai thác hoặc các nhà máy
nhiệt điện dùng than thì nồng độ có thể lên tới hơn 1000µg/g [28]. Khả năng biến đổi
của asen là kết quả của sự tương tác phức tạp giữa đất và dung dịch đất với tác động
của phản ứng oxi hóa khử, độ pH, kích thước hạt, hàm lượng chất hữu cơ, khả năng
phong hóa của khoáng sản và các ion cạnh tranh [29].

Asen trong đất chủ yếu là asenat. Tuy nhiên, axit arsenic là dạng chiếm ưu thế
trong điều kiện đất xấu [31]. Các điều kiện đất khác nhau cũng có thể dẫn đến một sự
thay đổi trong trạng thái oxi hóa hoặc dễ bị methyl hóa bởi hoạt động của vi sinh vật.

5


1.1.2.2 Asen trong nước
Nồng độ asen trong nước ngọt thay đổi theo các cấp độ khác nhau, tùy thuộc
vào nguồn Asen, lượng có sẵn và mơi trường địa hố, hàm lượng Asen an toàn trong
nước uống là 0,01mg/L (< 10ppb). Trong điều kiện tự nhiên, phạm vi lớn nhất và
nồng độ asen cao nhất được tìm thấy trong nước ngầm do ảnh hưởng mạnh mẽ của
tương tác nước - đá và điều kiện địa lý thuận lợi cho việc phân giải và tích lũy Asen.
Hàm lượng Asen trong nước ngầm phụ thuộc nhiều vào mơi trường và tính chất địa
hóa của nơi ấy. Ở những vùng trầm tích núi lửa lớn, hay một số khu vực mỏ dầu khí,
mỏ than hay có nhiều quặng,…thường giàu Asen hơn nơi khác. Hàm lượng Asen
trong nước ngầm thông thường dao động từ <0,5 đến 10µg/L nhưng nồng độ cũng có
thể lên tới 370µg/L như đã được báo cáo ở Wyoming và Montana là kết quả của vùng
núi lửa từ hệ thống núi lửa Yellowstone [30]. Người ta có thể quan sát thấy sự thay
đổi theo mùa trong nồng độ Asen. Theo nghiên cứu của Hong Li, Ronald B Smart
cho biết tỉ lệ As(III) so với As(V) có thể dao động từ 0,1 : 1 – 10:1 tùy từng vùng và
tùy từng mùa khác nhau [63].
Trong nước biển hàm lượng trung bình của Asen là khoảng 2µg/L, trong khi
ở nước ngọt thì hàm lượng asen có thể dao động từ 0,4 - 80µg/L [68]. Nước mặt
thường có độ pH và kiềm cao cho thấy nồng độ Asen tự nhiên dao động từ 21,8 190µg/L. Nồng độ lên tới 556µg/L trong báo cáo được tìm thấy ở các dòng suối liền
kề với các mỏ than khoáng sản ở British Columbia [31]. Nguyên nhân sự gia tăng
đáng kể nồng độ Asen của nước là do ô nhiễm từ nước thải công nghiệp hoặc từ chất
thải của nhà máy hoặc chất thải khai thác mỏ hoặc thuốc diệt cỏ. Ngồi ra q trình
Methyl hóa asen vơ cơ tạo ra methyl và dimethyl asen bởi các hoạt động của vi sinh
vật trong nước hay một số sinh vật biển cũng có khả năng biến đổi asen vơ cơ thành

hợp chất asen hữu cơ, như arsenobetaine, arsenocholine và arsoniumphospholiphid
[69] cũng là nguyên nhân làm tăng hàm lượng Asen trong nước.
1.1.2.3 Asen trong khơng khí
Hiện tượng tự nhiên (phong hóa, hoạt động sinh học và hoạt động núi lửa)
cũng như các nguồn nhân tạo (hoạt động nấu chảy, đốt nhiên liệu hóa thạch, thuốc
6


trừ sâu) giải phóng Asen vào khí quyển. Asen có mặt trong khơng khí chủ yếu ở dạng
hạt Asen trioxit.
Hàm lượng asen đo ở vùng sâu vùng xa hoặc nông thôn dao động từ 0,02 - 4
ng/m3[62], tại các khu vực đô thị, dao động 3-200 ng/m3. Ở vùng lân cận quanh các
khu công nghiệp hàm lượng cao hơn nhiều (> 1000 ng/m3) [15]. Việc nấu chảy quặng
và đốt than làm tăng nồng độ Asen theo các cấp độ khác nhau và nồng độ có thể lên
tới 16µg/L con số này đã được tìm thấy trong lượng nước mưa xuống của một lò
luyện đồng [39].
Những con số minh chứng này có thể cho chúng ta thấy rằng trong khơng khí,
nguồn khói bụi cũng đóng góp một phần đáng kể lượng Asen trong đất, nước, mà
nguyên nhân của lượng Asen trong khơng khí này lại bắt nguồn phần lớn do các hoạt
động của con người mà ra.
1.1.2.4 Asen trong cở thể người và động thực vật
Trong cơ thể con người Asen là nguyên tố đứng vị trí thứ 12 về mức độ phổ
biến và cần thiết, theo khuyến cáo của tổ chức y tế thế giới WHO thì hàm lượng Asen
trong cơ thể con người ở mức an tồn là 15µg/kg [10]. Nhưng Asen không phải một
nguyên tố thiết yếu trong quá trình sinh học, mặc dù một số hợp chất hữu cơ của Asen
được dùng làm chất kích thích để kích thích sự phát triển của thực vật và làm phụ gia
thực phẩm để thúc đẩy tăng trưởng của động vật (trong thức ăn chăn ni). Cả asenit
và asenat tích tụ trong các mơ sống vì ái lực của chúng đối với protein, lipid và các
hợp chất tế bào khác [41].
Người ta đã biết rằng nồng độ Asen trong sinh vật biển nói chung dao động từ

1–100 mg/kg (trọng lượng khô) và thường cao hơn so với trong nước ngọt, chủ yếu
là các loài Asen hữu cơ [43, 54]. Nguyên nhân chính là do sự ơ nhiễm mơi trường
sống và do các động vật thủy sinh có khả năng biến đổi Asen vô cơ thành các hợp
chất hữu cơ phức tạp và được giữu lại dọc theo chuỗi thức ăn ví như cá biển có thể
giữu lại tới 99% asen ở dạng hữu cơ [38]. Trong động vật biển và nấm thì Arsenobetan
và arsenocolin được tìm thấy là chủ yếu [44]. Năm 1977, arsenobetan được công nhận
là hợp chất Asen phong phú nhất trong động vật biển. Arsenocholine và các dẫn xuất
7


có chứa Asen được tìm thấy ở nồng độ đáng kể trong tơm và cá biển. Cịn
Trimethylasin oxit được tìm thấy với hàm lượng thấp và hầu như không đáng kể [45].
Ngồi ra có hơn 25 dạng asen cũng đã được báo cáo tìm thấy trong các mơ sinh học
biển [9].
Nhìn chung, các dạng Asen hữu cơ trong thực vật thủy sinh được tìm thấy chủ
yếu là hợp chất dimethylasen nhưng hàm lượng Asen thường nhỏ hơn 1µg/g.
Brandstetter và các cộng sự của mình đã báo cáo hàm lượng Asen trong các mô thực
vật ở vùng Alp của Áo là từ 0,03 - 34,5µg/g [46]. Một số lượng hạn chế các lồi thực
vật và tảo được biết là tích lũy Asen đến một mức độ cao hơn đáng kể hoặc tương
quan trực tiếp với nồng độ Asen của môi trường xung quanh thông qua rễ để hấp thụ
các hợp chất Asen vô cơ, qua lá hoặc vỏ cây hấp thụ các hợp chất hữu cơ. Những cây
này có thể được sử dụng để xử lý các khu vực ô nhiễm hoặc để theo dõi sinh học ô
nhiễm Asen [45]. Theo WHO hàm lượng Asen cho phép trong rau quả khô là
≤1mg/kg [10].
Hiện nay hệ lụy của vấn đề ô nhiễm Asen đã để lại những hậu quả nghiêm
trọng tới đời sống, sức khỏe của con người. Chính vì vậy việc nghiên cứu các dạng
Asen trong mẫu sinh học của cơ thể người là điều rất cần thiết, là cơ sở để đánh giá
mức độ nguy hiểm, xây dựng và điều chỉnh các phác đồ điều trị trên cơ sở mức độ
nhiễm độc các dạng, hạn chế tới mức thấp nhất các tổn thất về người do nhiễm độc
Asen mang lại.

1.1.3 Dạng Asen và chuyển hóa giữa các dạng Asen
Asen được mơ tả giống như hợp chất cộng hóa trị hoặc dạng anion. Trạng thái
oxi hóa chủ yếu của Asen là -3, 0, +3, +5 phổ biến nhất của nó là -3 (asenua: thông
thường trong các hợp chất liên kim loại tương tự như hợp kim), +3 (asenat (III) hay
asenit và phần lớn các hợp chất asen hữu cơ), +5 (asenat (V): phần lớn các hợp chất
vô cơ chứa ôxy của asen ổn định). Asen cũng dễ tự liên kết với chính nó, chẳng hạn
tạo thành các cặp As-As trong sulfua đỏ hùng hồng (α-As4S4) và các ion As43- vng
trong khống coban asenua có tên skutterudit. Asen là một á kim gây ngộ độc cao và

8


có ba dạng thù hình: màu vàng (phân tử phi kim), một vài dạng màu đen và xám (á
kim) trong đó dạng xám là dạng bền hơn cả [31].
Có hơn 25 dạng Asen khác nhau phổ biến trong các mẫu sinh học và các dạng
Asen có thể được biến đổi thơng qua các q trình sinh học hoặc phi sinh học như
oxi hóa, phân giải, giải hấp phụ, kết tủa, bay hơi,….
Trong môi trường, Asen tồn tại chủ yếu ở dạng As(-III), As(0), As(III) và As(V)
ở cả dạng vô cơ và hữu cơ. Trong nước tự nhiên, nó chủ yếu được tìm thấy ở dạng vơ
cơ như anion oxit của arsenit [As (III)] hoặc asenat [As (V)] và một lượng nhỏ dạng
hữu cơ là MMA (V), DMA (V) [59,70], dạng hữu cơ của asen hiếm khi có trong nước
tự nhiên [68], tuy nhiên trong nước thải, Asen lại tồn tại ở nhiều dạng khác nhau [27].
Metylasin được chuyển hóa vào khơng khí từ việc xử lí các loại hợp chất của asen.
[18]. Sự trao đổi chất của asen trong môi trường được thể hiện trong hình 1.1

Hình 1.1 Sơ đồ chuyển hóa các dạng Asen trong mơi trường tự nhiên
Cơ chế biến đổi của các dạng Asen trong cơ thể con người rất phức tạp, nó bao
gồm nhiều q trình: Sự hấp thụ, phân bố, chuyển hóa, tích lũy và đào thải các hợp
chất của Asen. Theo Prohaska T. và Stingeder G. có thể mơ tả q trình chuyển hóa
các dạng Asen trong cơ thể người và dộng vật qua sơ đồ sau: [65]


9


Hình 1.2 Sơ đồ chuyển hóa các dạng Asen trong cơ thể người
Các quá trình biến đổi này đã được nghiên cứu lâm sàng, thử nghiệm trên chuột
và một số động vật khác để đưa ra các kết luận về cơ chế biến đổi và đào thải chất
độc ra môi trường ngồi. Dạng xâm nhập chính vào cơ thể người là dạng vô cơ, nhất
là As (III) dễ dàng được hấp thụ vào cơ thể con người thông qua ăn uống và trao đổi
chất vì dễ hịa tan vào nước hơn so với As(V). Trong cơ thể con người cũng giống
như hầu hết động vật có vú, asen vơ cơ được methyl hóa và tạo thành axit
monomethylarsonic (MMAA) và dimethylarsonic (DMAA) bằng phản ứng khử từ
As (V) thành As (III) và gắn thêm một nhóm methyl. Có khoảng 60 – 70% asen vô
cơ đi vào cơ thể và được giải phóng ra ngồi bằng đường nước tiểu ở dạng DMAA
và MMAA [57, 66].
1.1.4 Độc tính và cơ chế gây độc của Asen
1.1.4.1 Độc tính của Asen
Các hợp chất Asen và Asen nguyên tố được phân loại là "độc hại" và "nguy
hiểm cho môi trường" theo chỉ thị 67/548/EEC của Liên minh châu Âu. Cơ quan
nghiên cứu ung thư quốc tế (IARC) công nhận hợp chất Asen và Asen nguyên tố là
chất gây ung thư nhóm 1 và EU liệt kê Asen trioxide, Asen pentoxit và muối Asen là
chất gây ung thư loại 1.

10


Độ độc của Asen phụ thuộc vào trạng thái oxi hóa của Asen và dạng tồn tại của
nó là vơ cơ hay hữu cơ. Qua các nghiên cứu thực tế người ta thấy rằng Asen (III) thì
độc hơn gấp nhiều lần Asen(V), Asen vơ cơ thì độc hơn nhiều so với Asen hữu cơ.
Trong các hợp chất của As trong mơi trường thì arsenit đáng được quan tâm tới nhiều

nhất bởi vì tính độc của nó cao hơn gấp 10 lần so với arsenat và hơn gấp 70 lần so
với các dạng methyl hố của nó, trong khi đó DMA, MMA ít độc hơn [64,68]. Độc
tính của Asen và hợp chất của Asen từ cao đến thấp như sau: Arsine > Arsenit vô cơ
> hợp chất hữu cơ trivalent (Arsenooxides) > Asenat vô cơ > hợp chất hữu cơ
pentavalent > hợp chất Arsonium > Asen nguyên tố [24; 58]. Trong những hợp chất
As thì H3AsO3 độc hơn H3AsO4 (H3AsO3 có thể chuyển thành dạng H3AsO4 dưới tác
dụng của các yếu tố oxi hóa). Thế oxy hóa khử, độ pH của môi trường và lượng kaloit
giàu Fe3+…, là những yếu tố quan trọng có ý nghĩa làm tăng hay giảm sự độc hại của
các hợp chất asen trong môi trường sống [18, 21].
Ở hàm lượng nhỏ nhất định, Asen có vai trị quan trọng trong q trình trao đổi
chất của cơ thể, tổng hợp protit, hemoglobin,…[23,26]. Tuy nhiên với hàm lượng cao
thì nó có thể gây ung thư, đột biến gen, đột biến nhiễm sắc thể và dị thai [56]. Thông
qua các cơ chế biến đổi, các hợp chất asen có khả năng tạo ra superoxide, nếu một
lượng lớn superoxide được tạo ra trong các tế bào tuyến tụy, quá trình tiết insulin sẽ
bị ảnh hưởng gây rối loạn điều hòa đường huyết dẫn đến bệnh tiểu đường hoặc ung
thư thận[63, 45]. Sự tích tụ Asen trong mơ thần kinh gây ra các bệnh khác nhau như
ung thư, tiểu đường, nhiễm độc gan, nhiễm độc thần kinh, rối loạn chức năng
tim…[57]. Đối với màng tế bào, có một vài báo cáo chỉ ra rằng các hợp chất asen gây
ảnh hưởng đến cấu trúc và chức năng của màng, đặc biệt là đối với màng tế bào hồng
cầu. Người bị nhiễm độc asen thường có tỷ lệ bị đột biến nhiễm sắc thể rất cao [33].
Asen là tác nhân có thể gây nhiều loại bệnh khác nhau. As(III), As(V) được xếp
vào loại chất gây ung thư thì các dạng methyl Asen (MMA, DMA) được xác định là
xúc tác cho quá trình ung thư ở người và hiện nay chưa có phương pháp hữu hiệu để
điều trị nhiễm độc Asen [50,52].

11


1.1.4.2 Cơ chế gây độc của Asen
Asen có thể xâm nhập vào cơ thể con người thông qua nhiều con đường khác

nhau như qua hơi thở (hô hấp), qua đường tiêu hóa (thức ăn) và qua tiếp xúc da. Khi
Asen được hấp thu vào cơ thể, chúng sẽ tích lũy trong gan, thận, tim, phổi…. Hình
1.3 cho thấy các con đường tích tụ Asen trong cơ thể.

Hình 1.3 Sự nhiễm độc và tích tụ Asen trong cơ thể người và động vật
Quá trình trao đổi chất với Asen đã giúp Asen thúc đẩy độc tính của nó thơng
qua sự ức chế khoảng 200 enzym liên quan đến năng lượng tái tạo cho tế bào,quá
trình chuẩn bị, tổng hợp AND và cản trở q trình tổng hợp ATP. Asen vơ cơ ức chế
Enzym hoạt động bằng cách phản ứng với nhóm -SH của protein, thay thế gốc
photphat PO43- bằng gốc AsO43- có tính chất tương tự. Kết quả tạo ra phức bị thụ động
hóa gây ức chế hoạt động của Enzym.
Với q trình tạo ra ATP, khi có mặt AsO43- thì xảy ra q trình phụ tạo thành
1-Arseno–3–photphat glyxerat nên khơng xảy ra q trình tạo 1,3 – điphotphat
glyxerat do đó khơng tạo ra ATP (hình 1.4)

12


Hình 1.4 Quá trình nhiễm độc Asen can thiệp vào tổng hợp ATP
Mối quan hệ mật thiết của As (III) oxit với thiols được coi là nguyên nhân chính
gây ra độc tính cao. Thiol, thường ở dạng cysteine cịn sót lại, nhưng nó cũng có mặt
trong các cofactors như axit lipoic và coenzyme A, được đặt tại các vị trí trung tâm
hoạt động của nhiều enzyme quan trọng. Chính vì vậy tác động của nó lại càng lớn,
chỉ cần đủ lượng là có thể gây bất hoạt các emzim dẫn tới rối loạn các q trình trao
đổi chất, chuyển hóa của cơ thể [36].
Bên cạnh đó Asen làm gián đoạn q trình sản xuất ATP thơng qua một số cơ
chế. Ngoài ra, bằng cách cạnh tranh với gốc photphat, arsenate tách gốc photphat nhờ
q trình phosphoryl hóa, oxy hóa, do đó ức chế giảm liên kết năng lượng của NAD+,
suy giảm hô hấp ty thể và tổng hợp ATP.


13


1.1.4.3 Biểu hiện của ngộ độc Asen
Ngộ độc Asen cấp tính: Nếu nuốt phải liều lượng cao giữa 1 – 2,5mg/kg có thể
dẫn đến hiệu ứng ngộ độc trong 30-60 phút, các triệu chứng chính là khát nước dữ
dội, đau bụng, nơn mửa, tiêu chảy, bí tiểu, mất cân bằng điện giải làm giảm áp lực
máu dẫn đến khối lượng máu giảm, mạch yếu, kéo dài có thể gây tử vong [45].
Ngộ độc asen mạn tính thường gây ra các bệnh như xơ vữa động mạch, tăng
huyết áp, bệnh tim mạch, thiếu máu cục bộ, tiểu đường, nhiễm độc gan, thận, ung thư
da, bàng quang và phổi [50]. Thậm chí là gây hoại tử các tế bào, rụng dần từng đốt
ngón chân, tay. Asen tập trung chủ yếu trong gan, thận, hồng cầu, hemoglobin và đặc
biệt tập trung nhiều nhất trong não, xương, da, phổi, tóc [45]. Tuy nhiên, khơng phải
tất cả Asen được hấp thụ vào cơ thể con người đều có thể tích lũy và gây bệnh. Khi
hấp thụ vào cơ thể, vì q trình methyl hóa, Asen chuyển thành dạng không độc và
bài tiết qua nước tiểu. Hình 1.5 cho thấy sự chuyển hóa xảy ra trong q trình trao
đổi chất.

Hình 1.5 Sự chuyển hóa Asen trong quá trình trao đổi chất
Đối với thực vật khi bị nhiễm độc Asen có thể gây hạn chế q trình quang hợp
của lá, làm rụng lá cây, gây thiếu sắt và làm cho cây bị chết. Đất bị nhiễm Asen thì
khó gieo trồng cây cối được, nếu có gieo trồng, nhẹ thì cây cịi cọc, năng suất kém,
nặng thì cây héo, úa vàng và chết.

14


Như vậy Asen là bức tường cản trở sự trao đổi chất, sinh trưởng, phát triển của
các sinh vật cũng như con người, nguy hiểm hơn nó cịn là hiểm họa gây chết chóc
nếu con người khơng biết hạn chế và khắc phục.

1.2 Các phương pháp phân tích Asen
Để xác định các dạng asen, cần phải:
Thứ 1: Các dạng asen phải được chiết xuất từ mẫu. Trong bước chiết xuất,
các dạng của hợp chất asen không được thay đổi hoặc phân hủy hóa học. Do đó,
bước chiết phải càng nhẹ càng tốt và gần như tất cả các asen có trong mẫu phải được
chiết xuất.
Thứ 2: Sau khi chất phân tích (các dạng asen) đã được đưa vào dung dịch phân
tích, một bước tách phải được sử dụng để tách các dạng khác nhau. Do các đặc tính
hóa học khác nhau của các hợp chất asen - chúng có thể là anion, trung tính hoặc
cation - một sự phân tích đáng tin cậy trong một lần chạy đơn là không thể. Do đó kết
hợp của các phương pháp phân tich khác nhau phải sử dụng, sắc ký lỏng, sắc ký khí,
hoặc điện di thường được sử dụng.
Thứ 3: Sau khi các hợp chất đã được tách ra, chúng phải được phát hiện bởi
AAS, AFS, MS, ICP- MS,….
Hiện nay, có nhiều phương pháp xác định dạng Asen trong các mẫu môi trường,
mẫu sinh học, cũng như các mẫu khác, nhưng hầu hết các phương pháp này đều trải
qua hai quá trình chính: q trình tách asen trong các mẫu và q trình định lượng
mỗi loại asen riêng biệt trên thiết bị phân tích thích hợp.
Trong việc phân tích định dạng Asen, ngồi việc tách Asen, nó địi hỏi một
phương pháp phân tích phù hợp, phải có một máy dị đủ nhạy để xác định một lượng
nhỏ Asen. Có nhiều phương pháp có thể xác định các dạng Asen như: ICP - MS, HG
- AFS, AES và AAS. Trong số các phương pháp này, phương pháp ICP-MS là phù
hợp nhất; nó có thể được hyphenated trực tiếp với cột sắc ký và có khả năng phát hiện
Asen ở nồng độ cỡ ppt. Tuy nhiên, phương pháp này đòi hỏi phải đầu tư trang thiết
bị và chi phí vận hành khá tốn kém, người vận hành cũng phải có kinh nghiệm.

15



×