ĐỀ ÔN THI HỌC KỲ I Năm học 2009-2010
Môn thi: TOÁN 12
Thời gian: 120 phút (không kể thời gian phát đề)
I. PHẦN CHUNG CHO TẤT CẢC HỌC SINH (7,0 điểm)
Câu I (3.0 điểm)
Cho hàm số
3 2
3 4y x x= − +
có đồ thị (C).
1. Khảo sát và vẽ đồ thị (C).
2. Dùng đồ thị (C) biện luận theo m số nghiệm phương trình :
3 2
3 0x x m− − =
.
Câu II (2.0 điểm)
1. Tính các biểu thức sau :
a.
4
1 3 2
8
log 16 2log 27 5log (ln )A e= − +
b.
( )
4
2
4
0
1 1
3 2.
5
7
B
π
−
−
÷
÷
= − + −
2. Cho hàm số
2
3
( ) log (3 2 )f x x x= − −
. Tìm tập xác định của hàm số ;tính
'( )f x
.
Câu III (2,0 điểm)
Cho hình chóp đều S.ABCD có đáy là hình vuông,
2AC a=
, cạnh bên SA tạo
với đáy một góc
0
30
.
1. Tính thể tích khối chóp S.ABCD.
2. Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
II. PHẦN TỰ CHỌN (3,0 điểm)
Học sinh chọn (câu IV.a; V.a hoặc IV.b; V.b)
Câu IV.a (2,0 điểm)
Giải các phương trình, bất phương trình sau :
1.
( )
2
2 3 7 4 3
x x+
+ = +
2.
1 1
1 log(2 1) log( 9)
2 2
x x− − ≤ −
Câu V.a (1,0 điểm)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số :
2
( ) lnf x x x=
trên đoạn
2
1
;e
e
.
Câu IV.b (2,0 điểm)
1. Định m để hàm số
2
2
2
x x m
y
x
+ +
=
+
đạt cực đại tại
2x =
.
2. Chứng tỏ rằng đường thẳng
:
m
d y x m= −
luôn cắt đồ thị (H) :
1
1
x
y
x
+
=
−
tại hai
điểm phân biệt với mọi giá trị của tham số m.
Câu V. b (1,0 điểm)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số :
3 2
16
( ) sin 4sin 3
3
f x x x= − −
trên đoạn
0;
2
π
.