Tải bản đầy đủ (.pdf) (25 trang)

nghiên cứu thành phần hóa học và hoạt tính gây độc tế bào ung thư của cây tốc thằng cáng anodendron paniculatum wall ex roxb adc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.03 MB, 25 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>HUE UNIVERSITY </b>



<b>HUE UNIVERSITY’S COLLEGE OF SCIENCES </b>


<b>…………***………… </b>



<b>HOANG THI NHU HANH </b>



<b>STUDY ON CHEMICAL CONSTITUENTS AND </b>


<i><b>CYTOTOXIC ACTIVITY OF ANODENDRON </b></i>



<i><b>PANICULATUM (WALL. EX ROXB.) A.DC. </b></i>



Major: Organic Chemistry


Code: 62.44.01.14



<b>SUMMARY OF DISSERTATION ON </b>


<b>DOCTOR OF PHILOSOPHY IN CHEMISTRY </b>



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<i><b>The dissertation was completed at:</b></i>


<i><b>Hue University </b></i>


<i><b>Hue University’s College of Sciences </b></i>


<i><b>Scientific Supervisors: Asc. Prof. Dr. NGUYEN THI HOAI </b></i>


Faculty of Pharmacy - Hue University of Medicine and Pharmacy -
Hue University


<i><b>1</b><b>st</b><b> Reviewer: </b></i>



<i><b>2</b><b>nd</b><b> Reviewer: </b></i>


<i><b>3</b><b>rd</b><b> Reviewer: </b></i>


The dissertation will be defended at Hue University at…………..


The dissertation can be found in:
-


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>PREFACE </b>


The rapid increase of many dangerous diseases which are highly
capable of infection like HIV/AIDS, cancer, SARS (Severe Acute
Respiratory Syndrome), H5N1 (avian flu), H1N1 (swine flu), Ebola


epidemic, ... is really critical with regard to community health and
also a considerable challenge for the world health system. With a
view to protecting human from theses diseases, treatments which are
not only effective but also safe for human body. Many studies from
around the world as well as in Viet Nam has shown that plants are
indeed a valuable source for drug discovery. Some typical examples
<i>are taxol from Taxus brevifolia, vinblastine and vincristine from </i>
<i>Catharanthus roseus, camptothecin from Camptotheca acuminata, </i>
<i>and podophyllotoxin from Podophyllum peltatum… </i>


In screening the cytotoxic activity in some medicinal plants of
the Pako and Van Kieu (ethnic minority groups), ten medicinal plants
which are associated with anti-cancer activity have been screened for
<i>in vitro cytotoxic activity. Among them, Anodendron paniculatum </i>
(Wall. ex Roxb.) A.DC. showed inhibitory effect against five human


cancer cell lines with low IC50 values, especially on LU-1, Hep-G2,


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<i><b>The objects of the dissertation are: </b></i>


<i><b>1. Demonstrating the main chemical constituents of Anodendron </b></i>
<i>paniculatum (Roxb.) A.DC. </i>


<b>2. Evaluating the cytotoxic activity of isolated compounds </b>
against cancer cell lines.


<i><b>Contents of the dissertation are: </b></i>


<b>1. Extraction, isolation and purification of compounds from </b>
<i><b>Anodendron paniculatum (Roxb.) A.DC. </b></i>


<b>2. Structural determination of isolated compounds. </b>


<b>3. Evaluation of the cytotoxic activities of isolated compounds </b>
against human cancer cell lines.


<i><b>New contributions of the dissertation are: </b></i>


<b>1. Four new compounds (anopaniester, anopanin A–C), together </b>
<i>with sixteen known compounds were isolated from Anodendron </i>
<i>paniculatum collected in Viet Nam. Among the known compounds, </i>
fourteen compounds, <i>(E)-phytol, </i> cycloartenol, desmosterol,
<i>esculentic acid, kaempferol-3-O-rutinoside, rutin, sargentol, 4-O-β-</i>D
-glucopyranosyl-3-prenylbenzoic acid, inugalactolipid A,
gingerglycolipid A–C, <i>(2S)-1-O-palmitoyl-3-O-[</i>-D
<i>-galactopyranosyl-(1→6)-O-β-</i>D<i>-galactopyranosyl]glycerol and </i>


<i>(2R)-1-O-palmitoyl-3-O-α-</i>D-(6-sulfoquinovopyranosyl)glycerol were
isolated from this genus for the first time.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<i>O-α-</i>D-(6-sulfoquinovopyranosyl)glycerol showed inhibitory
activities against the LU-1 and MKN-7 cell lines with IC50 values


ranging from 30.89±3.60 to 72.42±8.05 µg/mL.


<b>Chapter 1: OVERVIEW </b>
<b>1.1. Introduction to the family Apocynaceae </b>
<i><b>1.2. Introduction to Anodendron genus </b></i>
<b>1.2.1. Botanical classification </b>


<b>1.2.2. Botanical characteristics and distribution </b>
<b>1.2.3. Investigation of chemical constituents </b>
<b>1.2.4. Investigation of biological activities </b>


<i><b>1.3. Introduction to Anodendron paniculatum (Roxb.) A.DC. </b></i>


<b>Chapter 2: OBJECTS AND METHODS </b>
<b>2.1. Plant materials </b>


The aerial parts of Anodendron paniculatum (Roxb.) A.DC.
<b>2.2. Methods </b>


<b>2.2.1. Isolated and purified method </b>


Compounds were isolated and purified by using a combination
of various chromatographic methods involving thin-layer
chromatography, column chromatography on different stationary


phases such as Silica gel, YMC RP-18, Sephadex LH-20, and Diaion
HP-20.


<b>2.2.2. Method of determining the chemical structures </b>


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b> Method of determining the monosaccharide components </b>
The saponin sample was hydrolyzed by TFA 4 M at 105o<sub>C for 4 </sub>


hours. The monosaccharide was then reduced to alditol with NaBH4


and acetylated with a mixture of acetic anhydride-pyridine (1: 1, v/v)
at 110o<sub>C for 2 hours. The alditol per-acetate formed was analyzed by </sub>


GC-MS method. The monosaccharide components were identified by
<b>comparing their retention time relative to internal standard. </b>


<b> Method of determining the fatty acid components of </b>
<b>glycolipid </b>


Glycolipids are dissolved in toluene and then MeOH, 8% HCl
solution (in MeOH) were added in this order. The mixture is
incubated at 45o<sub>C for two hours (partial hydrolysis) or overnight (for </sub>


<i>complete hydrolysis). After cooling to room temperature, n-hexane </i>
and water were added for extraction of the methyl ester derivatives
<b>(FAMEs). FAMEs were then analyzed by GC-MS method. </b>


<b>2.2.3. Biological evaluation </b>


<i>The in vitro cytotoxicity of isolated compounds against the </i>


growth of eight human cancer cell lines (HL-60, LNCaP, MCF-7,
LU-1, Hep-G2, KB, MKN-7 and SW-480) was tested by
sulforhodamine B assay at Institute of Biotechnology, Viet Nam
Academy of Science and Technology.


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

The dry material (2.5 kg) was extracted with MeOH (10.0 liters
x 3) at room temperature (72 hours/time). The solvent was removed
under reduced pressure to obtain MeOH extract (105 g). The MeOH
extract was dispersed in water and then extracted with chloroform
(CHCl3, 2 liters x 3 times), ethyl acetate (EtOAc, 2 liters x 3 times).


The solvents was removed under reduced pressure to obtain CHCl3


(AC, 50.7 g), EtOAc (AE, 10.2 g) and water (AW, 27.5 g).
<b>3.2. Isolation and purification procedure </b>


<b>Stationary phase</b> <b>Mobile phase </b>


<b>(1) </b> Silica gel Gradient CHCl3–MeOH (100:00:100, v/v)


<b>(2) </b> Silica gel <i>Gradient n-hexan–acetone (100:0</i>4:1, v/v)
<b>(3) </b> Silica gel <i>n-hexan–EtOAc (10:1, v/v) </i>


<b>(4) </b> YMC RP-18 MeOH–acetone–H2O (10:5:1, v/v)


<b>(5) </b> Silica gel <i>n-hexan–acetone (5:1, v/v) </i>
<b>(6) </b> Silica gel CHCl3<i>–MeOH (20:1, v/v) </i>


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Stationary phase</b> <b>Mobile phase </b>



<b>(1) </b> Diaion HP-20 Gradient MeOH−H2O (0:1, 1:3, 1:1, 3:1, 1:0, v/v)


<b>(2) </b> YMC RP-18 MeOH–H2O (1:1, v/v)


<b>(3) </b> Silica gel CHCl3–MeOH–H2O (3:1:0,1, v/v)


<b>(4) </b> Sephadex LH-20 MeOH


<b>(5) </b> Silica gel CHCl3–MeOH–H2O (5:1:0,1, v/v)
<b>(6) </b> Silica gel CHCl3–MeOH–H2O (4:1:0,1, v/v)


<b>(7) </b> Sephadex LH-20 MeOH–H2O (4:1, v/v),


<b>(8) </b> YMC RP-18 MeOH–MeCN–H2O (3:2:3, v/v)


<b>(9) </b> Silica gel CHCl3–MeOH–H2O (3:1:0,1, v/v)
<b>(10) Silica gel </b> CHCl3–MeOH–H2O (3:1:0,1, v/v)
<b>(11) </b> YMC RP-18 MeOH–H2<i>O (3:2, v/v) </i>


<b>(12) </b> YMC RP-18 MeOH–H2O (6:1, v/v)


<b>(13) Silica gel </b> EtOAc–MeOH–H2O (3:1:0,1, v/v)


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<b>3.3. Physical properties and spectral data of isolated compounds </b>
<b>3.3.1. Compound AP1: Cycloartenol </b>


White powder; IR (KBr) max (cm-1): 3418, 2928, 1670, 1443,


1377; Molecular formula C30H50O; M = 426; 1H- and 13C-NMR: see



Table 4.1 and Appendix 1.


<b>3.3.2. Compound AP2: Anopaniester (New) </b>


Colorless oil; IR (KBr) max (cm-1): 3443, 2922, 2853, 1736, 1630,


1466, 1377, 1260, 1180, 1094; UV (MeOH) max (nm): 201, 231;


<i>HRESIMS: m/z 725.5805 [M+Na]</i>+<sub> (calcd for</sub><sub>C</sub>


48H78O3Na, 725.5849);


Molecular formula: C48H78O3; M = 702; 1H-NMR (500 MHz, CDCl3)


H (ppm): 1.22 (H-1a), 1.60 (H-1b), 1.61 (H-2a), 1.74 (H-2b), 4.56 (dd,


<i>J = 11.0, 4.5 Hz, H-3), 1.42 5), 0.79 6a), 1.57 6b), 1.08 </i>
<i>(H-7a), 1.31 (H-7b), 1.52 (dd, J = 12.0, 4.5 Hz, H-8), 1.11 (H-11a), 1.98 </i>
(H-11b), 1.61 (H-12), 1.28 (H-15), 1.29 (H-16a), 1.92 (H-16b), 1.58
<i>(H-17), 1.96 (s, H-18), 0.33 (br.d, J = 4.0 Hz, H-19a), 0.57 (br.d, J = </i>
<i>4.0 Hz, H-19b), 1.38 (H-20), 0.88 (d, J = 7.0 Hz, H-21), 1.04 (H-22a), </i>
<i>1.41 (H-22b), 1.86 (H-23a), 2.03 (H-23b), 5.10 (t, J = 6.0 Hz, H-24), </i>
1.68 (s, H-26), 1.60 (s, H-27), 0.84 (s, H-28), 0.89 (s, H-29, H-30),
2.30 (H-2), 1.61 (H-3), 1.30 (H-4), 1.30 (H-5), 1.30 (H-6), 1.36
(H-7<i>), 2.17 (td, J = 8.0, 7.0 Hz, H-8</i><i>), 5.43 (td, J = 10.5, 8.0 Hz, H-9</i>),
<i>5.97 (dd, J = 11.5, 10.5 Hz, H-10</i><i>), 6.51 (dd, J = 15.0, 11.5 Hz, </i>
H-11<i>), 5.69 (dd, J = 15.0, 6.5 Hz, H-12</i>), 4.20 (m, H-13), 2.33 (H-14),
<i>5.36 (td, J = 10.5, 8.0 Hz, H-15</i><i>), 5.57 (td, J = 10.5, 7.5 Hz, H-16</i>),
2.06 (m, H-17<i>), 0.97 (t, J = 7.5 Hz, H-18</i>); 13<sub>C-NMR (125 MHz, </sub>



CDCl3) C (ppm): 31.7 (C-1), 27.0 (C-2), 80.5 (C-3), 39.6 (C-4), 47.3


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

(C-16), 52.4 (C-17), 18.1 (C-18), 29.9 (C-19), 36.0 (C-20), 18.4 (C-21),
36.5 (C-22), 25.1 (C-23), 125.3 (C-24), 131.0 (C-25), 25.9 (C-26), 17.8
(C-27), 25.6 (C-28), 15.4 (C-29), 19.4 (C-30), 173.8 (C-1), 35.0
(C-2), 25.2 (C-3), 29.1 (C-4), 29.2 (C-5), 29.6 (C-6), 29.8 (C-7), 27.8
(C-8), 133.1 (C-9), 127.9 (C-10), 126.0 (C-11), 135.2 (C-12), 72.3
(C-13), 35.4 (C-14), 123.9 (C-15), 135.3 (C-16), 20.9 (C-17), 14.4
(C-18).


<i><b>3.3.3. Compound AP3: (E)-Phytol </b></i>


Colorless oil; IR (KBr) max (cm-1): 3449, 2932, 1636, 1462,


<i>1381, 1003; HRESIMS: m/z 319.2931 [M + Na]</i>+<sub> (calcd for </sub>


C20H40ONa, 319.2977); Molecular fomular C20H40O; M = 296; 1H-


and 13<sub>C-NMR: see Table 4.4 and Appendix 3. </sub>
<b>3.3.4. Compound AP4: Desmosterol </b>


White powder; mp: 122–124o<sub>C; IR (KBr) </sub>


max (cm-1): 3445,


<i>2936, 1636, 1462, 1377, 1053; HRESIMS: m/z 385.3513 [M + H]</i>+


(calcd for C27H45O, 385.3470); Molecular formula C27H44O; M = 384;
1<sub>H- and </sub>13<sub>C-NMR: see Table 4.5 and Appendix 4. </sub>



<b>3.3.5. Compound AP5: Ursolic acid </b>
White powder; 20


[ ]

<i><sub>D</sub></i> <i>+65 (c 0.5, EtOH), mp 284–286</i>o<sub>C, UV </sub>


<i>(MeOH) λ</i>max<i> (nm): 201, 230; IR (KBr) ν</i>max (cm-1): 3433, 2870, 1690;


<i>ESIMS: m/z 479.2 [M + Na]</i>+<sub>, 455.2 [M - H]</sub>-<sub>; Molecular formula </sub>


C30H48O3; M = 456;<b> 1</b>H- and 13C-NMR: see Table 4.6 and Appendix 5.
<b>3.3.6. Compound AP6: Vanillin </b>


White powder; mp 82–84o<i><sub>C, UV (MeOH) λ</sub></i>


max (nm): 204, 231, 278,


<i>309; IR (KBr) ν</i>max (cm-1<i>): 3310, 1674, 1589, 1512, 1026, ESIMS: m/z </i>


175.0 [M + Na]+<sub>; Molecular formula C</sub>


8H8O3; M = 152;<b> 1</b>H- and 13


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>3.3.7. Compound AP7: Esculentic acid </b>
White powder; mp 267–268o<i><sub>C; IR (KBr) ν</sub></i>


max (cm-1): 3425, 2927,


<i>2363, 1690, 1458, 1038; HRESIMS: m/z 511.3390 [M + Na]</i>+<sub> (calcd </sub>


for C30H48O5Na, 511.3399); Molecular formula C30H48O5; M = 488;


1<sub>H- and </sub>13<sub>C-NMR: see Table 4.8 and Appendix 7. </sub>


<i><b>3.3.8. Compound AP8: Kaempferol-3-O-rutinoside </b></i>


Yellow powder;

[ ]

20<i><sub>D</sub></i> <i>+11 (c 0.8, MeOH); mp 188–190</i>o<sub>C, UV </sub>


<i>(MeOH) λ</i>max<i> (nm): 203, 267, 351; IR (KBr) ν</i>max (cm-1): 3410, 1659,


<i>1605, 1497, 1566, 1180, 1065; ESIMS: m/z 617.1 [M + Na]</i>+<sub>, 593.1 [M </sub>


- H]-<sub>; Molecular formula C</sub>


27H30O15; M = 594;<b> 1</b>H- and 13C-NMR: see


Table 4.9 and Appendix 8.
<b>3.3.9. Compound AP9: Rutin </b>


Yellow powder; 20


[ ]

<i><sub>D</sub>+4 (c 0.5, MeOH), mp 193–195</i>o<sub>C, UV </sub>


<i>(MeOH) λ</i>max<i> (nm): 204, 257, 357; IR (KBr) ν</i>max (cm-1): 3418, 1651,


<i>1605, 1504 , 1204, 1065; ESIMS: m/z 633.1 [M + Na]</i>+<sub>, 609.1 [M - H]</sub>-<sub>; </sub>


Molecular formula C27H30O16; M = 610;<b> 1</b>H- and 13C-NMR: see Table


4.10 and Appendix 9.


<b>3.3.10. Compound AP10: Anopanin A (New) </b>


White powder; mp: 213–215o<sub>C; </sub> 22


[ ]

<i><sub>D</sub></i> <i>-19.9 (c 0.1, MeOH); IR </i>
(KBr) max (cm-1): 3418, 2932, 1713, 1632, 145, 1383, 1265, 1070,


<i>1030; HRESIMS: m/z 1025.5294 [M + Na]</i>+<sub> (calcd for C</sub>


50H82O20Na,


1025.5297); Molecular formula C50H82O20; 1H- and 13C-NMR: see


Table 4.11, 4.12.


<b>3.3.11. Compound AP11: Anopanin B (New) </b>
White powder; mp: 222–224o<sub>C; </sub> 22


[ ]

<i><sub>D</sub></i> <i>+77.7 (c 0.1, MeOH); IR </i>
(KBr) max (cm-1): 3443, 2930, 1730, 1647, 1460, 1377, 1252, 1074,


<i>1028; HRESIMS: m/z 1027.5452 [M + Na]</i>+<sub> (calcd for</sub><sub>C</sub>


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

1027.5454); Molecular formula C50H84O20; 1H-NMR (600 MHz,


C5D5N) H (ppm): 1.11 (H-1a), 1.43 (H-1b), 1.84 (m, H-2a), 2.27 (m,


<i>H-2b), 3.38 (dd, J = 11.4, 4.2 Hz, H-3), 1.26 (H-5), 0.68 (q, J = 12.6 </i>
Hz, H-6a), 1.51 (H-6b), 1.03 (H-7a), 1.22 (H-7b), 1.52 (H-8), 1.06
(H-11a), 1.98 (H-11b), 1.60 (H-12a), 1.66 (H-12b), 1.48 (H-15a),
<i>2.01 (H-15b), 5.27 (dd, J = 6.0, 6.0 Hz, H-16), 2.15 (s, CH</i>3COO),



<i>2.08 (dd, J = 10.2, 6.6 Hz, H-17), 1.01 (s, H-18), 0.20 (d, J = 4.2 Hz, </i>
<i>H-19a), 0.46 (d, J = 4.2 Hz, H-19b), 1.78 (H-20), 1.02 (d, J = 6.0 Hz, </i>
H-21), 1.74 (H-22), 1.88 (H-23), 3.76 (m, H-24), 1.52 (s, H-26), 1.55
<i>(s, H-27), 1.30 (s, H-28), 1.14 (s, H-29), 1.13 (s, H-30), 4.86 (d, J = </i>
7.2 Hz, H-1), 4.29 (H-2), 4.30 (H-3), 4.26 (H-4<i>), 3.84 (ddd, J = </i>
9.6, 3.6, 3.0 Hz, H-5), 4.49 (H-6a), 4.53 (H-6<i>b), 5.42 (d, J = 7.8, </i>
H-1), 4.10 (H-2), 4.23 (H-3), 4.34 (H-4<i>), 3.94 (ddd, J = 9.6, 3.6, </i>
3.6 Hz, H-5), 4.48 (H-6a), 4.52 (H-6<i>b), 5.16 (d, J = 7.8 Hz, </i>
H-1‴), 4.09 2‴), 4.26 3‴), 4.24 4‴), 4.00 (m, H-5‴), 4.32
(H-6‴a), 4.51 (H-6‴b); 13<sub>C-NMR (150 MHz, C</sub>


5D5<i>N) </i>C (ppm): 32.5


(C-1), 30.3 (C-2), 89.4 (C-3), 41.7 (C-4), 48.2 (C-5), 21.5 (C-6), 26.8
(C-7), 48.0 (C-8), 19.8 (C-9), 26.8 (C-10), 27.1 (C-11), 33.5 (C-12),
47.0 (C-13), 48.0 (C-14), 46.2 (C-15), 80.8 (C-16), 171.2 (CH3COO),


22.0 (CH3COO), 58.1 (C-17), 19.5 (C-18), 30.4 (C-19), 34.7 (C-20),


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>3.3.12. Compound AP12: Anopanin C (New) </b>
White powder; mp: 218–219o<sub>C; </sub> 22


[ ]

<i>D</i> <i>+66.7 (c 0.1, MeOH); IR </i>


(KBr) max (cm-1): 3428, 2932, 1709, 1630, 1456, 1381, 1261, 1072,


<i>1028; HRESIMS: m/z 1025.5293 [M + Na]</i>+<sub> (calcd for C</sub>


50H82O20Na,



1025.5297); Molecular formula C50H82O20; 1H-NMR (600 MHz,


C5D5<i>N) </i>H (ppm): 1.07 (H-1a), 1.42 (H-1b), 1.84 (m, H-2a), 2.27 (m,


<i>H-2b), 3.38 (dd, J = 11.4, 4.2 Hz, H-3), 1.25 (H-5), 0.68 (q, J = 12.6 </i>
Hz, H-6a), 1.51 (H-6b), 1.01 (H-7a), 1.23 (H-7b), 1.52 (H-8), 1.04
(H-11a), 1.92 (H-11b), 1.62 (H-12a), 1.66 (H-12b), 1.48 (H-15a),
<i>2.01 (m, H-15b), 5.33 (dd, J = 7.8, 7.2 Hz, H-16), 2.21 (s, CH</i>3COO),


<i>2.51 (dd, J = 10.8, 6.0 Hz, H-17), 1.03 (s, H-18), 0.20 (d, J = 3.6 Hz, </i>
<i>H-19a), 0.46 (d, J = 3.6 Hz, H-19b), 1.68 (m, H-20), 1.21 (d, J = 6.6 </i>
Hz, H-21), 4.19 (m, H-22), 2.10 (m, H-23a), 2.29 (m, H-23b), 4.28
<i>(H-24), 6.41 (d, J = 4.8 Hz, 24-OH), 1.31 (s, H-26), 1.53 (s, H-27), </i>
<i>1.30 (s, 28), 1.14 (s, 29), 1.06 (s, 30), 4.86 (d, J = 7.8 Hz, </i>
H-1), 4.29 (H-2), 4.30 (H-3), 4.25 (H-4<i>), 3.83 (ddd, J = 9.6, 3.6, 3.0 </i>
Hz, H-5), 4.48 (H-6a), 4.53 (H-6<i>b), 5.42 (d, J = 7.2 Hz, H-1</i>),
4.10 (H-2), 4.23 (H-3), 4.35 (H-4<i>), 3.94 (ddd, J = 9.6, 3.6, 3.6 Hz, </i>
H-5), 4.46 (H-6a), 4.51 (H-6<i>b), 5.16 (d, J = 8.4 Hz, H-1‴), 4.09 </i>
(H-2‴), 4.25 (H-3‴), 4.24 (H-4‴), 4.00 (m, H-5‴), 4.32 (H-6‴a),
4.50 (H-6‴b); 13<sub>C-NMR (150 MHz, C</sub>


5D5<i>N) </i>C (ppm): 32.5 (C-1),


30.3 (C-2), 89.4 (C-3), 41.7 (C-4), 48.2 (C-5), 21.5 (C-6), 26.7 (C-7),
48.0 (C-8), 19.8 (C-9), 26.8 (C-10), 27.1 (C-11), 33.5 (C-12), 47.1
(C-13), 48.0 (C-14), 46.2 (C-15), 80.3 (C-16), 171.0 (CH3COO), 22.1


(CH3COO), 56.2 (C-17), 19.4 (C-18), 30.4 (C-19), 38.3 (C-20), 12.8


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

82.2 (C-2), 77.1 (C-3), 81.6 (C-4), 76.5 (C-5), 62.6 (C-6), 105.9


(C-1), 77.6 (C-2), 78.6 (C-3), 72.2 (C-4), 78.7 (C-5), 63.3
(C-6), 105.4 1‴), 75.3 2‴), 78.3 3‴), 71.9 4‴), 78.9
(C-5‴), 62.7 (C-6‴).


<b>3.3.13. Compound AP13: Sargentol </b>
White powder; 20


[ ]

<i>D</i> <i>–70 (c 0.05, MeOH), mp 271–272</i>


o<sub>C, UV </sub>


<i>(MeOH) λ</i>max<i> (nm): 207, 273; IR (KBr) ν</i>max (cm-1): 3387, 1597, 1504,


<i>1466, 1234, 1072; ESIMS: m/z 325 [M–H–2OCH</i>3]-; Molecular


formula C17H24O10, M = 388; 1H- and 13C-NMR: see Table 4.17 and


Appendix 13.


<b>3.3.14. </b> <b>Compound </b> <b>AP14: </b> <i><b>4-O-β-</b></i><b>D</b>


<b>-Glucopyranosyl-3-prenylbenzoic acid </b>


<i>White powder; UV (MeOH) λ</i>max<i> (nm): 250, 205; IR (KBr) ν</i>max


(cm-1<sub>): 3379, 2916, 1694, 1605, 1504, 1250, 1084, 1042; HRESIMS: </sub>


<i>m/z 391.1398 [M + Na]</i>+<sub> (calcd for</sub> <sub>C</sub>


18H24O8Na, 391.1369);



Molecular formula C18H24O8, M = 368;<b> 1</b>H- and 13C-NMR: see Table


4.18 and Appendix 14.


<b>3.3.15. Compound AP15: Inugalactolipid A </b>


<i>White powder; HRESIMS: m/z 937.5842 [M + Na]</i>+<sub> (calcd for </sub>


C49H86O15Na, 937.5864); Molecular formula C49H86O15; M = 914;<b> 1</b>H-


and 13<sub>C-NMR: see Table 4.19 and Appendix 15. </sub>
<b>3.3.16. Compound AP16: Gingerglycolipid A </b>


White powder; [ ]

22<i><sub>D</sub></i> <i>+35.7 (c 0.1, MeOH); HRESIMS: m/z </i>
763.3423 [M+Na+4xO]+<sub> (calcd for</sub> <sub>C</sub>


33H56O18Na, 763.3364);


Molecular formula C33H56O14; M = 676; 1H- and 13C-NMR: see Table


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>3.3.17. Compound AP17: Gingerglycolipid B </b>
White powder; 22


[ ]

<i><sub>D</sub></i> <i>+57.0 (c 0.1, MeOH); HRESIMS: m/z </i>
701.3721 [M+Na]+<sub> (calcd for</sub> <sub>C</sub>


33H58NaO14, 701.3724); Molecular


formula C33H58O14; M = 678; 1H- and 13C-NMR: see Table 4.21 and



Appendix 17.


<b>3.3.18. Compound AP18: Gingerglycolipid C </b>


White powder; [ ]

22<i><sub>D</sub></i> <i>+29.4 (c 0.1, MeOH); HRESIMS: m/z </i>
703.3878 [M+Na]+<sub> (calcd for</sub> <sub>C</sub>


33H60NaO14, 703.3881); Molecular


formula C33H60O14; M = 680;<b> 1</b>H- and 13C-NMR: see Table 4.22 and


Appendix 18.


<b>3.3.19. </b> <b>Compound </b> <b>AP19: </b> <i><b>(2S)-1-O-Palmitoyl-3-O-[</b></i><b>-</b>


<i><b>D-galactopyranosyl-(1→6)-O-β-</b></i><b>D-galactopyranosyl]glycerol </b>


White powder; [ ]

22<i><sub>D</sub></i> <i>+51.6 (c 0.1, MeOH); HRESIMS: m/z </i>
677.3746 [M+Na]+<sub> (calcd for</sub> <sub>C</sub>


31H58O14Na, 677.3724); Molecular


formula C31H58O14; M = 654; 1H- and 13C-NMR: see Table 4.23 and


Appendix 19.


<b>3.3.20. </b> <b>Compound </b> <b>AP20: </b> <i><b>(2R)-1-O-Palmitoyl-3-O-α-</b></i><b>D-</b>


<b>(6-sulfoquinovopyranosyl)glycerol </b>



<i>White powder; IR (KBr) ν</i>max (cm-1): 3418, 2932, 2367, 1713, 1383,


<i>1265, 1070; HRESIMS: m/z 579.2797 [M+Na]</i>+<sub> (calcd for </sub>


C25H48O11SNa, 579.2815); Molecular formula C25H48O11; M = 556;
1<sub>H- and </sub>13<sub>C-NMR: see Table 4.24 and Appendix 20. </sub>


<b>3.4. Cytotoxicity of isolated compounds </b>


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<i>Table 3.1. Cytotoxicity ofisolated compounds against human </i>
<i>cancer cell lines </i>


<b>Chapter 4: RESULTS AND DISCUSSTION </b>
<b>4.1. The structure elucidation of isolated compounds </b>


Twenty compounds were isolated from <i>Anodendron </i>
<i>paniculatum by using a combination of chromatographic methods </i>
Among these, there are 4 new compounds, 14 compounds which
<i>were isolated from Anodendron genus for the first time. All isolated </i>
compounds are shown in Table 4.25. The structural elucidation of a
<b>new compound (AP10) was described as follow: </b>


<b>Compound AP10 was obtained as a white amorphous powder. </b>
<i><b>The HRESIMS of AP10 showed a quasimolecular ion peak at m/z </b></i>
1025.5294 [M+Na]+<sub>. Its molecular formula was thus determined to be </sub>


C50H82O20 by HRESIMS in conjunction with NMR data analysis. The


<b>IR spectrum of AP10 revealed strong absorption bands corresponding </b>


to an ester (1713 cm-1<sub>), double bond (1632 cm</sub>-1<sub>), ethers (1010, 1070 </sub>


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

The 1<i><b><sub>H NMR spectrum of AP10 in pyridine-d</sub></b></i>


<i>5</i> showed typical


signals of seven tertiary methyl groups (each, 3H, s) at δH 1.13


(H-29), 1.25 (H-30), 1.30 (H-28), 1.57 (H-18), 1.66 (H-27), 1.67 (H-26),
and 1.69 (H-21); one acetoxy group at δH 2.06 (3H, s), and three


anomeric protons at δH<i> 4.86 (1H, d, J = 7.2 Hz), 5.16 (1H, d, J = 7.8 </i>


<i>Hz), and 5.41 (1H, d, J = 7.8 Hz), suggesting the presence of three </i>
sugar units with β-configuration. In addition, two protons of a
cyclopropyl methylene group at δH<i> 0.22 and 0.49 (each, 1H, d, J = </i>


4.2 Hz, H-19) were observed.


Analysis of the 13<b><sub>C NMR, DEPT and HMQC spectra of AP10 </sub></b>


revealed 50 signals, of which 30 were assigned to an aglycone, 18 to
three sugar moieties, and 2 belonged to acetoxy group (δC 171.2 and


<i><b>22.0). The aglycone of AP10 was deduced to be a cycloartane-type </b></i>
triterpene with two olefinic carbons of tri-substituted double bond (δC


125.1 and 132.5), three oxygenated methine carbons (δC 77.2, 79.0,


and 89.4), an oxygenated quaternary carbon (δC 76.7), and seven



quaternary methyl carbons (15.8, 18.6, 20.7, 21.2, 21.7, 26.2, and
<b>26.4). All proton and carbon signals of AP10 were assigned by </b>
analyses of 2D-NMR, including HMQC, HMBC, and 1<sub>H-</sub>1<sub>H COSY. </sub>


The HMBC correlations of H3-28 (δH 1.30) and H3-29 (δH 1.13) to


C-3 (δC 89.4), C-4 (δC 41.7), and C-5 (δC 48.1) indicated the locations of


<i>the oxygenated carbon and gem-dimethyl groups at C-3 and C-4 in </i>
the A ring, respectively. Similarly, the HMBC correlations between
H3-21 (δH 1.69) and C-17 (δC 56.5)/C-20 (δC 76.7)/C-22 (δC 79.0),


between H3-26 (δH 1.67)/H3-27 (δH 1.66) and C-24 (δC 125.1)/C-25


(δC 132.5) confirmed the position of two hydroxyl groups at C-20 and


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

addition, the acetoxy group at C-16 (δC 77.2) was assigned from the


HMBC correlation between H-16 (δH 6.20) and carboxyl carbon at δC


171.2. Thus, the aglycone was considered to be
3,16,20,22-tetraoxygenated cycloart-24-ene.


The monosaccharide composition of sugar moiety was
determined to be D<b>-glucose by acid hydrolysis of AP10 followed by </b>
reduction, per-acetylated derivatization and GCMS analysis (see
2.2.2 Section). The obtained results indicated that the single peak at
26.65 min coincide with derivative of standard D-glucose
<i>(Sigma-Aldrich) with tR</i> value at 26.65 min. Furthermore, the 13C NMR



<b>signals of the sugar moiety in AP10 (Table 4.12) were closely similar </b>
to those of shatavarin IX. These evidences indicated the sequence of
the sugar linkages as [β-D-glucopyranosyl(1→2)][β-D
-glucopyranosyl(1→4)]-β-D-glucopyranosyl which was supported by
the HMBC correlations from H-1 (δH 5.41) to C-2 (δC 82.2), from


H-1′′′ (δH 5.16) to C-4 (δC 81.6) (Figure 4.33). The attachment of


<i>sugar moiety at C-3 of the aglycone via glycosidic bond was deduced </i>
from the HMBC correlations of H-1′ (δH 4.86) to C-3 (δC 89.4), and


H-3 (δH 3.38) to C-1′ (δC<b> 105.1). </b>


<b>The stereochemistry of aglycone moiety of AP10 was </b>
determined on the basis of the ROESY experiment. The ROESY
correlation between H-3 (δH 3.38) and H-1 (δH 1.43)/H-5 (δH


1.26)/H3-28, between H-2β (δH 1.84) and H3-29 suggested the 


-orientation for H-3, H-5 and H3-28 as well as the chair conformation


<i>for A ring (Figure 4.34). In addition, the J values of 11.4 and 4.2 Hz </i>
between H-3 and H-2 (δH 1.84, 2.27) is typical for 3-axial H of


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

between H-16 and H3-18/H-22 (δH 3.92), between H-17 (δH 3.19) and


H-30, and the lack of correlation between H-16 and H3-30 (δH 1.25)


revealed the <i>-orientations of 16-OAc and H-17. The 20R </i>


configuration was determined by the ROESY correlations of H3-21 to


H-12 (δH 1.91)/H-17, of 20-OH (δH 5.61) to H-16/H3-18 and the


lack of cross-peaks of H3-21/H3-18, 20-OH/H-17. This was


strengthened by the agreement of chemical shift of C-21 (δC 21.7)


<i>with those of 20R,22ξ isomers [δ</i>C<i>: 21.1 (20R,22R), 21.9 (20R,22S)], </i>


<i>but quite different from those of 20S,22ξ isomers of </i>
cholestane-3β,20,22-triol [δC<i>: 23.8 (20S,22S), 24.2 (20S,22R)]. The absolute </i>


configuration of C-22 chiral center was deduced by comparing δC


<b>values of C-20 and C-22 of AP10 with those (in C</b>5D5<i>N) of 20R,22R </i>


<i>and 20R,22S forms. In </i>13<i><sub>C NMR spectrum of 20R,22R form such as </sub></i>


<i>cholestane-3β,20R,22R-triol, vitexirone, frondoside A</i>7-3, frondoside


A7-4, and stachysterone C, the carbons C-20 and C-22 resonated at


the close values of chemical shifts (C values less than 0.4 ppm). In


<i>contrast, these values differed about 2 ppm in 20R,22S form. The </i>
signals of C-20, C-22 in 13<b><sub>C NMR spectrum of AP10 were found at </sub></b>


<i>76.7 and 79.0 ppm, respectively. Therefore, the 20R,22S </i>
<b>configuration was suggested for AP10. This suggestion was further </b>


confirmed by the ROESY correlations of 22-OH (δH 5.64) to H3


-21/H-23 (δH 2.58), of H-22 to H-16, and the lack of correlations


between 22-OH and H-16/20-OH/H-23β (δH 2.93). Consequently, the


<b>chemical structure of AP10 was elucidated to be (3β,16</b><i></i>
,20R,22S)-16-acetoxy-20,22-dihydroxycycloart-24-ene <i>3-O-[β-</i>D
-glucopyranosyl-(1→2)][β-D-glucopyranosyl-(1→4)]-β-D


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<i>Figure 0.32. Chemical structure of AP10 </i>


<i>Figure 0.33. Key HMBC and COSY correlations of AP10 </i>


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

<i>Table 4.11. NMR data for aglycone moiety of AP10 </i>


<b>C </b> <i><b>δ</b></i><b>Ca, b</b> <b>DEPT </b> <i><b>δ</b></i><b>Ha, c</b><i><b> (J, Hz) </b></i> <i><b>HMBC (H→C) </b></i>


1 32.5 CH2 1.10 m; 1.43 m 2, 5


2 30.3 CH2 1.84 m; 2.27 m


3 89.4 CH 3.38 dd (11.4; 4.2)


4 41.7 C –


5 48.1 CH 1.26*


6 21.5 CH2 0.68 q (12.6); 1.51* 5, 10



7 26.9 CH2 1.07*; 1.23*


8 47.9 CH 1.52*


9 19.6 C


10 26.8 C –


11 27.5 CH2 1.12*; 2.06*


12 34.2 CH2 1.91*; 1.92* 11, 13, 14, 18


13 48.2 C –


14 48.2 C –


15 46.2 CH2 1.62 br.d (13.8)


2.17 dd (14.4; 8.4)


13, 14, 16, 30


16 77.2 CH 6.20 dd (7.8; 7.2) 13, 14, CH3COO-


16-OAc 171.2 C –


22.0 CH3 2.06 s CH3COO-


17 56.5 CH 3.19 d (6.6) 13, 14, 16



18 21.2 CH3 1.57 s 12, 13, 14, 17


19 30.7 CH2 0.22 d (4.2)


0.49 d (4.2)


1, 11
10, 11


20 76.7 C –


20-OH – – 5.61 s 17, 20


21 21.7 CH3 1.69 s 17, 20, 22


22 79.0# <sub>CH </sub> <sub>3.92</sub>* <sub>17, 23, 24 </sub>


22-OH – – 5.64*


23 31.0 CH2 2.58 m; 2.93 m


24 125.1 CH 5.65* <sub>26, 27 </sub>


25 132.5 C –


26 26.4 CH3 1.67 s 24, 25, 27


27 18.6 CH3 1.66 s 24, 25, 26


28 26.2 CH3 1.30 s 3, 4, 29



29 15.8 CH3 1.13 s 3, 4, 5, 28


30 20.7 CH3 1.25 s 8, 13, 14, 15


<i>a<sub>measured in C</sub></i>


<i>5D5N, b150 MHz, c600 MHz, *overlapping signals; #signal missing on 13C-NMR </i>


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<b>C </b> <i><b>δ</b></i><b>Ca,b</b> <b>DEPT </b> <i><b>δ</b></i><b>Ha,c</b><i><b> (J, Hz) </b></i> <b>HMBC (H</b><b>C) </b>


<b>3-Glc </b>


1′ 105.1 CH 4.86 d (7.2) 3


2′ 82.2 CH 4.29*


3′ 77.1 CH 4.30*


4′ 81.6 CH 4.25*


5′ 76.5 CH 3.83 m


6′ 62.6 CH2 4.49*; 4.53*
<b>2</b><b>-Glc </b>


1′′ 106.0 CH 5.41 d (7.8) 2, 2′′
2′′ 77.6 CH 4.10*


3′′ 78.6 CH 4.23*



4′′ 72.4 CH 4.32*


5′′ 78.7 CH 3.93*


6′′ 63.3 CH2 4.48*; 4.52*
<b>4</b><b>-Glc </b>


1′′′ 105.4 CH 5.16 d (7.8) 4
2′′′ 75.3 CH 4.09*


3′′′ 78.4 CH 4.25*


4′′′ 71.9 CH 4.24*


5′′′ 78.9 CH 4.00 m
6′′′ 62.7 CH2 4.31*; 4.54*


<i>a<sub>measured in C</sub></i>


<i>5D5N, b150 MHz, c600 MHz, glc: </i><i>-D-glucopyranosyl, *overlapping signals </i>


<i><b>4.2. The in vitro cytotoxicity of isolated compounds against </b></i>
<b>human cancer cell lines </b>


The cytotoxicity of seventeen isolates against various cancer
cell lines (LU-1, MKN-7, Hep-G2, KB, SW-480, HL-60, LNCaP,
MCF-7) was evaluated. The results are shown in Table 3.1.
Desmosterol (AP4) exhibited moderate cytotoxicity against five cell
lines including LU-1, MKN-7, HepG2, KB, SW-480 with IC50 values



</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

IC50<i> values of 44.37±5.40, 30.89±3.60 µg/mL, respectively. </i>


<i>(2R)-1-O-palmitoyl-3-O-α-</i>D-(6-sulfoquinovopyranosyl)glycerol (AP20)


exhibited low cytotoxicity against LU-1, MKN-7 cell line with IC50


values of 66.66±5.85, 72.42±8.05 µg/mL, respectively. The
remaining compounds did not show significant growth inhibitory
activities (IC50>100 mg/mL) against the tested cancer cell lines.


<b>CONCLUSION </b>


After the implementation process, the dissertation has achieved
two objects:


<b>1. Chemical constituents </b>


<i> From the aerial parts of Anodendron paniculatum, 20 </i>
<b>compounds were isolated, including 4 new compounds, 14 </b>
<i><b>compounds which were isolated from Anodendron genus for the </b></i>
<b>first time. </b>


 Four new compounds include anopaniester, and anopanin A-C.
<i> Fourteen compounds which were isolated from Anodendron </i>
<i>genus for the first time include (E)-phytol, cycloartenol, desmosterol, </i>
<i>esculenic acid, kaempferol-3-O-rutinoside, rutin, sargentol, </i>
<i>3-prenyl-4-O-β-</i>D-glucopyranosyloxy-4-hydroxylbenzoic acid, inugalactolipid
A, <i>gingerglycolipid A, gingerglycolipid B, </i>
(2S)-1-O-palmitoyl-3-O-[-D<i>-galactopyranosyl-(1→6)-O-β-</i>D-galactopyranosyl]glycerol,


gingerglycolipid C, and <i>(2R)-1-O-palmitoyl-3-O-α-</i>D


-(6-sulfoquinovopyranosyl)glycerol.


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

<b>2. Biological evaluation </b>


<i> 17/20 isolated compounds were evaluated for in vitro </i>
<b>cytotoxicity against the growth of human cancer cell lines (LU-1, </b>
MKN-7, HepG2, KB, SW-480, HL-60, LNCaP, MCF-7).


 Desmosterol exhibited moderate cytotoxicity against five cell
lines including LU-1, MKN-7, HepG2, KB, SW-480 with IC50 values


ranging from 28.11±1.95 to 41.41±2.31 µg/mL.


 Ursolic acid exhibited moderate cytotoxicity against LU-1,
MKN-7 cell line with IC50 values of 44.37±5.40.30.89±3.60 µg/mL,


respectively.


 <i>(2R)-1-O-palmitoyl-3-O-α-</i>D-(6-sulfoquinovopyranosyl)glycerol


exhibited low cytotoxicity against LU-1, MKN-7 cell line with IC50


values of 66.66±5.85, 72.42±8.05 µg/mL, respectively.


<b>RECOMMENDATIONS </b>


Based on the results of chemical composition and biological
<i>activity of Anodendron paniculatum in Viet Nam, we have following </i>


recommendations:


- Continue to search for cytotoxic compounds from other fractions
of this plant.


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

<b>PUBLICATIONS </b>


<b>1. Duc Viet Ho, Hanh Nhu Thi Hoang, Hung Quoc Vo, Hien Minh </b>
Nguyen, AinRaal, Hoai Thi Nguyen (2018), A new triterpene ester
<i>and other chemical constituents from the aerial parts of Anodendron </i>
<i>paniculatum and their cytotoxic activity, Journal of Asian Natural </i>
<i>Products Research, 20 (2), 188-194. </i>


<b>2. Viet Duc Ho, Thi Nhu Hanh Hoang, Quoc Hung Vo, Van Kiem </b>
Phan, Tuan Anh Le, Viet Ty Pham, Minh Hien Nguyen, Takeshi
Kodama, Takuya Ito, Hiroyuki Morita, Ain Raal, Thi Hoai Nguyen
(2017), Cycloartane-type triterpene glycosides anopanins A–C with
<i>monoacyldigalactosylglycerols from Anodendron paniculatum, </i>
<i>Phytochemistry, 144, 113-118. </i>


<b>3. Hoang Thi Nhu Hanh, Ho Viet Duc, Tran Thi Thuy Linh, Vo </b>
Quoc Hung, Nguyen Thi Hoai <i>(2016), </i> Flavonoid and
<i>phenylpropanoid glycoside compounds isolated from Anodendron </i>
<i>paniculatum (Roxb.) A.DC., Vietnam Journal of Medicinal </i>
<i>Materials, 21 (5), 304-309. </i>


<b>4. Hoang Thi Nhu Hanh, Vu Duc Canh, Ho Viet Duc, Nguyen Thi </b>
Hoai (2017), Triterpene and sterol compounds isolated from
<i>Anodendron paniculatum (Roxb.) A.DC., Hue University Journal of </i>
<i>Science: Natural Science, 126 (1B), 155-163. </i>



</div>

<!--links-->

×