<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
sd
co
vA
or
<sub>euANc </sub>
tnr
TRUoNG THPT
cnuvf,N
r,0
<sub>euf </sub>
oON
Cffu
1.
TiQm
c{n
ngang cria d6
thi
h}rm s6
y
-
'#
h
dudng
thing
A.y
<sub>= </sub>
-2.
B.y
=?.
C.y
<sub>= </sub>
<sub>-1 </sub>
.
Cda}.
Cho hi,rn s6
y =
<sub>f </sub>
(x)
c6
bing
bi6n thi6n nhrt sau.
I r- L
uE
rm
ts0
tOt
NGHTEP
THPT
NA.M 2o2o
MON TOAN
Thdt gian ldm bdi 90 phtit, kh1ng kd thdi gtan giao
di
(EA thi sdm cd 6
tang)
Ma
da
thi
137
D.Y=3'
x
<sub>-oo</sub>
_J <sub>2</sub>
*oo
v'
0+0
v
too
3
2
<sub>-oo</sub>
H6i
hem s6 Ca cho d6ng bi6n tr6n
khoing nio
drr6i d6y?
A.
(-m;
-3).
B.
(-3;2).
C. (2;
+oo).
D.(2;3).
Ciu3.
N6uZ:Z-3ithiz=
A.2
<sub>- 3i. </sub>
8.2
+
3i.
C.
<sub>-2 </sub>
+
3i.
D.
<sub>-2 </sub>
<sub>- </sub>
3i.
CAu
4.
Ydi
ah
s6 thuc drrong
<sub>W </sub>
j,,logf
a bHng
v6i
1
A.)Logra.
B.2logra.
C.
tlllogra.
D.logra.
Ciu
5.
MOt
kh6i
l[ng
trU c6 diQn tfch tl6y
bing
3
vi
c5
thdtfch
bhng 6
thi
c6 chidu cao bBng
A.6.
.
B.
3.
C.2.
D.4.
Cffu
6.
Gi6 srl
F(x)
ln mQt nguy6n hd,rn cria
him
s6
<sub>/(x) </sub>
vi
G(x)
lir mQt nguy€n
him
cria
him
s6
S(x).
H6i
khing
dinh
nio
du6i
t16y sai?
A.kF(x)
li
mQt nguy6n hd,rn cfia
kf(x)
(v6i
k ld m6t
hing
s6 thgc).
B.
F(x)G(x)
li
mQt nguy6n
him cta f(x)s@).
C.
F(x)
+
G(x)
li
mQt nguy6n hhm crha
f(x)
+
g(x).
D.
F(x)
<sub>- </sub>
G(x)
li
mQt nguy6n hhm
cta
<sub>f(x) </sub>
<sub>- </sub>
<sub>S@),</sub>
Ciu
7.
Trong
khdng
gian
Oxyz, cho
dtldn
g
thhng
d
:
x=I-t
y =
2
+
3t
(t
e
R). M6t
vec-to
chi
1-J-t
phuong crta
dlit
</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>
Ciu
9.
Nghi6m cria phrrong
trinh
2'-s
<sub>= </sub>
4ld
A.x=9.
B.x=].
C.x=5.
D..r=-l.
CAu
10.
C6ng thrlc nho
du6i
ddy
dtng
dd
tinh
thd tich V
cfia
kh6i
ch5p
v6i
di6n
tich
driy B vh
chi6u
cao h?
;.y
<sub>- </sub>
\an.
1
B.V
<sub>= </sub>
<sub></sub>
-Bh-2
1
g.y
<sub>= </sub>
UBh.
22
rr
Cffu
8. NCu
<sub>I </sub>
<sub>ftidx </sub>
<sub>= </sub>
3
thi
<sub>I </sub>
<sub>Ufrl </sub>
<sub>- </sub>
x)
dx
=
J"' '
J
"'
00
A.
-1.
8.2.
C. s.
Cffu
11.
Tdp xric dfnh ctia hdm s6
y =
log(x
-
1)
li
A.
(1;
+oo).
B.
(0;
+m).
C. [1;
+m).
Ciu
12.D6
thi
hnm s6
nio
drr6i ddy c6 d4ng nhrr <tudng cong
ffong
hinh bOn?
A.y
<sub>= -x4 </sub>
+2*
<sub>- l. </sub>
B.y
<sub>= </sub>
# +2*.
C.)l =
xa
-2*.
D.y
<sub>= -xa </sub>
+2*.
3
D.V
=
Bh.
D.
(-1;+m).
v
o
x
Cdu
13.
Trong
kh6ng
gian
Oxyz,hinh
chi6u vu6ng g6c cfia didm
A(-1;2;1)
tr6n
truc Oy
c6toa
d6le
A.
(0;0;
1).
B.
(0;2;0).
C.
(-1;0;
1).
D.
(-1;2;0).
Cflu 14.
Tiong
kh6ng
gian
Oxyz,khoang
c6ch
tr)
didm
MQ;2;l)
ddnmdt
phing (P)
:
x
<sub>- </sub>
3y +
z-L=0bing
4\E
<sub>B. </sub>
rE.
<sub>c. </sub>
s
VrT.
D.
fr
.
A'
<sub>3 </sub>
<sub>' </sub>
<sub>u </sub>
<sub>t' tt ' </sub>
3
Cfru15.
GoiDlihinhphinggidihanb6ic6cdrrdng
y
<sub>= </sub>
<sub>fi,y </sub>
<sub>= </sub>
0,
x=
|
vix
<sub>= </sub>
3.
Khiquay
D
quanh truc
holnh,
ta thu drtoc
kh6i
trbn xoay
v6i thd
tichV
drroc
tinh b6i
c6ng
thtlc
3
A.V
=
r
3
r
C.V=nlxd,x.
J
I
D.V
=
<sub>^lid*.</sub>
3
dx.
B.V
-r
tlid*.
I
CAu
16.
Cho hai s6 phrlc
Zt
=
2-
i
vi
Zz
=
1 +
2i.l{hid6,
phAn 6o
cta
s6
phrlc
zrzzbdng
a.-2.
8.3'.
c.3
D.-2i.
CAu
17.
Cho c6c s6
thgc
a
vd,
b
th6a
min
tog, (S'.
,l-Sb)
=
logr6
5.
Khing
dinh
nio
du6i
ddy
dfng?
A.2a+4b=4. B.a+4b=4.
C.2a+b=4.
D.2a+b=7.
Ciu
18. Tiongkh6ng gianOxyz,mltcAu (S)
:x2
+y2
+22
<sub>-8*+ </sub>
10y
<sub>-62+25 </sub>
<sub>= </sub>
0
cSb6nkinh
bing
A.5.
8.25.
C.
\m.
D.75.
CAu
19.
C6 bao nhi€u c6ch chia 5 g6i
qui
gi6ng nhau cho 3 drla tr6, sao cho ai cfrng c6 qud?
A.20.
B.
10.
C.
15.
D.6.
</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>
CAu
20.
MQt c6p s6 cQng c6 hai s6 h4ng dAu ti6n
tin
tuE
li
1 vh 4,
h6i
s6 tr4ng
thf
5
bing
bao
nhiOu?
A.
16.
8.7.
c.
10.
D.
13.
CAu21.
GqiMlhgi6tril6nnh6tcriahi,,rns6
f
(x)-+.*-2x-1
tr0ntloan[0;2].Tinhgi6
tri
cria bidu
thfc
P
<sub>= 6M + </sub>
2020.
A.P
<sub>= </sub>
2018.
B. P
<sub>= </sub>
2007.
C.P
<sub>= </sub>
20t9.
D'P
=
2014'
Cia22.
Tap nghiQm cfia bAt phuong
trinh
lnx
<
1
lh
A.
(1;
e).
B.
(-oo;
1).
C.
(-oo;
e).
D. (0; e).
Ciu
23.
N6u mQt hinh n6n c6 chi6u cao
vi
br{n
kinh
d6y
ctng
blng
2
thi
c6 diQn tich xung quanh
bing
A.al|fur.
8.8fin.
C.4t.
D.8zr.
Cia24.X6t
tich
,n*
/ffi
dx.
Bing
c6ch
tldi
bi6n s6
r
=
lnx,
tich
phAn dang
x6t trd
1
thinh
e e I
v
tli
at.
B.
[,
u,
C.
fi
dt.
r0l
Ciu
25.
Cho hirm s6 bac b6n
trtng
phuong
y
<sub>= </sub>
<sub>f </sub>
(x)
c6
d6
thi
nhrl trong
hinh
v6 b6n. 56 nghiQm cria phuong
trinh
?
f
(x)
<sub>= </sub>
Alit
D.
tli
u.
0
1
-1
0
1
x
4.4.
c.2.
8.3
D.1
I
Cia26.
Trong
kh6ng
gian Oxyz, cho hai ttidm A(1
<sub>;2;-3) vi </sub>
B(-3;
2;9).M4+tphfing
trung
truc
cta
doan
thing AB
c6 phudng
trinh
li
A.x-3y+
10
<sub>= </sub>
0.
B.x+32+
10
<sub>= </sub>
0.
C.-4x
+
l2z,-
10
<sub>= </sub>
0.
D. x
<sub>- </sub>
3z
+
10
<sub>= </sub>
0.
Cin
27. Tidng
m6-dun
cdcnghiQm phrlc cfia phtrdng
tfinh
*
<sub>- </sub>
6z
+25
<sub>= </sub>
0 bhng
A.t4.
B.
10.
c.8.
D.6.
Cdu
28.
Cho hhm s6
<sub>/(x) </sub>
c5
bing
x6t d6u
cia
<sub>f'(x) </sub>
nhrl sau.
x
<sub>-oo</sub>
<sub>-2</sub>
0 2 +oo
f'(x)
+0
0
0+
s6
aidm cr/c
tri
ctia hhm s6 da cho
li
A.3.
8.0.
C.2.
D.1.
Cdu29. Di0n tfch
ctia
m[t
cAu
ngo4i
ti6p hinh
hQp
chu
nhflt c5
c6c
kich
thrrdc
li
1,
2
vi
3
bhng
A.49r.
B.6tr.
C.28r.
D.14tr.
I
</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>
Ciu
30.
Trong
khong
gian
Oxyz,cho
hai didm
A(0;2;
1) vir
B(2;-2;-3).
Phrrong
trinh
mlt ciu
drrdng kfnh
AB lir
A.*
+(y-D2
+k-
l)2
<sub>=3. </sub>
B.(x+
l)2
+y'+(z-l)2
=6.
C.(x-
2)2
+(y+2)z
+(z+312
=36.
D.(x-
l)2 +y2
+(z+
7)2
=9.
Ciu
31.
Cho
hai
s6
phfc
phan
biQt
71vd zz.
H6i
trong
mit
phing
phtlc,
t0p hQp c6c didm bidu
di6n cria s6 phtlc z lh m6t drrdng
thing
n6u di0u kiOn nho drr6i dAy drroc th6a man?
A.l.-
zzl=1.
B.
l.-
zl+lz-zzl=la-zzl'
C.lr-zl=L
D.lz-zl=lz-zzl'
CAu
32.
Tdp nghi6m cira bAt phrrong
trinh
1og] x
-
2logrx
-
3
>
0lir
/
t\
A.(-*;
<sub>-1) </sub>
u
(3;+m;.
n.
lo;
ZJ
u
ts;
**l'
1
,
-oo
C.
(-1;3)
D
U (8; +oo).
8.3
c.2.
D.6
Ciu
34.
Cho
kh6i
ldp phuong
t
vi
goi B le
kh6i
brit di6n dOu c6 c6c
dinh
li
tdm
cic
mtrtcr0,a L.
Ti
s6 thd
tich
cfra B
vi
L
lir
cflu
33.
56 giao didm ctra o6 trri hhm s6
y =
xzlxz
-
3l vd drlong
thing
<sub>! </sub>
=
2ld'
1
;
<sub>J</sub>
1
A.
B.
2
6
ciu
35.
cho
hdm
s6 bac
4
trtng
phtlong
y
<sub>= </sub>
f
(x)
c6 0o
ttri
nhrt trong
hinh
v6 b6n.
H6i
A6 tn1
him
s6
y =
lf
(x)l
c6
t6t ch bao nhi6u
didm
crrc
tri?
A.2.
B.
3.
c.4.
D.5.
CAu
36.
Tinh tdng
titc|c6c
nghiCm cria phuong
trinh
1
4
1
D.
C
v
o x
x
+
1
<sub>= 2logr(2* </sub>
+
3)
-
logz(zozo
-
2'--)
.
A.2020.
B.log,
13.
C.log,
2020'
D'
13'
Cfru
37.
MQt
hinh
n6n
vi
m6t
hinh tru
c6
cing
chi0u
cao h vh brin
kinh
d6y
r,
hdn nrla di6n tich
xung quanh cfra chring cfrng bhng nhau.
Khi
d6,
ti .6
I
UXng
r
\El
A.
<sub>+. </sub>
B.;.
c.2.
D.
16.
cffu 38.
Trong
kh6ng
gian
oxyz,cho
drrdng
thing
,
,
<sub>+ </sub>
='7
='!]
tamdt
ph8ng
(P)
:
2x + y + z
-
I
<sub>= </sub>
0.
Ggi
A lir drrdng thEng
nim
trong
(P),
cittvh vu6ng g6c
v6i d'
Vec-td nho drr6i
ddy 1I m6t vec-td chi <sub>Phrrong </sub>
ctraA?
A.iz=
(1;-2;0).
B.iq=lr,-;,-:)
c.ir=
(-1;
-2;o).
D'iz
-(''
-.,'
-7\
</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>
CAu 39. Cho hixh cirop
diu
S.LBCD co *qr:l: b&u tr*rrg cp:h driy, Hoi
g*c
gi*a kmi <sub>*rgt phfuig {S,{.e)</sub>
vn
(SAD)
gAn nhAt
vdi
k6t
qui
ndo
du6i
dAy?
4.70'32',.
8.109"29,.
c.
gg"3l,.
D.61"29,.
CAu
40.
TrOn
mIt phing
toa d6, cho duong cong
(C)
|
y =
x4
-
4x2 +
2 vi,hai
tlidm
e(-
<sub>fi.;O),</sub>
n
<sub>(fi;O). </sub>
CO
tit
cibao
nhi6u didm tr6n (C) mn tdng
khoing
c6ch tr) didm 116 d6n crlc didm
A
vi
B
bing
216?
A.3.
B.
6.
C.7.
CAU 41.
Til
diQn
ABCD
c6 cdc carth
AB,AC
vir
AD
d6i
mdt
vu6ng g6c vh c6 dQ dei
hn
luot
1)r
2,2vi,3.
Gqi
M
li
trung
didm cria
DC.Tinhkhoing
c6ch gifia hai dudng thhng
AM
vir BC.
L.
@
.
B.
3'122 .
6
a
<sub>v' z'</sub>
11
,.2fi
D
D.1
M
C
B
Cdru 42. SAn
vudn
nhi
6ng
An
c6
dang
hinh
chfr
nhat,
vdi
chidu ddi vd chidu
r6ng
lAn
luot
li
8 m6t
vh 6 m6t. Trdn d6, 6ng
dio
m6t c6i ao
nu6i
cri hinh
brin nguy6t c6 bi{n
kinh
bXng
2
mdt
(tfc
li
ldng
ao
c6
dang
m6t
nta
cria
kh6i
trU
cit
bdi
mdt
phing
qua trqc, tham kh6o th6m d
hinh
vE b6n).
PhAn d6t
dio
l€n,
6ng san
bing
tr6n phAn
vudn
cdn
lei,
vi
lim
cho
m{t
n6n ctia
vudn
dudc
ndng l6n 0,1 m6t.
H6i
sau
khi hoin
thhnh, ao cd c6 dQ sdu bhng bao nhi6u?
<sub>ff6t </sub>
qui
tfnh theo
don
vi
mdt,
li.m trdn
d6n
hing
phAn trdm.)
A.0,71
m6t.
B.
0,81
m6t.
C.0,66
m6t.
D.0,76
m6t.
Cffu
43.
C6 3 hQp dung
bi,
h6p thrl nh6t drrng 10
bi
xanh, hQp thrl hai dung 5
bi
xanh vh 5
bi
d6,
h6p
thf
ba
tlung
10
bi
d6.
Ngrrdi
ta chon ngdu nhi6n m6t h6p, sau d6 b6c ngdu nhi6n 2 vi6n
bi
tr) hOp d6
thi
dugc
ci
2
bi miu
xanh.
H6i
n6u ti6p tuc b6c rh6m 1 vi6n
bi
nfra 6 hqp d6 (hai
bi
da
b6c tnr6c d6 kh6ng tlugc trql^ai
vio
h6p)
thi
x6c su6t b6c dugc
bi
xanh
bing
bao nhi€u?
A.-
n.2.
c.
11.
i
"-
<sub>72' </sub>
<sub>44. </sub>
<sub>t6 </sub>
D';'
Cia44.
Tim
t6t
cit
cdc
gi5
tri
thgc cfia tham
s6
m
dd,hims6
y
- #=
d6ng
bi6n
tr6n
khoang
<sub>(o,i)</sub>
A.m
e
(0;
+m).
B.
m
e
(2;
+*).
<sub>C.m </sub>
e
(-*;01.
D.m
e
<sub>lL;2).</sub>
C6u
45.
Cho hi,rn s6
<sub>/(x) </sub>
thr6a mdn
<sub>.f(0) = </sub>
O,
<sub>f </sub>
(2)
-
2 vh,lf'@)l
<
2,
Yx
e
R.
Bi6t
ring
t6p t6t
Ir
(x)dx lhkhoing
(a;b),tftlhb
<sub>- </sub>
a.
ci
cdc gi6
tri
cria
tich
phin
4.4.
B.
0
</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>
CAu
46.
Cho hinh ch6p ddu S .ABC
c6
tAS
B
<sub>= </sub>
30o.
M6t
mIt phing
thay ddi qua A
cit
cdc canh
SB
vi
SC
lAn lrrgt
tai
M
vi,N.
Tinh
ti
s6 thd tfch cfia cric
kh6i
ch6p
S.AMN
vir S.ABC
khi
chu
vi
tam
gi6c
AMN
dqt
giiltri
nh6 nhAt.
3+
tll
A.
5
8.2("6-r)
c.2
(r-'ll)
l(r5-
t)
Cdu
47,
Cho hdm s6
<sub>/(r) </sub>
c6
bing
bi6n thi6n nhu sau.
56 nghiam thuQc ntla
kholng
(-*;20201cria
phttong
trinh
2f (f(zx
<sub>- </sub>
1))
+ 3
<sub>= </sub>
0li
4.4.
8.3
c.5
D.2.
Cffu48.C6t6tc6baonhi0ucilpc6cs6nguy0n(x;y)th6a^d,ffi.n
4.2.
8.4.
c.5.
D.6.
vlr b
li
m6t s6 thuc dudng th6a mdn abT
<sub>= logrb.</sub>
Ciu
49.
Cho a th
m6t
s6 nguyOn khdc kh6ng
H6i
s6 nho 1)r s6 trung
vi
trong d6y 0,
l,a,b,l
,b
A.a.
B.
1.
Ciu
50.
Cho
him
s6
<sub>/(x) </sub>
-
*
-
*.'
:
*.
Gqi S ln
tQp tht
ch
cdc
gi|tri
thgc
cria tham s6
m
dd,
x+
r
gi6
tri
16n nhAt ctra hhm s6
<sub>S(x) -- </sub>
<sub>lf </sub>
<sub>@)ltr6n </sub>
doan
<sub>ll;21 </sub>
datgid
tri
nh6 nh6t.
Tinh
tdng c6c phdn
ttl
cfia tap hgp S
1
^.-r.
?
C.
c.
1
D.b
D.0.
1
b
B.
1
4
x
<sub>-oo</sub>
<sub>-2</sub>
J
*oo
0
+0
f(x)
I
5
3
-oo
</div>
<!--links-->