Tải bản đầy đủ (.ppt) (52 trang)

Chapter 2: Transmission Lines

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.8 MB, 52 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>Bài giảng:</b>

<b>TRƯỜNG ĐIỆN TỪ (CT361)</b>



<b> (ELECTROMAGNETICS)</b>


<b>Chapter 2: </b>

<b>Transmission Lines</b>



<b> (Đường dây truyền sóng)</b>



<b>Giảng viên: GVC.TS. Lương Vinh Quốc Danh</b>


Bộ môn Điện tử Viễn thông, Khoa Cơng Nghệ


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<i>Lumped-Element (phần tử tập trung) Model of </i>


Transmission Lines



Transmission-Line Equations



Wave Propagation on a Transmission Line



<i>Input Impedance (trở kháng ngõ vào) of the Lossless Line </i>



Special Cases of Lossless Line



Power Flow on a Lossless Transmission Line



<i>Transients (Quá độ) on Transmission Lines</i>



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3></div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

 Transmission line parameters, equations


Vg(t) VAA’(t) VBB’(t)


A



A’ <sub>B’</sub>


B


<b>L</b>


VBB’(t) = VAA’(t-td) = VAA’(t-L/c)


= V<sub>0</sub>cos((t-L/c))
= V<sub>0</sub>cos(t- 2L/),


<i>Recall: =c/f, and  = 2 </i>


<b>If  >> L, V</b>BB’(t)  V<sub>0</sub>cos(t) = VAA’(t),


<b>If  <= L, V</b>BB’(t) VAA’(t)  The circuit theory has to be replaced.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Propagation Modes</b>



<b>Electric</b> and <b>magnetic</b> fields


<i>oscillate together but perpendicular </i>
to each other and the


electromagnetic wave moves in a


<i>direction perpendicular to both of </i>
<i><b>the fields.  TEM modes </b></i>



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>TEM transmission lines</b>



<b>Propagation Modes (cont.)</b>



d) Strip line e) Microstrip line


Metal


Dielectric spacing Metal ground


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

<b>Lumped-Element Model</b>



• Represent transmission lines as parallel-wire configuration


Vg(t) <sub>V</sub><sub>AA’</sub><sub>(t)</sub> <sub>V</sub>BB’(t)


A


A’ B’


B


z z z


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Transmission line equations</b>



• Represent transmission lines as parallel-wire configuration


V(z,t) = R’z <i>i</i>(z,t) + L’z  <i>i</i>(z,t)/ t + V(z+ z,t), (2.12)



V(z,t)


<b>R’z</b> <b>L’z</b>


<b>G’z</b> <b><sub>C’z</sub></b> V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


<i>i</i>(z,t) = G’z V(z+ z,t) + C’z V(z+ z,t)/t + <i>i</i>(z+z,t), (2.15)


<b>FOUR transmission line parameters: Resistance R’ (Ω/m); Inductance L’ (H/m); </b>


Capacitance C’ (F/m); Conductance G’ (S/m)


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

• Transmission line equations


V(z,t) = R’z <i>i</i>(z,t) + L’z  <i>i</i>(z,t)/ t + V(z+ z,t), (2.12)


V(z,t)


R’z L’z


G’z <sub>C’z</sub> V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


-V(z+ z,t) + V(z,t) = R’z <i>i</i>(z,t) + L’z  <i>i</i>(z,t)/ t


- V(z,t)/z = R’ <i>i</i>(z,t) + L’  <i>i</i>(z,t)/ t, (2.14)



<i>Rewrite V(z,t) and i</i>(z,t)<i> as phasors, for sinusoidal V(z,t) and i</i>(z,t):
V(z,t) = Re( V(z) ejt), <i>i (z,t) = Re( i (z) e</i>jt),


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

• Transmission line equations


V(z,t)


R’z L’z


G’z <sub>C’z</sub> V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


Recall:


<i>di(t)/dt</i> = <i><sub>Re(d i e jt )/dt</sub></i> <i>= Re(i</i> je jt ),


- V(z,t)/z = R’ <i>i</i>(z,t) + L’  <i>i</i>(z,t)/ t, (2.14)


- dV(z)/dz = R’ <i>i</i>(z) + jL’ <i>i</i>(z), (2.18a)


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

• Transmission line equations


V(z,t)


R’z L’z


G’z <sub>C’z</sub> V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)



<i>- i (z+ </i>z,t) + <i>i (z,t)</i> = G’z V(z + z ,t) + C’z  V(z + z,t)/ t


-  <i>i(z,t)/</i>z = G’ V(z,t) + C’  V(z,t)/ t, (2.16)


<i>Rewrite V(z,t) and i</i>(z,t)<i> as phasors, for sinusoidal V(z,t) and i</i>(z,t):
V(z,t) = Re( V(z) ejt), <i>i (z,t) = Re( i (z) e</i>jt),


<i>i</i>(z,t) = G’z V(z+ z,t) + C’z V(z+ z,t)/t + <i>i</i>(z+z,t), (2.15)


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

• Transmission line equations


V(z,t)


R’z L’z


G’z <sub>C’z</sub> V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


Recall:


dV(t)/dt = Re(d V e jt )/dt = Re(Vje jt ),
- <i>i(z,t)/</i>z = G’ V(z,t) + C’  V(z,t)/ t,


- d <i>i(z)/</i>dz = G’ V(z) + jC’ V(z), (2.18b)


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>Telegrapher’s equation</b>



V(z,t)



R’z L’z


G’z C’z V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


- d <i>i(z)/</i>dz = G’ V(z) + jC’ V(z), (2.18b)


- dV(z)/dz = R’ <i>i</i>(z) + jL’ <i>i</i>(z), (2.18a)


• Telegrapher’s equation in phasor domain


Take d /dz on both sides of eq. (2.18a)


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

- d <i>i(z)/</i>dz = G’ V(z) + jC’ V(z), (2.18b)


- dV(z)/dz = R’ <i>i</i>(z) + jL’ <i>i</i>(z), (2.18a)


• Telegrapher’s equation in phasor domain


substitute (2.18b) to (2.19)


d²V(z)/dz² = (R’ + jL’) (G’+ jC’)V(z),


- d²V(z)/dz² = R’ d<i>i</i>(z)/dz + jL’ d<i>i</i>(z)/dz, (2.19)


d²V(z)/dz² - (R’ + jL’) (G’+ jC’)V(z) = 0, (2.20)


or



d²V(z)/dz² - ²V(z) = 0, (2.21)


² = (R’ + jL’) (G’+ jC’),


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

V(z,t)


R’z L’z


G’z C’z V(z+ z,t)


<i>i</i>(z,t) <i>i</i>(z+z,t)


- d <i>i(z)/</i>dz = G’ V(z) + jC’ V(z), (2.18b)


- dV(z)/dz = R’ <i>i</i>(z) + jL’ <i>i</i>(z), (2.18a)


• Telegrapher’s equation in phasor domain


Take d /dz on both sides of eq. (2.18b)


- d² <i>i(z)/</i>dz² = G’ dV(z)/dz + jC’ dV(z)/dz, (*)


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

substitute (2.18a) to (*)


d² <i>i(z)/</i>dz² = (R’ + jL’) (G’+ j<i>C’)i(z), </i>
d² <i>i(z)/</i>dz² - (R’ + jL’) (G’+ j<i>C’) i(z) = 0, </i>


or



d² <i>i(z)/</i>dz² - ²<i>i(z) = 0, </i> (2.23)


² = (R’ + jL’) (G’+ jC’),


- d² <i>i(z)/</i>dz² = G’ dV(z)/dz + jC’ dV(z)/dz, (*)


- d <i>i(z)/</i>dz = G’ V(z) + jC’ V(z), (2.18b)


- dV(z)/dz = R’ <i>i</i>(z) + jL’ <i>i</i>(z), (2.18a)


• Telegrapher’s equation in phasor domain


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

• Wave equations


d² <i>i(z)/</i>dz² - ²<i>i(z) = 0, </i> (2.23)


d²V(z)/dz² - ²V(z) = 0, (2.21)


<b> =  + j, </b>Complex propagation constant


 = Re (R’ + jL’) (G’+


jC’) ,


 = Im (R’ + jL’) (G’+


jC’) ,


<b>Wave Equations</b>




</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>Telegrapher’s equation (cont.)</b>



V(z) = V0 (2.26a)


Solving the second order differential equation (2.21), (2.23):


+

<i><sub>e</sub></i>

-z


+

V-0

<i>e</i>

z


<i>i(z) = </i>I+0

<i>e</i>

-z

+

I<sub>0</sub>-

<i>e</i>

z (2.26b)


where:


+


V0 and V-0 are determined by boundary conditions.


+


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

• Characteristic impedance Z0


I0+ =


(R’ + jL’)




V+0



I0- =


(R’ + jL’)


-


V-0


= (R’ + jL’)


+


<b>Z0 </b>


Define characteristic impedance Z0


I0+


V0


=


 = (R’ + jL’) (G’+ jC’)
(R’ + jL’)


(G’+j C’)


recall:



<b>Characteristic impedance Z</b>

<b><sub>0</sub></b>


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

• Example 2-1, an air line :


Solution:


R’ = G’ = 0, Z0<i> = 50 ,  = 20 rad/m, f = 700 MHz </i>


L’ = ? and C’ = ?


Z0 = <sub>(G’+j C’)</sub>(R’ + jL’) =


L’


C’ = 50


 = (R’ + jL’) (G’+ jC’) = j <sub>L’C’</sub>
 =  + j,


 =  L’C’ = 20 rad/m


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

• Lossless transmission line :


= (R’ + jL’) (G’+ jC’)


 =  + j,


If R’<< j L’ and G’ << jC’,


<b>Lossless Transmission Lines </b>




Then:


(2.35)


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<b>Phase velocity</b>


<b>Wavelength</b>



<b>Lossless Transmission Lines (cont.)</b>



(2.39)
(2.40)


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<b>Reflection Coefficient </b>



<i>i(z) = </i>


V(z) = V+0

+

V0-

<i>e</i>

jz



<i>-e</i>

-jz

<i>e</i>

-jz


+
V0


Z0

<i>e</i>



jz



-V0


Z0


VL = = <sub>V</sub>+<sub>0</sub>

<sub>+</sub>

<sub>V</sub>-<sub>0</sub>


V(z)


z = 0



-+
V0
Z0

-V0
Z0
<i>i(z)</i>


z = 0


<i>i</i>L = =


ZL = VL


<i>i</i>L
=

+



-V0

+
V0


-+
V0
Z

-V0
Z
+
V0

-V0 =


ZL - Z0


ZL + Z0


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

• Voltage reflection coefficient :


• Current reflection coefficient :


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

• <b>Example 2-2 :</b>


A’
z = 0
A
Z0 = 100 


RL = 50 



CL = 10pF


<i>f = 100 MHz</i>


ZL = RL + j/CL = 50 – j159 (Ohms)


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

<b>Standing Waves </b>



• From (2.44), we have:



|V(z)| = |V+0| |

<i>e</i>

-jz

+

||

<i>e</i>

jr

<i>e</i>

jz|


= |V+0| [1+ | |² + 2||cos(2z + r)]
1/2



-V0


+
V0


with  =


(2.52)
 |V(z)| is a function of <b> ~</b> <i>z</i>.


<i>• A similar expression can be derived for |I(z)| </i>

<b> ~</b>


|I(z)| = |V+0|/|Z0| [1+ | |² - 2||cos(2z + r)]


1/2


</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

<b>Standing Waves (cont.) </b>



The repetition period


of the standing wave


pattern is /2.



When voltage is a



<i>maximum</i>

, current is a



</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

<b>Special cases</b>



1. ZL= Z0, = 0


= |V+0|


|V(z)|


</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

2. ZL= 0, <b>short circuit</b>, = -1


= |V+0| [2 + 2cos(2z + )]


1/2


|V(z)|


<b>Standing Waves (cont.) </b>




3. ZL= ,<b>open circuit</b>, = 1


= |V+0| [2 + 2cos(2z )]


1/2


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

<b>Voltage maximum</b>



= |V+0| [1+ | |² + 2||cos(2z + r)] 1/2


|V(z)|


|V0+| [1+ | |],


|V(z)|<sub>max</sub> <sub>=</sub>


when 2z + r = - 2n.


<b>Standing Waves (cont.) </b>



</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

<b>Voltage minimum</b>



<b>Standing Waves (cont.) </b>



</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

<b>Voltage standing-wave ratio VSWR </b>



1 - | |


|V(z)|<sub>min</sub>



<b>S</b>  |V(z)|max

=

1 + | |
S = 1, when  = 0,


S = , when || = 1,


(2.59)


<i><b>Example 2-4: 50-Ohm transmission line, Z</b></i><sub>L</sub><i> = 100 + j50 (Ω). Find , SWR.</i>


</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

<b>Input Impedance of the Lossless Line</b>



Vg(t) <sub>V</sub><sub>L</sub>


A


z = 0
B


<i>l</i>


ZL


<i>z = - l</i>


Z0


Vi


Zg Ii



Zin(z) = Vi(z)


I<sub>i</sub>(z)
=


+


+

<i>e</i>

jz


<i>e</i>

-jz


V0( )


+


-

<i>e</i>

jz


<i>e</i>

-jz


V0( )


Z0 =

+



(1 

<i>e</i>

j2z )




-(1 

<i>e</i>

j2z ) Z0


+




(1 

<i>e</i>

-j2 )<i>l</i>




</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

A 1.05-GHz generator circuit with series impedance Zg = 10- and voltage source
given by Vg(t) = 10 sin(t +30º) is connected to a load Z<sub>L</sub> = 100 +j5 () through
a 50-, 67-cm long lossless transmission line. The phase velocity is 0.7c. Find
<i>V(z,t) and i(z,t) on the line. </i>


Solution:


<i>Since, Vp = ƒ,  = Vp/f = 0.7c/(1.05 x 10</i>9<sub>) = 0.2 m. </sub>


 = 2/,  = 10 .


 = (ZL-Z0)/(ZL+Z0),  = 0.45exp(j26.6º)

+



(1 

<i>e</i>

-j2 )<i>l</i>




-(1 

<i>e</i>

-j2 )<i>l</i> Z0


Zin<i>(-l) =</i> = 21.9 + j17.4 


V+0[exp(-j<i>l)+ </i>exp(j<i>l)</i>] <sub>=</sub>


Zin<i>(-l) + Zg</i>



Zin<i>(-l)</i>


Vg


</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

<b>Short-circuited Line</b>



ZL= 0,  = -1, S = 


Vg(t) <sub>V</sub><sub>L</sub>


A


z = 0
B


<i>l</i>


ZL = 0


<i>z = - l</i>


Z0


Zg Ii


<b>Zin</b>


<b>sc</b>



<i>I(z) = </i>


V(z) = V0

<i>- e</i>

)jz

+



(

<i>e</i>

-jz
(

<i>e</i>

-jz


+
V0


Z0

<i>e</i>



jz <sub>)</sub>


= -2jV+0sin(z)


= 2V+0cos(z)/Z0


Zin = <i>V(-l)</i>


<i>I(-l)</i> <i>= jZ</i>0.<i>tan(l)</i>


sc


(2.67)


</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36>

<b>Short-circuited Line (cont.)</b>



Zin = <i>V(-l)</i>



</div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37>

Zin = <i>V(-l)</i>


<i>i(-l)</i> = jZ0<i>tan(l)</i>


<i>• If tan(l) >= 0, the line appears inductive, jL</i>eq = jZ0<i>tan(l), </i>


<i>• If tan(l) <= 0, the line appears capacitive, 1/(jC</i>eq)= jZ0<i>tan(l), </i>


<i>l = 1/[- tan (1/C</i>-1 eqZ0)],


• The minimum length results in transmission line as a capacitor:


<b>Short-circuited Line (cont.)</b>



L


</div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>

<i>tan (l) = - 1/C</i>eqZ0 = -0.354,


Choose the length of a shorted 50- lossless line such that its input impedance
at 2.25 GHz is equivalent to the reactance of a capacitor with capacitance
C<sub>eq </sub>= 4pF. The wave phase velocity on the line is 0.75c.


Solution:


<i>Vp = ƒ,   = 2/ = 2ƒ/Vp = 62.8 (rad/m) </i>


<i>l = 2l /  = tan (-0.354) + n = - 0.34 + n </i>-1


</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39>

ZL = 0, = 1, S = 



z = 0
<i>z = - l</i>


Vg(t) <sub>V</sub><sub>L</sub>


A B


<i>l</i>


ZL = 


Z0


Z<sub>g</sub> Ii


Zin


oc


<i>I(z) = </i>


V(z) = V0

<i>+ e</i>

)jz



-(

<i>e</i>

-jz
(

<i>e</i>

-jz


+
V0



Z0

<i>e</i>



jz <sub>)</sub>


= 2V+0cos(z)


= 2jV+0sin(z)/Z0


Zin = <i>V(-l)</i>


<i>I(-l)</i> <i>= -jZ</i>0.<i>cot(l)</i>


oc


<b>Open-circuited Line (cont.)</b>



(2.72)


</div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40>

<b>Open-circuited Line (cont.)</b>



Zin = <i>V(-l)</i>


<i>I(-l)</i> <i>= -jZ</i>0.<i>cot(l)</i>


</div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41>

<b>Line of Length n/2</b>



= ZL


<i>tan(l) = tan[(2/)(</i>n/2)] = 0,



+



(1 

<i>e</i>

-j2 )<i>l</i>




-(1 

<i>e</i>

-j2 )<i>l</i> Z0
Zin<i>(-l) =</i>


Any multiple of half-wavelength line <b>doesn’t modify </b>the load impedance.


Vg(t)


A


z = 0
B


<i>l = n</i><i>/2</i>


<b>ZL</b>


<i>z = - l</i>


Z0


<b>Zin</b>


</div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42>

<i>Quarter-wave transformer: l = /4 + n/2</i>




<i>l = (2/)(/4 + n/2) = /2 , </i>


<b>= Z0²/ZL</b>


+



(1 

<i>e</i>

-j2 )<i>l</i>




-(1 

<i>e</i>

-j2 )<i>l</i> Z0


Zin<i>(-l) =</i> (1 

+

<i>e</i>



-j 
)




-(1 

<i>e</i>

-j  ) Z0
=


(1 + ) Z0
(1 - )
=


<b>Quarter-wave Transformer </b>



<b>Example 2-9:</b>



A 50- lossless transmission is matched to a resistive load impedance with ZL = 100  via a
quarter-wave section, thereby eliminating reflections along the feed line. Find the
characteristic impedance of the quarter-wave transformer.


Zin = Z0²/ZL= 50 


<b>Z0 </b>= (Z<sub>in</sub>.Z<sub>L</sub>) = (50*100) = 70.71 ½ ½ 


ZL= 100 


</div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43>

• <b>Instantaneous power</b>


+


i


<i>P(t) = v(t) i(t) = Re[V exp(jt)] Re[ i exp(jt)] </i>i i


= Re[|V0|exp(j )exp(jt)] Re[|V+ +0|/Z0 exp(j )exp(jt)] +


= (|V+0|²/Z0) cos²(t +  ) +


<b>Power Flow</b>





-r


<i>P(t) = v(t) i(t) = Re[V exp(jt)] Re[ i exp(jt)] </i>r r



= Re[|V0|exp(j )exp(jt)] Re[|V+ -0|/Z0 exp(j )exp(jt)] +


= - ||²(|V0+|²/Z0) cos²(t +  + + r)


(2.81)


</div>
<span class='text_page_counter'>(44)</span><div class='page_container' data-page=44>

<b>Time-Average Power</b>



<b>Time-domain approach:</b>


</div>
<span class='text_page_counter'>(45)</span><div class='page_container' data-page=45>

<b>Phasor-domain approach:</b>


<b>Time-Average Power (cont.)</b>



= (1-||²) (|V+0|²/2Z0)


</div>
<span class='text_page_counter'>(46)</span><div class='page_container' data-page=46>

<b> Transient on transmission line</b>



<b>• Step function U(t)</b>


U(t) = 1, if t >= 0; U(t) = 0, if t < 0 U(t)


</div>
<span class='text_page_counter'>(47)</span><div class='page_container' data-page=47>

<b>Transient of a step function</b>



<b>At t = 0+, immediately after closing the </b>


<b>switch in the circuit in (a), we have:</b>


<b>R<sub>g</sub> = 4 Z<sub>0</sub></b>



</div>
<span class='text_page_counter'>(48)</span><div class='page_container' data-page=48>

<b>Voltage</b><i><b> distributions on a lossless transmission line at t = T/2, t = 3T/2 and t = </b></i>


<i><b>5T/2 </b></i>


</div>
<span class='text_page_counter'>(49)</span><div class='page_container' data-page=49>

<b>Transient of a step function (cont.)</b>



<b>As t approaches , the ultimate value of V(z,t) is the same at all locations on </b>
<b>the transmission line, and is given by: </b>


<i>Where x = </i><sub>L</sub><sub>g</sub>


By applying (2.132), equation (2.131) can be written as follows:


</div>
<span class='text_page_counter'>(50)</span><div class='page_container' data-page=50>

<b>Current</b><i><b> distributions on a lossless transmission line at t = T/2, t = 3T/2 and t = </b></i>


<i><b>5T/2 </b></i>


<b>Transient of a step function (cont.)</b>



</div>
<span class='text_page_counter'>(51)</span><div class='page_container' data-page=51>

<b> Bounce Diagram</b>



</div>
<span class='text_page_counter'>(52)</span><div class='page_container' data-page=52>

<b> Bounce Diagram (cont.)</b>



<b><sub>g</sub> = 3/5, <sub>L</sub></b><i><b> = 1/3, z = l/4 </b></i>


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×