Tải bản đầy đủ (.pdf) (60 trang)

(Luận văn thạc sĩ) nghiên cứu mô phỏng và ứng dụng vật liệu hợp kim nhớ hình (SMA)​

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.08 MB, 60 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CƠNG NGHỆ

HỒNG NGỌC QUÝ

NGHIÊN CỨU MÔ PHỎNG VÀ ỨNG DỤNG
VẬT LIỆU HỢP KIM NHỚ HÌNH (SMA)

LUẬN VĂN THẠC SĨ CƠ KỸ THUẬT

Hà Nội – 2020


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CƠNG NGHỆ

HỒNG NGỌC QUÝ

NGHIÊN CỨU MÔ PHỎNG VÀ ỨNG DỤNG
VẬT LIỆU HỢP KIM NHỚ HÌNH (SMA)

Ngành: Cơ kỹ thuật
Chuyên ngành: Cơ kỹ thuật
Mã số: 8520101.01

LUẬN VĂN THẠC SĨ CƠ KỸ THUẬT

GIÁO VIÊN HƯỚNG DẪN: TS. NGUYỄN TRƯỜNG GIANG

Hà Nội – 2020



i

LỜI CAM ĐOAN

Tôi xin cam đoan luận văn “Nghiên cứu mơ phỏng và ứng dụng vật liệu
hợp kim nhớ hình (SMA)” là công trình nghiên cứu của bản thân dưới sự hướng
dẫn của TS. Nguyễn Trường Giang. Các tài liệu được sử dụng đều có nguồn
gốc rõ ràng và được ghi trong phần tài liệu tham khảo. Số liệu tính toán và kết
quả của luận văn hoàn toàn trung thực. Nếu sai tơi xin chịu hồn tồn trách
nhiệm và các hình thức kỉ luật của nhà trường.
Tác giả

Hoàng Ngọc Quý


ii

LỜI CẢM ƠN
Tôi xin chân thành cảm ơn các thầy, cô giáo đã tham gia giảng dạy và đào
tạo trong thời gian tôi học tập tại khoa Cơ học kỹ thuật và Tự động hóa, trường
Đại học Công nghệ – ĐHQG HN. Đặc biệt tơi xin bày tỏ lịng biết ơn chân
thành tới TS. Nguyễn Trường Giang và các cộng sự đã tận tình hướng dẫn, giúp
đỡ tơi hồn thành luận văn này.

Tác giả

Hoàng Ngọc Quý



iii

MỤC LỤC
LỜI CAM ĐOAN................................................................................................... i
LỜI CẢM ƠN ....................................................................................................... ii
MỤC LỤC ............................................................................................................ iii
DANH SÁCH CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ......................................... v
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ............................................................. vii
DANH MỤC BẢNG BIỂU ............................................................................... viii
MỞ ĐẦU ............................................................................................................... 1
Chương 1. TỔNG QUAN VÀ ỨNG DỤNG CỦA VẬT LIỆU HỢP KIM NHỚ
HÌNH (SMA)......................................................................................................... 2
1.1. Tổng quan về sự phát triển của hợp kim nhớ hình trong khoa học ......... 2
1.1.1. Tổng quan tình hình ngồi nước ................................................... 2
1.1.2. Tình hình nghiên cứu trong nước ................................................. 4
1.2. Đặc điểm chung của vật liệu hợp kim nhớ hình ...................................... 5
1.2.1. Hiện tượng chuyển đổi pha của vật liệu hợp kim nhớ hình .......... 5
1.2.2. Hiệu ứng nhớ hình......................................................................... 7
1.2.3. Hiệu ứng siêu đàn hời ................................................................... 9
1.3. Ứng dụng của SMA ............................................................................... 11
1.4. Kết luận chương 1.................................................................................. 15
Chương 2. NGHIÊN CỨU ỨNG XỬ CỦA SMA VÀ ỨNG DỤNG GIẢM
CHẤN CHO CÁP CẦU DÂY VĂNG ............................................................... 16
2.1. Ứng xử của SMA ................................................................................... 16
2.1.1. Mơ hình mơ phỏng dựa theo sơ đồ ứng xử ................................. 16
2.1.2. Mô hình mơ phỏng ứng xử sử dụng biến nội bộ vô hướng ........ 18
2.2. Ứng dụng giảm chấn cho cáp cầu dây văng .......................................... 23
2.2.1. Phương trình dao động của cáp nghiêng ..................................... 23
2.2.2. Lực giảm chấn tối đa khi sử dụng SMA. .................................... 28
2.3. Kết luận chương 2 .................................................................................. 29

Chương 3. THỰC HIỆN TÍNH TỐN SỐ VÀ CÁC KẾT QUẢ TÍNH TỐN30
3.1. Kết quả so sánh biên độ dao động Mori – Tanaka và Reuss ................. 34
3.2. Kết quả so sánh giữa có và khơng có giảm chấn SMA ......................... 34
3.3. Ảnh hưởng của diện tích mặt cắt SMA ................................................. 35
3.4. Ảnh hưởng của chiều dài dây SMA....................................................... 35
3.5. Ảnh hưởng của vị trí lắp giảm chấn SMA ............................................. 36
3.6. Kết luận chương 3 .................................................................................. 37


iv

KẾT LUẬN ......................................................................................................... 39
TÀI LIỆU THAM KHẢO ................................................................................... 41
DANH MỤC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN
LUẬN VĂN ........................................................................................................ 46
PHỤ LỤC ............................................................................................................ 47


v

DANH SÁCH CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT

TT

KÝ HIỆU / CHỮ VIẾT
TẮT

TÊN GỌI

ĐƠN VỊ


1

Hợp kim nhớ hình

SMA

2

Pha austenite

A

3

Pha martensite

M

4

Đường kính cáp

D

m

5

Chiều dài dây cáp


L

m

6

Đường kính dây SMA

DSMA

m

7

Chiều dài dây SMA

LSMA

m

8

Ứng suất bắt đầu chuyển đổi
martensite

σMs

Mpa


9

Ứng suất kết thúc chuyển
đổi martensite

σMf

Mpa

10

Ứng suất bắt đầu chuyển đổi
austenite

σAs

Mpa

11

Ứng suất kết thúc chuyển
đổi austenite

σAf

Mpa

12

Góc giữa dây cáp và phương

ngang

θ

rad

13

Độ cứng

k

14

Hệ số cản

c

15

Khối lượng cáp

m

kg

16

Modun đàn hời cáp


E

Mpa

17

Modun đàn
martensite

hời

pha

18

Modun đàn
austenite

hời

pha

19

Biến Martensite

𝜉𝑆

20


Vị trí lắp đặt giảm chấn

xc

21

Biến dạng đàn hồi

𝜀𝑒

22

Biến dạng dư lớn nhất

𝜀𝐿

23

Chiều dài tối ưu SMA

LoptSMA

EM
EA

Mpa

m

m



vi

24

Lực của SMA

fc(t)

N

25

Nhiệt độ bắt đầu chuyển đổi
martensite

Ms



26

Nhiệt độ kết thúc chuyển
đổi martensite

Mf




27

Nhiệt độ bắt đầu chuyển đổi
austenite

As



28

Nhiệt độ kết thúc chuyển
đổi austenite

Af



29

Biến dạng bắt đầu chuyển
đổi martensite

𝜀𝑀𝑆

30

Biến dạng kết thúc chuyển
đổi martensite


𝜀𝑀𝑓

31

Biến dạng bắt đầu chuyển
đổi austenite

𝜀𝐴𝑆

32

Biến dạng kết thúc chuyển
đổi austenite

𝜀𝐴𝑓


vii

DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
Hình 1.1. Chuyển đổi pha do nhiệt độ gây ra. ...................................................... 6
Hình 1.2. Sơ đờ hiệu ứng nhớ hình dạng của SMA cho thấy sự detwinning của
SMA với ứng suất. ................................................................................................ 6
Hình 1.3. Sơ đờ hiệu ứng bộ nhớ hình của một SMA cho thấy quá trình dỡ tải và
sau đó làm nóng để trở về austenite trong điều kiện không tải............................. 7
Hình 1.4. Sơ đồ ứng suất - biến dạng - nhiệt độ của một mẫu NiTi SMA. .......... 8
Hình 1.5. Sơ đồ pha và hai đường gia tải siêu đàn hồi. ........................................ 9
Hình 1.6. Một chu trình gia tải siêu đàn hời của một SMA điển hình ................ 10
Hình 1.7. Cần đẩy nắp ca-pơ sử dụng vật liệu SMA .......................................... 11
Hình 1.8. Thiết bị khí động học sử dụng vật liệu SMA ...................................... 12

Hình 1.9. (a) Thiết kế kẹp SMA và (b) bố trí mẫu của thiết kế mạch LC .......... 12
Hình 1.10. Bàn tay robot ..................................................................................... 13
Hình 1.11. Ch̀n ch̀n robot ............................................................................ 13
Hình 1.12. Stent trong mạch máu........................................................................ 13
Hình 1.13. Thiết bị hỗ trợ trong chữa lành gãy xương ....................................... 14
Hình 1.14. Mặt cắt của bộ giảm chấn SMA ........................................................ 14
Hình 1.15. Thiết bị lai do Miller và cộng sự đề xuất .......................................... 14
Hình 1.16. Thiết bị lai do Yang et al đề xuất ...................................................... 15
Hình 1.17. (a) Bốn dây cáp dài 50 m và (b) Bộ giảm chấn NiTi SMA được sử
dụng trong Công việc của Torra và cộng sự ....................................................... 15
Hình 2.1. Vịng lặp ứng xử cho vật liệu SMA. ................................................... 16
Hình 2.2. Mô hình kéo đơn trục của SMA .......................................................... 19
Hình 2.3. Sơ đồ cáp nghiêng dao động ............................................................... 24
Hình 2.4. Phần tử của dây ................................................................................... 24
Hình 3.1. Thanh chịu kéo một trục ..................................................................... 30
Hình 3.2. Hàm tải trọng theo thời gian ............................................................... 30
Hình 3.3. Kết quả tính tốn mơ phỏng theo mơ hình Mori – Tanaka và Reuss . 31
Hình 3.4. Sơ đờ khối tính tốn ............................................................................ 32
Hình 3.5. Biên độ dao động theo Mori – Tanaka và Reuss ................................ 34
Hình 3.6. Biên độ dao động của cáp khi có và khơng có giảm chấn SMA. ....... 34
Hình 3.7. Ảnh hưởng của diện tích mặt cắt dây SMA. ....................................... 35
Hình 3.8. Ảnh hưởng của chiều dài dây SMA. ................................................... 36
Hình 3.9. Ảnh hưởng của vị trí lắp đặt giảm chấn SMA. ................................... 36


viii

Hình 3.10. Quan hệ giữa đường kính, vị trí và lực SMA tương ứng LSMAopt =
0,116m. ................................................................................................................ 37
DANH MỤC BẢNG BIỂU

Bảng 3.1. Các thông số đầu vào của chương trình tính toán .............................. 33


1

MỞ ĐẦU

Trong vài thập niên qua, những cơng trình cầu dây văng đã trở nên phổ
biến trên toàn thế giới chủ yếu do sự tiến bộ nhanh chóng trong phương pháp
thiết kế và công nghệ xây dựng. Cáp là thành phần kết cấu quan trọng của những
cây cầu dây văng. Do tính linh hoạt lớn, khối lượng nhỏ nhưng trong điều kiện
độ ẩm thấp, ảnh hưởng của gió, mưa và các dao động do các phương tiện trên
cầu đã gây ra sự không ổn định của cáp dẫn đến đứt cáp sau một thời gian sử
dụng.
Giải thích cho sự mất ổn định này, người ta cho rằng vì cáp dây văng có tỷ
lệ giảm chấn thấp, lại chịu tải trọng tĩnh và tải trọng động gây ra dao động với
biên độ lớn dẫn tới phá hoại mỏi làm giảm tuổi thọ cơng trình cầu và thậm chí
có thể phá hoại cơng trình. Để giảm thiểu các tác động kể trên đã có nhiều
nghiên cứu được đưa ra để nâng cao tuổi thọ cho dây cáp. Phương pháp cơ học
dựa trên việc sử dụng bộ giảm chấn cơ học cũng là một phương pháp làm giảm
đáng kể sự rung động và dễ chế tạo cũng như lắp đặt [1]. Một trong các loại
giảm chấn cơ học đó là bộ giảm chấn dựa trên vật liệu hợp kim nhớ hình (Shape
memory alloy) viết tắt là SMA, một loại vật liệu có khả năng giảm chấn đáng
kể. Để đánh giá tiềm năng tiêu tán năng lượng dao động dựa trên SMA trong
điều khiển kết cấu thụ động, tác giả đã lựa chọn đề tài “Nghiên cứu mô phỏng
và ứng dụng vật liệu hợp kim nhớ hình (SMA)”.
Trong khn khổ luận văn này, tác giả mô phỏng ứng xử của vật liệu SMA
dưới tác dụng của tải trọng và ứng dụng vào giảm dao động cáp cầu dây văng.
Luận văn được chia thành 3 chương chính ngồi ra cịn có phần Mở đầu,
Kết luận và danh sách các Tài liệu tham khảo. Các công trình của tác giả liên

quan được liệt kê ở cuối luận văn. Nội dung của các chương như sau:
- Chương 1. Tổng quan và ứng dụng của vật liệu hợp kim nhớ hình
(SMA).
- Chương 2. Nghiên cứu ứng xử của SMA và ứng dụng hợp kim nhớ hình
trong giảm chấn cáp cầu dây văng.
-

Chương 3. Thực hiện tính tốn số và trình bày các kết quả tính tốn.


2

Chương 1. TỔNG QUAN VÀ ỨNG DỤNG CỦA VẬT LIỆU HỢP KIM
NHỚ HÌNH (SMA)
1.1.

Tổng quan về sự phát triển của hợp kim nhớ hình trong khoa học

Vật liệu thơng minh đã ngày một phổ biến trong những thập kỷ gần đây.
Nghiên cứu của BCC [20] cho thấy thị trường toàn cầu về vật liệu thông minh là
khoảng 19,6 tỷ USD năm 2010, 22 tỷ USD vào năm 2011 và đạt hơn 40 tỷ USD
vào năm 2016. Nhiều nhà nghiên cứu đã nghiên cứu các thiết bị và ứng dụng
sáng tạo, tận dụng những vật liệu thông minh này. Một trong những vật liệu
thơng minh đó là hợp kim nhớ hình (Shape Memory Alloy). Ngày nay vật liệu
hợp kim nhớ hình (SMA) đã được ứng dụng rộng rãi trong các lĩnh vực y sinh, ô
tô và hàng không vũ trụ dựa trên các tính chất đặc biệt. Chúng có các phẩm chất
quan trọng như chống ăn mòn, tương thích sinh học, chống mỏi, chống xoắn đặc
biệt là khả năng siêu đàn hời và hiệu ứng nhớ hình dạng dựa trên sự chuyển đổi
pha từ pha mẹ austenite ổn định ở nhiệt độ cao hơn và ứng suất thấp hơn thành
pha martensite ổn định ở nhiệt độ thấp hơn và ứng suất cao hơn và ngược lại. Từ

đó cho phép chế tạo ra các thiết bị có khả năng chịu được các tải trọng, biến
dạng lớn và có tính chất chu kỳ. Sự tiêu hao năng lượng, là một khả năng mong
muốn khi ứng phó với kiểm soát địa chấn của các kết cấu. Các ứng xử siêu linh
hoạt cũng cho phép sử dụng các yếu tố pha austenite của SMA để lấy lại hình
dạng ban đầu của chúng sau khi bị biến dạng vượt q 6-8% biến dạng. Sự phục
hời hình dạng này là kết quả của các biến đổi pha có thể được gây ra bởi sự biến
dạng hoặc thay đổi nhiệt độ. Ngoài những tính năng chính, khả năng tuyệt vời
khác của dây SMA có thể khai thác trong các ứng dụng cơng trình dân dụng,
chẳng hạn như chịu mỏi tốt và khả năng chống ăn mòn, khả năng giảm chấn lớn,
có nhiều hình dạng và cấu hình tốt.
1.1.1. Tổng quan tình hình ngồi nước
Hợp kim nhớ hình (SMA) hoặc hợp kim thông minh, được phát hiện lần
đầu tiên bởi Arne Ölander vào năm 1932 [29], và thuật ngữ “nhớ hình” được
Vernon mô tả lần đầu tiên vào năm 1941 [41] cho vật liệu nha khoa
polymer. Tầm quan trọng của vật liệu nhớ hình (SMM) không được công nhận
cho đến khi William Buehler và Frederick Wang tiết lộ hiệu ứng nhớ hình dạng
(SME) trong hợp kim niken-titan (NiTi) vào năm 1962 [6]. Kể từ đó nhu cầu về
SMA cho các ứng dụng kỹ thuật ngày càng tăng trong nhiều lĩnh vực thương
mại chẳng hạn như các sản phẩm tiêu dùng và ứng dụng công nghiệp, vật liệu
tổng hợp, ô tô, hàng không vũ trụ, hệ thống cơ điện tử (MEMS, robotics), y sinh
và thậm chí trong thời trang.


3

Từ những năm 1990, thì thiết kế ứng dụng SMA đã thay đổi theo nhiều
cách và đã được ứng dụng thương mại trong nhiều ngành công nghiệp bao gồm
ô tô, hàng không vũ trụ, robot và y sinh. Hiện nay, thiết bị truyền động SMA đã
được ứng dụng thành công trong các ứng dụng rung ở tần số thấp [4] và truyền
động. Do đó, vẫn cần nhiều nghiên cứu có hệ thống và chuyên sâu để nâng cao

hiệu quả hoạt động của các SMA, đặc biệt là để tăng tuổi thọ chịu mỏi. Gần đây,
nhiều nhà nghiên cứu đã thực hiện một cách tiếp cận thử nghiệm để nâng cao
các thuộc tính của SMA, bằng cách cải thiện thành phần vật liệu (định lượng
nhiệt độ chuyển pha SMA [9] ) để đạt được phạm vi nhiệt độ làm việc rộng hơn,
và độ ổn định vật liệu tốt hơn.
SMA sở hữu các tính năng cơ lý làm cho nó có thể sử dụng trong các ứng
dụng xây dựng, kỹ thuật. Chủ yếu dây SMA đóng một vai trò then chốt trong
việc phát triển các vật liệu, thiết bị thông minh mà có thể được tích hợp vào kết
cấu cung cấp các chức năng như cảm biến, tiêu hao năng lượng, dẫn động, giám
sát, tự thích nghi, và làm liền các kết cấu. Trong những thập kỷ gần đây, nỗ lực
nghiên cứu chuyên sâu tập trung trong lĩnh vực kỹ thuật, kết cấu, nhằm thiết kế
thông minh cho các ứng dụng công trình dân dụng, với sự nhấn mạnh đặc biệt
để kiểm soát đáp ứng địa chấn của các kết cấu. Một số hệ thống và thiết bị tiên
tiến, chủ yếu sử dụng các NiTi và Cu-based SMA, đã được phát triển để hấp thụ
một phần năng lượng địa chấn và giảm lực động đất tác động lên kết cấu, để
giảm thiểu chấn động, cải thiện kết cấu. Thiết bị có nhiều hình dạng và cấu hình,
chẳng hạn như dạng dây, băng, dải, ống và thanh.
Một số ưu điểm chính của SMA bao gồm:
 Tương thích sinh học
 Lĩnh vực ứng dụng đa dạng
 Tính chất cơ học tốt
Bên cạnh những ưu điểm tốt thì vật liệu SMA có một số nhược điểm cần
khắc phục để có thể phát huy hết tiềm năng như giá thành cịn cao so với thép và
nhơm, cường độ chịu kéo thấp hơn thép.
Các nghiên cứu chuyên sâu đã được tiến hành để mô tả ứng xử cơ học phức
tạp của SMA. Đặc biệt, nhiều nỗ lực để phát triển các mơ hình giúp hiểu các cơ
chế vật lý cơ sở cho các biến đổi do ứng suất và nhiệt độ, tái định
hướng martensite hoặc các hiệu ứng mỏi. Những mơ hình này có thể được phân
loại thành micro, micro – macro, hoặc macro. Nhìn chung, có ba hướng chủ yếu
được đề xuất để mô tả hiện tượng trễ trong SMA. Cách tiếp cận thứ nhất là ứng

xử cơ nhiệt vĩ mô (macroscopic) có thể thu bằng cách sử dụng một tỉ lệ thể tích
trung bình của martensite và sự biến đổi trung bình của martensite và biến dạng


4

chuyển đổi trung gian được xem như một biến nội bộ (Auricchio và Lubliner,
1997) [3], (Lexcellent và cộng sự, 2002) [17], (Lagoudas và cộng sự., 2006)
[14]. Cách tiếp cận này chỉ đề cập đến thang đo vĩ mô nhưng các ứng xử thu
được nói chung phù hợp với nhiệt động lực học và thực nghiệm đơn giản. Tuy
nhiên theo hướng này, các mối quan hệ giữa đáp ứng cấp vĩ mô, tính chất cơ bản
của vật liệu và sự phát triển cấu trúc vi mơ trong q trình chịu tải cơ nhiệt
không được thể hiện.
Cách tiếp cận thứ hai xem xét sự biến đổi pha ở mức đơn tinh thể thơng qua
một mơ hình thích hợp xuất phát từ ứng xử cấp vĩ mô. Mô hình cục bộ nhằm
mục đích thiết lập một liên kết trực tiếp giữa đáp ứng trễ và các sự kiện cơ bản ở
các thang thời gian khác nhau. Hướng này giả sử có nhiều cách diễn giải hiện
tượng trễ như mất ổn định vi mô, vật liệu không đồng nhất hay đưa vào kích cỡ
hạt (Patoor và cộng sự., 2006) [30], (Sun và He, 2008) [32], (Maynadier và cộng
sự, 2011) [18].
Cách tiếp cận thứ ba là sự pha trộn giữa hai cách tiếp cận đã nói ở trên, tìm
cách mơ tả hiện tượng trễ trong SMA bởi việc chấp nhận định nghĩa về lực điều
chỉnh nhiệt động học tham gia vào các vùng biên giữa hai pha hoặc tập hợp các
biến thể. Các lực này phải vượt qua được ngưỡng để lan truyền (Siredey và cộng
sự, 1999) [32], (Lagoudas và cộng sự, 2006) [14], (Lagoudas và cộng sự, 2016)
[15].
Ngoài ra cũng có một số nghiên cứu đã tiếp cận theo hướng mô phỏng
động lực học phân tử (MD) tuy nhiên kết quả thu được khá hạn chế, u cầu tính
tốn q mạnh gây khó khăn trong việc mơ phỏng. Bên cạnh mơ hình ứng xử,
mơ phỏng siêu nhỏ được tìm thấy là rất hữu ích để hiểu rõ và mô tả các cơ chế

biến dạng của SMA, như Zhong và cộng sự [39] nghiên cứu PE và SME của
SMA với mô phỏng động lực phân tử (MD). Mirzaeifar và cộng sự [22] đã thực
hiện các mô phỏng MD để nghiên cứu các biến đổi cấu trúc của B2 austenitic
thành pha martensitic B19 trong các dây nano NiTi.
1.1.2. Tình hình nghiên cứu trong nước
Tại Việt Nam hiện nay, trong lĩnh vực vật liệu nhớ hình SMA cũng đã có
một số nghiên cứu cụ thể như đề tài “Nghiên cứu công nghệ tổng hợp hệ vật liệu
nhớ hình NiTi xốp bằng phương pháp phản ứng nhiệt tự sinh (SHS) và một số
tính chất của hệ vật liệu này” của GS. Hờ Kí Thanh thuộc trường đại học Thái
Nguyên năm 2012. Tác giả Đỗ Văn Phú và Nguyễn Phi Luân đã nghiên cứu một
cách tiếp cận mới về mơ hình trễ và xác định tham số bằng thuật toán di truyền
tại trường đại học Ulsan Hàn Quốc. Để chứng minh tính hiệu quả của mơ hình


5

đề xuất, các kết quả thử nghiệm về xác định độ trễ của thiết bị truyền động quay
SMA được cung cấp và so sánh, kêt quả được công bố năm 2013. Một nghiên
cứu về vật liệu SMA của tác giả Nguyễn Ngọc Sơn và Hồ Phạm Huy Anh thuộc
trường Đại học Cơng nghệ Thành phố Hờ Chí Minh về điều khiển trực tuyến bộ
truyền động hợp kim nhớ hình dựa trên mạng nơ-ron [26], các tác giả đã đề xuất
điều khiển dịch chuyển trực tuyến tương thích của bộ truyền động SMA được
tạo ra bằng cách kết hợp mơ hình mạng nơ ron chuyển dữ liệu đầu vào tương
thích (AFNNs) và bộ điều khiển phản hồi PID để tăng độ chính xác và loại bỏ
lỗi về trạng thái ổn định trong q trình kiểm sốt vị trí dịch chuyển của thiết bị
truyền động SMA công bố năm 2015. Gần đây nhất ở Viện Cơ học có đề tài
“Nghiên cứu, đánh giá hiệu quả của vật liệu nhớ hình SMA trong giảm chấn cáp
cầu dây văng” của TS. Nguyễn Trường Giang và cộng sự đăng trong tạp chí Hội
nghị Cơ học kĩ thuật toàn quốc, Kỉ niệm 40 năm thành lập Viện Cơ học,
9/4/2019 [27]. Nhóm tác giả đã ứng dụng vật liệu SMA vào việc giảm rung cho

cáp cầu dây văng với một số kết quả thu được về sự ảnh hưởng của đường kính
dây SMA, chiều dài dây SMA và vị trí lắp đặt SMA vào dây cáp cầu đến biên
độ dao động của cáp cầu, để từ đó nâng cao được tuổi thọ của cơng trình cầu.
1.2.

Đặc điểm chung của vật liệu hợp kim nhớ hình

1.2.1. Hiện tượng chuyển đổi pha của vật liệu hợp kim nhớ hình
Vật liệu SMA có hai pha, mỗi pha có cấu trúc tinh thể khác nhau và do đó
có các tính chất khác nhau. Một là pha nhiệt độ cao được gọi là austenite (A) và
một là pha nhiệt độ thấp gọi là martensite (M).
Austenite (nói chung là hình khối) có cấu trúc tinh thể khác với martensite (tứ
giác, hình thoi hoặc mặt nghiêng). Sự chuyển đổi từ một cấu trúc này sang cấu
trúc khác không xảy ra do sự khuếch tán của các nguyên tử, mà là do sự biến
dạng. Chuyển đổi như vậy được gọi là chuyển đổi martensitic. Mỗi tinh thể
martensitic hình thành có thể có một định hướng khác nhau, được gọi là một
biến thể. Việc lắp ráp các biến thể martensitic có thể tờn tại dưới hai dạng:
twinned martensite (Mt), được hình thành bởi sự kết hợp của các biến thể
martensitic tự điều chỉnh, và detwinned (Md) hoặc định hướng lại trong đó một
biến thể cụ thể chiếm ưu thế. Sự chuyển đổi pha đảo ngược từ austenite (pha
mẹ) thành martensite (pha sản phẩm) và ngược lại tạo thành cơ sở cho ứng xử
thú vị của SMA [16].
Khi làm lạnh trong trường hợp khơng có tải trọng tác dụng, cấu trúc tinh
thể thay đổi từ austenite sang martensite. Chuyển pha từ austenite sang
martensite được gọi là chuyển đổi về phía trước. Việc sắp xếp các biến thể xảy


6

ra sao cho thay đổi hình dạng vĩ mơ trung bình là không đáng kể, dẫn đến

twinned martensite. Khi vật liệu được làm nóng từ pha martensite, cấu trúc tinh
thể biến đổi thành austenite, và quá trình chuyển đổi này được gọi là chuyển đổi
ngược.
Một sơ đồ cấu trúc tinh thể của twinned martensite và austenite cho SMA
và sự chuyển đổi giữa chúng được thể hiện trong hình 1.1. Có bốn nhiệt độ đặc
trưng liên quan đến việc chuyển pha. Trong quá trình chuyển đổi về phía trước,
austenite, dưới tải trọng bằng không, bắt đầu chuyển thành twinned martensite ở
nhiệt độ bắt đầu martensite (Ms) và hoàn thành chuyển đổi thành martensite ở
nhiệt độ kết thúc martensite (Mf). Ở giai đoạn này, q trình biến đổi hồn tất và
vật liệu hoàn toàn trong giai đoạn twinned martensite. Tương tự, trong quá trình
gia nhiệt, phép biến đổi ngược bắt đầu ở nhiệt độ bắt đầu austenite (As) và quá
trình biến đổi được hoàn thành ở nhiệt độ kết thúc austenite (Af) [16].

Hình 1.1. Chuyển đổi pha do nhiệt độ gây ra [16].

Hình 1.2. Sơ đờ hiệu ứng nhớ hình dạng của SMA cho thấy sự detwinning của
SMA với ứng suất [16].


7

Nếu tải trọng cơ học được áp dụng cho vật liệu trong pha twinned
martensitic (ở nhiệt độ thấp), nó có thể detwin martensite bằng cách định hướng
lại một số biến thể nhất định (xem hình 1.2). Quá trình detwin dẫn đến thay đổi
hình dạng vĩ mơ, hình dạng bị biến dạng được giữ lại khi tải trọng được loại bỏ,
lúc này làm nóng SMA đến nhiệt độ trên Af sẽ dẫn đến một phép chuyển đổi pha
đảo ngược (từ martensite đã chuyển sang austenite) và dẫn đến phục hời hình
dạng hồn chỉnh (xem Hình 1.3). Làm lạnh trở lại nhiệt độ dưới Mf (chuyển đổi
về phía trước) dẫn đến sự hình thành của twinned martensite một lần nữa mà
khơng có thay đổi hình dạng.


Hình 1.3. Sơ đờ hiệu ứng bộ nhớ hình của một SMA cho thấy quá trình dỡ tải và
sau đó làm nóng để trở về austenite trong điều kiện không tải [16].
Quá trình được mô tả ở trên được gọi là hiệu ứng nhớ hình (SME). Tải
được áp dụng phải đủ lớn để bắt đầu quá trình detwin. Ứng suất tối thiểu cần
thiết để bắt đầu detwinning được gọi là ứng suất bắt đầu detwinning (σs). Mức
tải cao sẽ dẫn đến việc detwinning hoàn toàn của martensite lúc này mức ứng
suất tương ứng được gọi là ứng suất kết thúc detwinning (σf).
1.2.2. Hiệu ứng nhớ hình
Một vật liệu SMA thể hiện hiệu ứng nhớ hình dạng (SME) khi nó bị biến
dạng trong pha twinned martensite và dỡ bỏ tải trọng ở nhiệt độ dưới As. Khi nó
được làm nóng trên Af, SMA sẽ lấy lại hình dạng ban đầu của nó bằng cách
chuyển trở lại pha austenite mẹ [16]. Bản chất của hiệu ứng nhớ hình có thể
được hiểu rõ hơn bằng cách đi theo con đường cơ - nhiệt trong một không gian
ứng suất - biến dạng - nhiệt độ kết hợp như trong hình 1.4. Trong hình 1.4 thể
hiện dữ liệu thử nghiệm cho một mẫu NiTi điển hình được thử nghiệm dưới tải
trọng một trục. Ứng suất σ là ứng suất đơn trục trên mẫu vật do tải trọng tác


8

dụng. Biến dạng tương ứng ε là sự thay đổi độ dài của mẫu dọc theo hướng tải
trọng được áp dụng, được chuẩn hóa theo độ dài ban đầu.

Hình 1.4. Sơ đồ ứng suất - biến dạng - nhiệt độ của một mẫu NiTi SMA [16].
Bắt đầu từ pha mẹ (điểm A trong hình 1.4), việc làm lạnh austenite khơng ứng
suất dưới nhiệt độ chuyển đổi (Ms và Mf) dẫn đến sự hình thành twinned
martensite (điểm B). Khi twinned martensite chịu ứng suất vượt quá mức ứng
suất bắt đầu (σs), quá trình định hướng lại được bắt đầu, dẫn đến sự tăng trưởng
của các biến thể martensite. Mức ứng suất cho việc định hướng lại các biến thể

thấp hơn nhiều so với ứng suất dẻo vĩnh cửu của martensite. Quá trình detwin
được hồn thành ở một ứng suất, σf, được đặc trưng bởi sự kết thúc của đường
ngang trong biểu đồ σ-ε trong hình 1.4. Vật liệu sau đó được đàn hồi xuống từ C
đến D và trạng thái martensite được giữ lại. Khi gia nhiệt trong trường hợp
khơng có ứng suất, phép biến đổi ngược bắt đầu khi nhiệt độ đạt đến As, (tại E)
và được hoàn thành ở nhiệt độ Af (điểm F), ở trên chỉ tồn tại pha austenite mẹ.
Trong trường hợp khơng có biến dạng dẻo vĩnh cửu được tạo ra trong quá trình
detwinn, hình dạng ban đầu của SMA được lấy lại (được chỉ ra ở điểm A). Biến
dạng được phục hồi do sự chuyển pha từ detwinned martensite thành austenite
được gọi là biến dạng chuyển đổi. Việc làm lạnh tiếp theo với martensite một
lần nữa sẽ dẫn đến sự hình thành các biến thể twinned martensite mà khơng có
thay đổi hình dạng, và tồn bộ chu kỳ của SME có thể được lặp lại. Hiện tượng
mô tả ở trên được gọi là hiệu ứng nhớ hình dạng một chiều, vì phục hời hình
dạng chỉ đạt được trong quá trình gia nhiệt sau khi vật liệu đã được detwin bởi
một tải trọng cơ học tác dụng.


9

1.2.3. Hiệu ứng siêu đàn hồi
Ứng xử siêu đàn hồi của SMA có liên quan đến sự biến đổi do ứng suất gây
ra, dẫn đến tạo ra sự biến dạng trong q trình gia tải và sự phục hời của biến
dạng khi dỡ tải ở nhiệt độ trên Af. Ứng xử siêu đàn hồi thường bắt đầu ở nhiệt độ
đủ cao, nơi austenite ổn định tồn tại, sau đó phát triển theo tác dụng của tải trọng
đến trạng thái mà tại đó detwinned martensite ổn định, và cuối cùng trở về giai
đoạn austenite khi trạng thái ứng suất bằng không. Một ví dụ về đường này (a →
b → c → d → e → a) được chỉ ra trong hình 1.5 là đường dẫn 1. Thơng thường,
một thử nghiệm siêu đàn hồi được thực hiện ở nhiệt độ không đổi trên Af.
Đường dẫn tải cho một thử nghiệm như vậy được hiển thị như đường 2 trong
hình 1.5.

Để minh họa cho ứng xử siêu đàn hồi chi tiết hơn, chúng ta hãy xem xét
các đường tải cơ nhiệt (A → B → C → D → E → F → A) trong hình 1.5, bắt
đầu ở ứng suất bằng không ở nhiệt độ trên Af. Các dữ liệu thực nghiệm về σ-ε
tương ứng cho đường tải trọng được hiển thị trong hình 1.6. Khi tải trọng cơ học
được áp dụng, pha mẹ (austenite) trải qua gia tải đàn hồi (A → B). Ở một mức
tải cụ thể, đường gia tải giao cắt bề mặt để bắt đầu chuyển đổi martensite trên sơ
đồ pha. Điều này đánh dấu mức độ ứng suất (σMs) khi bắt đầu chuyển đổi thành
martensite. Lưu ý rằng sự biến đổi do ứng suất gây ra từ austenite đến martensite
đi kèm với sự tạo ra các biến dạng không đàn hồi lớn như thể hiện trong sơ đờ
ứng suất của hình 1.6. Giai đoạn chuyển đổi (B → C), đến mức ứng suất (σMf)
trong đó đường gia tải sẽ giao cắt bề mặt chuyển đổi tại Mf, cho biết kết thúc của
phép biến đổi [16].

Hình 1.5. Sơ đồ pha và hai đường gia tải siêu đàn hồi [16].


10

Hình 1.6. Một chu trình gia tải siêu đàn hời của một SMA điển hình [16]
Việc hoàn thành chuyển đổi martensite được biểu thị bằng một sự thay đổi
rõ rệt về độ dốc trên đường cong σ-ε, và giao nhau với đường gia tải đàn hồi của
pha martensite. Sự gia tăng tiếp theo trong ứng suất không gây ra sự biến đổi
nào nữa và chỉ có sự biến dạng đàn hồi của detwin martensite xảy ra (C → D).
Khi ứng suất được giải phóng dần bằng cách dỡ tải, martensite đàn hồi unload
dọc theo đường (D → E). Tại điểm E, đường dẫn dỡ tải giao cắt bề mặt bắt đầu
của austenite (tại σAs), khiến cho martensite quay trở lại austenite. Q trình này
được đi kèm với sự phục hời của biến dạng do chuyển pha ở cuối quá trình dỡ
tải. Sự kết thúc của phép biến đổi trở lại thành austenite được biểu thị bằng điểm
mà tại đó đường cong dỡ tải σ-ε nối lại vùng đàn hồi của austenite (điểm F
tương ứng với ứng suất σAf). Vật liệu sau đó dỡ tải đàn hồi xuống A, phép biến

đổi pha và ngược lại trong một chu kỳ siêu đàn hời hồn chỉnh trong một độ trễ,
trong khơng gian σ-ε, biểu thị năng lượng tiêu tán trong chu kỳ chuyển đổi. Mức
độ ứng suất chuyển đổi và kích thước của độ trễ thay đổi tùy thuộc vào vật liệu
SMA và điều kiện thử nghiệm. Các detwinned martensite hình thành từ austenite
như là kết quả của ứng suất tác dụng trong đường 1 hoặc 2 trong hình 1.5 là một
dạng của martensite gây ra bởi ứng suất. Nói chung martensite hình thành từ
austenite khi có ứng suất. Có rất nhiều đường cơ - nhiệt có thể dẫn đến sự hình
thành martensite.
Việc chuyển đổi pha đảo ngược được mô tả ở trên gây ra bởi một đường cơ
- nhiệt được gọi là hiệu ứng siêu đàn hồi. Các hiệu ứng giống như cao su là một
ứng xử riêng biệt của giai đoạn martensite và xảy ra do sự định hướng ngược lại


11

của martensite. Đường cong σ-ε kết quả tương tự như đường cong siêu dẻo, và
hiện tượng này được gọi là hiệu ứng giống như cao su để nhấn mạnh các điểm
tương đồng với ứng xử đàn hồi phi tuyến của cao su. Trong các SMA biểu hiện
hiệu ứng giống như cao su, ứng suất cần thiết cho detwin martensite là rất nhỏ
so với σMs. Chúng ta sẽ không xem xét hiệu ứng giống như cao su nữa, và thuật
ngữ siêu đàn hồi sẽ dùng để chỉ ứng xử siêu dẻo của các SMA.
Trong khuôn khổ của luận văn này tác giả sẽ chủ yếu quan tâm đến hiệu
ứng siêu đàn hời của vật liệu nhớ hình SMA và ứng dụng hiệu ứng đó vào việc
giảm rung động cho cáp cầu dây văng, hiểu ứng nhớ hình sẽ khơng được quan
tâm đến ở đây.
1.3.

Ứng dụng của SMA

Ứng dụng trong ngành công nghiệp ô tô

Trong các phương tiện hiện đại số lượng cảm biến và cơ cấu chấp hành
đang tăng lên rất nhiều do nhu cầu về các phương tiện phải an tồn hơn, thoải
mái hơn, với hiệu suất tốt hơn. Cơng nghệ truyền động mới mang đến nhiều cơ
hội cho các bộ truyền động sử dụng vật liệu SMA thay thế cho bộ truyền động
điện từ trong các ứng dụng ô tô. Một trong số ứng dụng SMA đã được phát triển
cho ngành công nghiệp ô tô là cần đẩy nắp ca-pô bằng SMA [5] để thay thế cho
bộ sử dụng điện từ và khí nén thơng thường hình 1.7.

Hình 1.7. Cần đẩy nắp ca-pô sử dụng vật liệu SMA
Ứng dụng trong ngành hàng không, vũ trụ
Vào những năm 1990, các nhà nghiên cứu hàng không vũ trụ tập trung vào
các kết cấu hoạt động và thích nghi theo khả năng biến hình và tối ưu hóa hệ
thống trong các điều kiện bay khác nhau, như trong chương trình Dự án Nghiên
cứu Quốc phịng (DARPA) cho máy bay 'cánh thơng minh' [13]. Boeing đã phát
triển một thiết bị khí động học có răng cưa hoạt động với bộ truyền động SMA
còn được gọi là biến đổi hình học chevron (VGC) và đã được lắp đặt trên động
cơ phản lực GE90-115B (cho máy bay thương mại Boeing 777-300 ER). Thiết
bị này đã được chứng minh là rất hiệu quả trong việc giảm tiếng ồn khi cất cánh


12

bằng cách tối đa hóa độ lệch chevron và cũng tăng hiệu quả hành trình bằng
cách giảm thiểu độ lệch chevron trong phần cịn lại của chún bay hình 1.8
[28].

Hình 1.8. Thiết bị khí động học sử dụng vật liệu SMA
Ứng dụng trong robot
Nhiều nghiên cứu ứng dụng vật liệu thông minh SMA ở cấp độ micro trong
ngành công nghiệp robot như: Mohamed Ali và Takahata [25] đã phát triển các

bộ kẹp micro thụ động có thể được kích hoạt khơng dây bằng từ trường RF hình
1.9.

Hình 1.9. (a) Thiết kế kẹp SMA và (b) bố trí mẫu của thiết kế mạch LC
Một thiết kế bộ truyền động SMA mới cho bàn tay giả đã được giới thiệu
bởi Chee Siong và cộng sự [11], trong đó hai bộ truyền động SMA được sử
dụng để điều khiển ngón tay robot thay vì sử dụng loại kéo đẩy thơng thường
hình 1.10. Một số robot bay đã được phát triển với SMA, chẳng hạn như
BATMAV [35] và Bat Robot [10]. Gần đây một con chuồn chuồn dài 44 cm
với sải cánh 63 cm được phát triển bởi Festo Group, được trang bị bốn bộ


13

truyền động SMA để điều khiển chuyển động của đầu từ bên này sang bên kia,
điều khiển đuôi lên xuống và ổn định bay. “Con ch̀n ch̀n”, cịn được gọi là
“BionicOpter”, có 13 bậc tự do, có thể bay lơ lửng giữa khơng trung và cơ động
theo mọi hướng hình 1.11.

Hình 1.10. Bàn tay robot

Hình 1.11. Ch̀n ch̀n robot

Ứng dụng trong y sinh
SMA đã tạo ra một bước đột phá đáng kể trong lĩnh vực y sinh sau khi
được giới thiệu trong phẫu thuật xâm lấn tối thiểu (MIS) [34] hình 1.12, và các
ứng dụng y sinh khác được phát triển và đưa vào nhu cầu thị trường sau khi Cục
Quản lý Thực phẩm và Dược phẩm Hoa Kỳ (FDA) phê duyệt sản phẩm phẫu
thuật Mitek (tức là Mitek Anchor) cho phẫu thuật chỉnh hình bởi vào tháng 9
năm 1989.


Hình 1.12. Stent trong mạch máu
Một ứng dụng của SMA trong y sinh nữa là trong quá trình làm liền xương
bị gãy của bệnh nhân. Những tấm này được sử dụng chủ ́u trong các tình
huống khơng thể áp dụng vật liệu đúc cho vùng chấn thương, ví dụ là vùng mặt,
mũi, hàm và hốc mắt. Chúng được đặt trên vết gãy và cố định bằng ốc vít, duy
trì sự liên kết ban đầu của xương và cho phép tái tạo tế bào. Do hiệu ứng bộ nhớ
hình dạng, khi được làm nóng, các tấm này có xu hướng phục hời hình dạng
trước đó tạo ra một lực khơng đổi có xu hướng nối các phần bị tách ra của


14

xương, giúp cho quá trình chữa lành gãy xương. Hình 1.13 minh họa thiết bị
này.

Hình 1.13. Thiết bị hỗ trợ trong chữa lành gãy xương
Ứng dụng trong giảm chấn kết cấu
Trong thập kỷ qua, nhiều bộ giảm chấn dựa trên SMA siêu đàn hồi đã được đề
xuất và ứng dụng trong việc bảo vệ chống động đất của các công trình xây dựng.
Mishra và cộng sự [23] đã cùng phát triển một loại van điều chỉnh khối lượng
(TMD) dựa trên một lị xo siêu đàn hời SMA hình 1.14. Với sự hỗ trợ của lị xo
SMA, hiệu quả kiểm sốt của TMD đã được cải thiện đáng kể. Zhou và cộng sự
[38] đã thí nghiệm kiểm soát địa chấn của một van điều tiết SMA tự định tâm,
Qian và cộng sự [31] đề xuất một van điều tiết ma sát SMA siêu đàn hồi mới,
Han và cộng sự [12] thiết kế tám thiết bị van điều tiết làm bằng dây SMA và dây
thép được lắp đặt theo đường chéo trong kết cấu khung thép hai tầng, Ma và
Cho [19] đã trình bày một van điều tiết dựa trên SMA cải tiến chủ yếu bao gồm
các dây SMA siêu đàn hồi được dự ứng lực trước và hai lò xo được nén trước.


Hình 1.14. Mặt cắt của bộ giảm chấn SMA [19]
Miller và cộng sự [21] đã đề xuất một thiết bị lai bao gờm thành phần BRBF
điển hình, cung cấp khả năng tiêu tán năng lượng và các thanh NiTi SMA siêu
dẻo, cung cấp khả năng tự định tâm và tiêu tán năng lượng hình 1.15.

Hình 1.15. Thiết bị lai do Miller và cộng sự đề xuất [21]


15

Yang và cộng sự [37] đã phát triển và đánh giá hiệu suất của một thiết bị địa
chấn hỗn hợp bao gờm ba thành phần chính: (1) một bộ dây SMA, (2) hai thanh
chống hấp thụ năng lượng và (3) hai ống thép cường độ cao để dẫn hướng thiết
bị hình 1.16.

Hình 1.16. Thiết bị lai do Yang et al đề xuất [19]
Torra và cộng sự [36] báo cáo rằng biên độ dao động của dây văng có thể giảm
bởi một van điều tiết SMA thích hợp với hệ số lớn hơn 2, điều này sẽ làm tăng
tuổi thọ của cáp. Họ đã tiến hành thử nghiệm thực tế trên dây văng dài khoảng
50 m và được trang bị hệ thống giảm chấn NiTi SMA hình 1.17.

Hình 1.17. (a) Bốn dây cáp dài 50 m và (b) Bộ giảm chấn NiTi SMA được sử
dụng trong Công việc của Torra và cộng sự [36]
1.4. Kết luận chương 1
Chương 1 đã trình bày một cách tóm tắt sơ lược về lịch sử phát triển của
vật liệu hợp kim nhớ hình (SMA), tổng quan tình hình nghiên cứu về loại vật
liệu thơng minh hay cịn gọi là vật liệu hợp kim nhớ hình (SMA) ở cả trong và
ngoài nước. Các đặc điểm chung như hiện tượng chuyển đổi pha, hiệu ứng nhớ
hình và hiệu ứng siêu đàn hồi của vật liệu nhớ hình cũng được trình bày. Ngồi
ra chương này trình bày tổng quan về tiềm năng và các ứng dụng của loại vật

liệu này trong thực tiễn đặc biệt là trong ứng dụng giảm dao động cho kết cấu
cơng trình mà ở chương sau tác giả sẽ đi sâu nghiên cứu.


×