Tải bản đầy đủ (.doc) (6 trang)

SKKN môn Tin học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (66.93 KB, 6 trang )

Bùi Văn Khánh THPT Hồng Bàng
A.- Đặt vấn đề
1.- Lý do chọn đề tài:
Công nghệ thông tin là một ngành khoa học đang phát triển rất mạnh mẽ.
Sự bùng nổ thông tin trong thời đại ngày nay, tốc độ phát triển của công nghệ
thông tin khiến cho ngời thầy không thể hết mọi điều cho học trò, mà dù có kéo
dài thời gian để dạy hết mọi điều thì rồi các kiến thức đó cũng nhanh chóng trở
nên lạc hậu,
Do đó ngời thầy cần phải tìm ra phơng pháp dạy học tích cực hơn để tăng
hiệu quả dạy và học. Dạy học sinh cách chủ động, phơng pháp học, cách học
những điều mà thực tế đòi hỏi thay vì chuyển tải một lợng kiến thức quá nhiều đến
mức chúng không thể nhớ nổi hoặc có nhớ lúc học, còn lúc cần vận dụng thì quên
sạch.
Môn Tin học là một môn học mới mẻ của học sinh THPT, học sinh cha có
khái niệm về công nghệ thông tin, khái niệm thuật toán trong các ngôn ngữ lập
trình, vì vậy rất khó cho việc dạy và học.
Vậy cần phải có phơng pháp dạy và học cho một môn học hoàn toàn mới.
2.- Mục đích yêu cầu:
Việc làm các bài tập về mảng hai chiều là một việc rất khó.
Vậy trớc hết học sinh phải hình dung đợc mảng hai chiều nh một bảng có
các dòng và các cột. Các dòng và các cột đợc đánh số liên tục bằng các số nguyên
liên tiếp. Hai đoạn số nguyên dùng để đánh số cho các dòng và các cột có thể khác
nhau. Mỗi phần tử của mảng hai chiều đợc hình dung nh giá trị của một ô của
bảng, mỗi ô có chỉ số dòng và chỉ số cột.
Giống nh mảng một chiều, có thể tham chiếu trên mỗi phần tử của mảng hai
chiều, nhng khác ở chỗ mỗi phần tử của mảng hai chiều có hai chỉ số ( chứ không
phải có một chỉ số nh mảng một chiều) và do vậy nó đợc xác định bởi tên mảng và
hai chỉ số của nó.
Mảng hai chiều là mảng một chiều mà mỗi phần tử của nó lại là một mảng
một chiều.
3.- Phạm vi nghiên cứu, phơng pháp nghiên cứu.


Nội dung bài tập về mảng hai chiều có nhiều phần, trong phạm vi nghiên
cứu này chỉ đề cập đến một phần nhỏ của bài tập về mảng hai chiều, nhng lại là
một phần rất quan trọng, đó là : tính tổng các phần tử nằm trên đờng chéo chính,
tính tổng các phần tử nằm trên đờng chéo phụ của mảng hai chiều có N cột và
N hàng.
Để thực hiện đợc mục tiêu trên, yêu cầu học sinh cần nắm vững đợc kiến
thức sau:
- Cách khai báo kiểu dữ liệu mảng hai chiều
+ Khai báo gián tiếp
+ Khai báo trực tiếp
3
Bùi Văn Khánh THPT Hồng Bàng
* Tên kiểu mảng hai chiều
* Số lợng phần tử của mỗi chiều
* Kiểu dữ liệu của phần tử
* Cách khai báo biến
* Cách tham chiếu đến phần tử
- Các kỹ năng
* Nhận biết đợc các thành phần trong khai báo kiểu mảng hai chiều
* Nhận biết đợc định danh của một phần tử mảng hai chiều xuất hiện trong
một chơng trình. Cách tham chiếu đến một phần tử của mảng hai chiều.
* Viết đợc khai báo mảng hai chiều với các chỉ số thuộc kiểu nguyên.
4.- Đối tợng, phạm vi và kế hoạch nghiên cứu:
Đối tợng là học sinh khối 11 trờng THPT Hồng Bàng, thực hiện kế hoạch
nghiên cứu trong phạm vi chơng 4 - Kiểu dữ liệu có cấu trúc.
b.- nội dung
{phần khai báo mảng hai chiều }
Program mang_2_chieu;
type mang:array[1..100,1..100] of integer;
var i,j,n:integer;

a:mang;
Begin
{ Mảng hai chiều với số hàng bằng số cột bằng N }
writeln(' nhap so hang va so cot n:='); readln(n);
{Nhập các phần tử của mảng hai chiều với số hàng bằng số cột bằng N}
for i:=1 to n do
for j:=1 to n do
Begin
write(' nhap phan tu thu a[ hang ',i,' va cot ',j,']:='); readln(a[i,j]);
end;
{ Đa ra màn hình các phần tử đã nhập của mảng ra màn hình}
for i:=1 to n do
begin
for j:=1 to n do
write(' cac phan tu cua mang la:=',a[i,j]:4);
writeln;
writeln;
end;
Readln;
End.
4
Bùi Văn Khánh THPT Hồng Bàng
Trên là các thủ tục nhập phần tử cho mảng hai chiều và đa ra các phần tử đã
nhập của mảng theo N hàng và N cột. Sau đây là các bài toán tính tổng các phần tử
của mảng nằm trên đờng chéo chính và đờng chéo phụ:
Trớc hết ta phải xác định xem các phần tử nằm trên đờng chéo chính giữa
hàng và cột có quy luật gì không: Ví dụ 1 mảng sau: Các phần tử nằm trên đờng
chéo chính nằm ở ô có mầu sẫm
Hàng = cột = 4 Hay I = J = 4
A[Hàng, Cột] J=1 J=2 J=3 J=4

I = 1 8 9 13 5
I = 2 -21 68 34 9
I = 3 5 23 56 0
I = 4 -89 21 6 7
I là chỉ số hàng trong mảng, J là chỉ số cột trong mảng, ta thấy mảng trên gồm I
hàng và J cột và I = J = 4.
Ta xét phần tử đầu tiên (từ trái sang phải) của đờng chéo chính: I:=1 ; J:=1;
Hàng 1 cột 1
Phần tử thứ hai của đờng chéo chính: I:=2 ; J:=2;
Hàng 2 cột 2
Phần tử thứ ba của đờng chéo chính: I:=3 ; J:=3
Hàng 3 cột 3
Phần tử thứ t của đờng chéo chính: I:=4 ; J:=4;
Hàng 4 cột 4
( Nếu mảng gồm N hàng và N cột thì theo cách tính nh trên, phần tử cuối
cùng của đờng chéo chính là hàng N cột N. Từ đó suy ra các phần tử nằm trên đ-
ờng chéo chính là các phần tử có hàng và cột bằng nhau ( nghĩa là I = J )
Vậy chơng trình tính tổng các phần tử nằm trên đờng chéo chính ta làm nh
sau:
{phần khai báo mảng hai chiều }
Program Tong_duong_cheo_chinh_mang_2_chieu;
type mang:array[1..100,1..100] of integer;
var Tong_duong_CC,i,j,n:integer;
a:mang;
Begin
{ Mảng hai chiều với số hàng bằng số cột bằng N }
writeln(' nhap so hang va so cot n:='); readln(n);
{Nhập các phần tử của mảng hai chiều với số hàng bằng số cột bằng N}
for i:=1 to n do
for j:=1 to n do

Begin
write(' nhap phan tu thu a[ hang ',i,' va cot ',j,']:='); readln(a[i,j]);
end;
{ Đa ra màn hình các phần tử đã nhập của mảng ra màn hình}
for i:=1 to n do
5
Bùi Văn Khánh THPT Hồng Bàng
begin
for j:=1 to n do
write(' cac phan tu cua mang la:=',a[i,j]:4);
writeln;
writeln;
end;
Tong_duong_CC:=0;
Begin
for i:=1 to n do
for j:=1 to n do
if i:=j then {phần tử có hàng bằng cột }
Tong_duong_CC:=Tong_duong_CC+A[i,j];
Writeln(' tong cac phan tu nam tren duong cheo chinh la',Tong_duong_CC);
end;
Readln;
End.
Theo cách trên ta có thể tìm ra thuật giải của bài toán tính tổng các phần tử
nằm trên đờng chéo phụ: Với ví dụ sau ta thấy các phần tử nằm ở ô sẫm mầu:
Hàng = cột = 4 Hay I = J = 4 ( N=4)
A[Hàng, Cột] J=1 J=2 J=3 J=4
I = 1 8 9 13 5
I = 2 -21 68 34 9
I = 3 5 23 56 0

I = 4 -89 21 6 7
Ta xét phần tử đầu tiên (từ trái sang phải )của đờng chéo phụ: I:=4 ; J:=1;
Hàng 4 cột 1
Phần tử thứ hai của đờng chéo chính: I:=3 ; J:=2;
Hàng 3 cột 2
Phần tử thứ ba của đờng chéo chính: I:=2 ; J:=3
Hàng 3 cột 3
Phần tử thứ t của đờng chéo chính: I:=1 ; J:=4;
Hàng 1 cột 4
( Nếu mảng gồm N hàng và N cột thì theo cách tính nh trên, phần tử cuối
cùng của đờng chéo phụ là hàng 1 cột N, phần tử đầu tiên là hàng N cột 1 Từ đó
suy ra các phần tử nằm trên đờng chéo phụ là các phần tử tổng hàng và cột
( I + J = N+1 ) suy ra J=N+1-I. Ta thấy khi I=4 (J = 4+1 - 4) => J=1, khi I=3 thì J
= 2, . . .
Vậy chơng trình tính tổng các phần tử nằm trên đờng chéo phụ ta làm nh
sau:
{phần khai báo mảng hai chiều }
Program Tong_duong_cheo_phu_mang_2_chieu;
type mang:array[1..100,1..100] of integer;
6
Bùi Văn Khánh THPT Hồng Bàng
var Tong_duong_CP,i,j,n:integer;
a:mang;
Begin
{ Mảng hai chiều với số hàng bằng số cột bằng N }
writeln(' nhap so hang va so cot n:='); readln(n);
{Nhập các phần tử của mảng hai chiều với số hàng bằng số cột bằng N}
for i:=1 to n do
for j:=1 to n do
Begin

write(' nhap phan tu thu a[ hang ',i,' va cot ',j,']:='); readln(a[i,j]);
end;
{ Đa ra màn hình các phần tử đã nhập của mảng ra màn hình}
for i:=1 to n do
begin
for j:=1 to n do
write(' cac phan tu cua mang la:=',a[i,j]:4);
writeln;
writeln;
end;
Tong_duong_CP:=0;
Begin
for i:=1 to n do
for j:=1 to n do
if j:=n+1-i then {phần tử có hàng bằng cột }
Tong_duong_CP:=Tong_duong_CP+A[i,j];
Writeln(' tong cac phan tu nam tren duong cheo chinh la',Tong_duong_CP);
end;
Readln;
End.

Qua cách tính nh trên ta có thể tính toán đợc tất cả các đờng chéo của mảng
hai chiều, tham chiếu đến các hàng, các cột của mảng hai chiều. Vì thực ra nếu
tính riêng hàng hoặc cột của mảng hai chiều thì đó chính là mảng một chiều.
Qua nghiên cứu và thực hiện việc giảng dạy kết quả nh sau:
Đối chứng Thực nghiệm
Số bài
KT
Đạt yêu cầu Không đạt y.c Số bài
KT

Đạt yêu cầu Không đạt y.c
S.L % S.L % S.L % S.L %
54(B5) 30 56% 24 44% 56(B9) 46 82% 16 18%
52(B3) 30 57% 22 43$ 55(B1) 41 75% 14 25%
Trong đó lớp B1 và lớp B3 trình độ và tơng đơng nhau ( đầu vào ), lớp B9 có
trình độ lớp B5
7

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×