ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
--------------------------------------------
HOÀNG PHÚ HIỆP
NGHIÊN CỨU BIỂU HIỆN GEN MÃ HÓA
CHẤT HOẠT HÓA PLASMINOGEN MÔ CỦA NGƯỜI
TRONG VI KHUẨN Echerichia coli
LUẬN VĂN THẠC SĨ SINH HỌC
Thái Nguyên – 2008
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
--------------------------------------------
HOÀNG PHÚ HIỆP
NGHIÊN CỨU BIỂU HIỆN GEN MÃ HÓA
CHẤT HOẠT HÓA PLASMINOGEN MÔ CỦA NGƯỜI
TRONG VI KHUẨN Echerichia coli
Chuyên ngành : Di truyền học
Mã số : 60.42.70
LUẬN VĂN THẠC SĨ SINH HỌC
Người hướng dẫn khoa học:
TS. LÊ THỊ THU HIỀN
Thái Nguyên - 2008
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
MỤC LỤC
Trang
Bảng viết tắt ............................................................................................................. 1
Danh mục các hình ................................................................................................... 2
Mở đầu .................................................................................................................... 3
Chương 1: Tổng quan tài liệu ............................................................................... 5
1.1. Bệnh tim mạch ............................................................................................. 5
1.2. Chất hoạt hóa plasminogen.......................................................................... 5
1.3. Chất hoạt hóa plasminogen mô người ......................................................... 9
1.4. Vai trò của chất hoạt hóa plasminogen mô trong quá trình làm
tan máu đông ............................................................................................. 12
1.5. Nghiên cứu ứng dụng sản xuất chất hoạt hóa plasminogen mô
người ......................................................................................................... 14
1.6. Tình hình nghiên cứu ở Việt Nam ............................................................... 18
Chương 2: Vật liệu và phương pháp nghiên cứu ................................................ 19
2.1. Vật liệu, hóa chất và thiết bị ........................................................................ 19
2.1.1. Vật liệu ..................................................................................................... 19
2.1.2. Hóa chất .................................................................................................... 20
2.1.3. Thiết bị ...................................................................................................... 20
2.2. Phương pháp nghiên cứu ............................................................................. 20
2.2.1. Điện di DNA trên gel agarose .................................................................. 20
2.2.2. Điện di protein trên gel polyacrylamide ................................................... 21
2.2.3. Phản ứng dây chuyền polymerase (Polymerase Chain
Reaction - PCR) ........................................................................................ 22
2.2.4. Xử lý DNA bằng enzyme hạn chế ............................................................ 23
2.2.5. Ghép nối DNA .......................................................................................... 23
2.2.6. Biến nạp DNA plasmid vào tế bào vi khuẩn E. coli bằng
phương pháp sốc nhiệt .............................................................................. 24
2.2.6.1. Chuẩn bị tế bào khả biến E. coli ............................................................ 24
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2.2.6.2. Biến nạp DNA plasmid vào tế bào E. coli ............................................. 24
2.2.7. Tách chiết và tinh sạch DNA plasmid ...................................................... 25
2.2.8. Xác định trình tự gen ................................................................................ 26
2.2.9. Biểu hiện protein trong vi khuẩn E. coli ................................................... 27
Chương 3: Kết quả và thảo luận ........................................................................... 28
3.1. Thiết kế vector biểu hiện mang cDNA mã hóa h-tPA................................. 28
3.1.1. Nhân đoạn cDNA mã hóa h-tPA bằng kỹ thuật PCR ............................... 28
3.1.2. Ghép nối cDNA mã hóa h-tPA vào vector pGEX6p1 và
pET21a(+) ..................................................................................................... 30
3.1.2.1. Xử lý sản phẩm PCR cDNA mã hóa h-tPA bằng enzyme
hạn chế .......................................................................................................... 30
3.1.2.2. Xử lý vector pGEX6p1 và pET21a(+) bằng enzyme hạn chế ..................... 31
3.1.2.3. Ghép nối cDNA mã hóa h-tPA vào vector pGEX6p1 và
pET21a(+) ..................................................................................................... 32
3.1.3. Chọn dòng pGEX6p1 và pET21a(+) chứa cDNA mã hóa h-tPA ................. 32
3.1.3.1. Biến nạp sản phẩm lai vào tế bào E. coli bằng phương
pháp sốc nhiệt ................................................................................................ 32
3.1.3.2. Chọn dòng pGEX6p1 và pET21a(+) chứa cDNA mã hoá
h-tPA ............................................................................................................. 33
3.1.4. Xác định và phân tích trình tự cDNA mã hóa h-tPA ............................... 37
3.2. Biểu hiện gen ............................................................................................... 43
3.2.1. Tổng hợp protein h-tPA tái tổ hợp ........................................................... 43
3.2.2. Kiểm tra protein bằng phương pháp điện di trên SDS-PAGE ................. 43
Kết luận và đề nghị ................................................................................................ 47
Tài liệu tham khảo ................................................................................................. 48
Phụ lục ..................................................................................................................... 54
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1
BẢNG VIẾT TẮT
Amp
Ampicillin
kb
Kilo base
Bp
Cặp bazơ (Base pair)
LB
Luria – Bertani
CIAP
Calf Intestinal Alkaline
Phosphatase
P
Vùng serine protease (Serine
protease)
ddNTP
Dideoxynucleoside
triphosphate
PA
Chất hoạt hóa plasmingen
(Plasminogen activator)
DNA
Deoxyribonucleic acid
PAI
Chất ức chế chất hoạt hóa
plasminogen (Plasminogen
activator inhibitor)
dNTP
Deoxynucleoside
triphosphate
PCR
Phản ứng dây chuyền
polymerase (Polymerase Chain
Reaction)
E. coli
Escherichia coli
rDNA
DNA tái tổ hợp (Recombinant
DNA)
EDTA
Ethylene Diamine Tetra-
acetic Acid
RNA
Ribonucleic acid
EGF
Vùng nhân tố sinh trưởng
biểu bì (Epidermal growth
factor region)
RNase
Ribonuclease
EtBr
Ethidium bromide
scuPA
Chất hoạt hóa urokinase sợi đơn
(single chain urokinase - type
plasminogen activator)
F
Vùng “ngón tay” (Finger)
SDS
Sodium Dodecyl Sulphate
GST
Glutathione S-transferase
SK
Streptokiase
h- tPA
Chất hoạt hóa plasminogen
mô người (Human tissue
plasminogen activator)
TAE
Tris-acetate- EDTA
IPTG
Isopropyl b-D thiogalactoside
tPA
Chất hoạt hóa plasminogen mô
(Tissue - type plasminogen
activator)
K1
Vùng Kringle 1
uPA
Chất hoạt hóa urokinase
(Urokinase - type plasminogen
activator)
K2
Vùng Kringle 2
v/p
Vòng/ phút
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2
DANH MỤC CÁC HÌNH
Hình Tên hình Trang
1.1
Cấu trúc của tPA và uPA
7
1.2
Các vùng của tPA
10
1.3
Cấu trúc h-tPA
11
1.4
Quá trình phân hủy huyết khối
13
1.5
Con đường phân giải tơ máu (Fibrin)
13
2.1
Bản đồ vector pET21a(+) và pGEX6p1
19
3.1
Sản phẩm PCR nhân cDNA mã hóa h-tPA
30
3.2
Kết quả xử lý cDNA mã hóa h-tPA và các vector biểu hiện
bằng enzyme hạn chế
32
3.3
Chọn dòng pGEX6p1
mang cDNA mã hóa h-tPA (pGEX6p1/h-tPA)
34
3.4
Chọn dòng pET21a(+)
mang cDNA mã hóa h-tPA (pET21a(+)/h-tPA)
35
3.5
Kiểm tra các vector tái tổ hợp mang cDNA mã hóa h-tPA
bằng enzyme hạn chế
36
3.6
Kiểm tra các vector tái tổ hợp mang cDNA mã hóa h-tPA
bằng kỹ thuật PCR
37
3.7
So sánh trình tự nucleotide của h-tPA trong pGEX6p1/h-
tPA và pET21a(+)/h-tPA với NM_000930
42
3.8
Kiểm tra kiểm tra protein h-tPA trong pGEX6p1/h-tPA p3
44
3.9
Kiểm tra protein h-tPA trong pET21a(+)/h-tPA p1
45
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Space Before: 0 pt, After: 0 pt
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3
MỞ ĐẦU
1. Lý do chọn đề tài
Bắt đầu từ những năm đầu thập niên 1970, các thành tựu về sinh học phân tử
và kỹ thuật di truyền giúp chúng ta có thể hiểu rõ bản chất phân tử của các bệnh
xuất hiện trên động vật, thực vật và đặc biệt là trên người. Giáo sư Paul Berg thuộc
trường đại học Stanford (Hoa Kỳ), người được nhận giải Nobel hóa học năm 1980,
là người đầu tiên tạo ra DNA tái tổ hợp (recombinant DNA- rDNA) vào năm 1972.
Kể từ đó đến nay, công nghệ rDNA và những ứng dụng trong ngành công nghiệp
dược phẩm đã thúc đẩy sự phát triển mạnh mẽ của các công ty công nghệ sinh học
và các dược phẩm tạo ra nhờ công nghệ rDNA (dược phẩm sinh học) nhằm phục vụ
và bảo vệ sức khỏe con người [44]. Trong lĩnh vực nghiên cứu tạo các loại dược
phẩm làm tan các cục máu đông để điều trị huyết khối và các rối loạn huyết khối tắc
mạch, cuối những năm 1980, thông qua công nghệ rDNA, các nhà khoa học đã
nghiên cứu và tạo ra một số loại dược phẩm sinh học là các protein tái tổ hợp có khả
năng làm tan các cục máu đông “đặc hiệu”. Một trong những protein đó, chất hoạt
hóa plasminogen mô của người (human tissue plasminogen activator- h-tPA) đã
được nhiều nhóm tác giả trên thế giới nghiên cứu và đưa vào ứng dụng trong y
dược. DNA bổ sung (complementary DNA- cDNA) của gen mã hóa h-tPA đã được
phân lập, tạo dòng, biểu hiện ở nhiều loại tế bào như tế bào trứng chuột đồng
(Chinese hamster ovary- CHO), tế bào thận chuột chưa trưởng thành... và sản xuất
dưới dạng dược phẩm tái tổ hợp [39].
Ở Việt Nam, nghiên cứu tạo các dược phẩm bằng công nghệ sinh học đang
bắt đầu được tiếp cận. Việc nghiên cứu biểu hiện gen mã hóa chất hoạt hóa
plasminogen mô trong vi khuẩn Escherichia coli tiến tới sản xuất dược phẩm sinh
học phục vụ bảo vệ sức khỏe con người có ý nghĩa khoa học và thực tiễn cao. Xuất
phát từ các lý do trên, chúng tôi tiến hành đề tài: “Nghiên cứu biểu hiện gen mã
hóa chất hoạt hóa plasminogen mô của ngƣời trong vi khuẩn Escherichia coli”.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4
2. Mục tiêu nghiên cứu
Sử dụng các kỹ thuật sinh học phân tử và công nghệ rDNA để thiết kế vector
và biểu hiện gen mã hóa h-tPA trong vi khuẩn E. coli nhằm tiến tới sản xuất protein
h-tPA tái tổ hợp có giá trị sử dụng trong y dược.
3. Nội dung nghiên cứu
- Tạo dòng gen mã hóa h-tPA trong các vector biểu hiện thích hợp.
- Biểu hiện gen mã hóa h-tPA trong vi khuẩn E. coli.
4. Những điểm mới của đề tài
Kết quả nghiên cứu của đề tài là cơ sở khoa học để tiếp tục nghiên cứu nhằm
tiến tới ứng dụng sản xuất chất hoạt hóa plasminogen mô của người - một dược
phẩm công nghệ sinh học có giá trị hoàn toàn chưa được nghiên cứu và sản xuất ở
nước ta.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5
CHƢƠNG 1: TỔNG QUAN TÀI LIỆU
1.1. Bệnh tim mạch
Bệnh tim mạch là các bệnh liên quan đến những rối loạn ảnh hưởng tới tim
và các mạch máu bao gồm bệnh mạch vành, bệnh mạch máu não, bệnh mạch máu
ngoại biên và tăng huyết áp. Bệnh tim mạch là nguyên nhân hàng đầu gây tử vong
trên thế giới. Mỗi năm, bệnh tim mạch là nguyên nhân gây tử vong cho 17,5 triệu
người và dự đoán sẽ có khoảng 25 triệu người bị bệnh tim mạch tử vong vào năm
2020. Bệnh tim mạch cũng được dự đoán sẽ là nguyên nhân lớn nhất gây tàn phế
cho người vào năm 2020. Theo Tổ chức Y tế Thế giới (WHO), cứ mỗi 2 giây có 1
người chết vì bệnh tim mạch. Cứ mỗi 5 giây thì có 1 trường hợp nhồi máu cơ tim và
mỗi 6 giây thì có một trường hợp đột quỵ. Hiện có đến 300 yếu tố nguy cơ kết hợp
với bệnh mạch vành và đột quỵ sẽ dẫn đến bệnh tim mạch [60].
Một trong những nguyên nhân sinh lý quan trọng dẫn tới các bệnh tim mạch
là do thành mạch bị tổn thương, dẫn tới hình thành huyết khối bên trong mạch máu.
Do vậy, điều trị huyết khối là một trong những phương pháp hiệu quả giúp làm
giảm nguy cơ tử vong và các biến chứng ở các bệnh nhân mắc bệnh tim mạch, đặc
biệt là ở các bệnh nhân đột quỵ và nghẽn mạch máu.
Trong phác đồ điều trị huyết khối và bệnh tim mạch, chất hoạt hóa
plasminogen (plasminogen activator, PA) đóng vai trò quan trọng và được xem là
thuốc điều trị có hiệu quả cao. Chất hoạt hóa plasmminogen có vai trò biến đổi
plasminogen thành plasmin- là chất phân hủy huyết khối (thrombolytic). Plasmin
sau đó sẽ hòa tan dần fibrin và fibrinogen từ đó làm tan huyết khối. Bằng công nghệ
gen, các PA đã được nghiên cứu và đưa vào sản xuất nhằm tạo ra thuốc đặc hiệu
trong điều trị huyết khối và bệnh tim mạch. Tuy nhiên, do quy trình sản xuất phức
tạp nên giá thành của sản phẩm này khá cao.
1.2. Chất hoạt hóa plasminogen
Chất hoạt hóa plasminogen có tác dụng quan trọng trong quá trình làm tan
khối máu đông. Chất hoạt hóa plasminogen là nhóm enzyme duy nhất chuyển chất
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6
xúc tác plasminogen từ dạng bất hoạt sang dạng hoạt động - plasmin. Vì đặc tính
này, một vài loại plasminogen khác nhau đã được sử dụng nhằm điều trị các chứng
bệnh tim mạch. Chất hoạt hóa plasminogen gồm bốn nhóm chính. Một nhóm là chất
hoạt hóa plasminogen urokinase (urokinase- type plasminogen activator, uPA). Chất
này có liên quan đến kháng thể urokinase và không kết hợp với tơ máu. Bởi vậy
chất hoạt hóa này được cho rằng có thể có liên quan đến hoạt hóa plasminogen
trong pha lỏng của huyết thanh. Loại thứ hai là chất hoạt hóa plasminogen mô
(tissue-type plasminogen activator, tPA), có khả năng tương tác với kháng thể chất
hoạt hóa mô và kết hợp với tơ máu. Loại thứ ba là streptokinase (SK). SK hoạt hóa
plasminogen bằng cơ chế trực tiếp. Cuối cùng là enzyme phân hủy tơ máu
(fibrinolysis) được giải phóng nhanh khi huyết tương bị tổn thương và giải phóng
một số chất hoạt hóa vào thành mạch [18], [47].
Chất hoạt hóa plasminogen urokinase là sản phẩm chính của thận, tồn tại
dưới dạng phân tử chất hoạt hóa urokinase sợi đơn (single chain urokinase - type
plasminogen activator - scuPA) không hoạt động. Chất hoạt hóa plasminogen
urokinase được phân lập có hai dạng: dạng có trọng lượng phân tử cao (khối lượng
54,7kDa) và dạng có trọng lượng phân tử thấp (khối lượng 31,5kDa) [18]. Chúng có
hai chức năng: chức năng chính là tham gia trong phân giải protein mô liên kết và
chức năng thứ hai được biết đến với vai trò điều khiển của tPA như chất hoạt động
sinh lý trong máu [30]. Sự hoạt hóa của scuPA do sự phân hủy xung quanh bởi
plasmin trong cấu trúc hai sợi dẫn tới việc tăng hoạt tính của plasminogen lên.
Thông qua quá trình này, một số lượng nhỏ của plasmin có thể xúc tác sản phẩm
uPA hoạt động, ảnh hưởng tới hình dạng của nhiều plasmin. Chất hoạt hóa
plasminogen urokinase có thể chỉ hoạt hóa plasminogen với sự có mặt của fibrin.
Tuy nhiên, nó sẽ không kết hợp với fibrin và sẽ không phân hủy fibrin. Trong huyết
tương người, nồng độ kháng thể uPA từ 2 đến 7ng/ml. Giá trị cao nhất thường được
tìm thấy trong bệnh nhân gan mãn tính và ung thư gan [9].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7
Gen mã hóa tPA và protein này đã được nhiều nhóm tác giả trên thế giới
nghiên cứu và đưa vào ứng dụng trong y- dược [31], [40]. Những nghiên cứu gần
đây cho thấy tPA còn đóng vai trò quan trọng trong hệ thống thần kinh [49], [56]. Ở
người và các động vật khác, tPA đóng vai trò quan trọng trong hệ thống tiêu hủy
fibrin [53], [54]. Đối với các trường hợp mắc bệnh huyết khối, sau khi tPA được
đưa vào cơ thể, dưới tác dụng của tPA, plasmin sẽ được tạo ra chủ yếu tại vị trí hình
thành huyết khối, nên tránh được tình trạng phân hủy ở những vùng khác trong cơ
thể, tuy nhiên hoạt tính chọn lọc này chỉ là tương đối [21].
Streptokinase là một chất hoạt hóa plasminogen ngoại sinh có khối lượng
47kDa. Hiện nay, Streptokinase được thu chủ yếu từ nuôi cấy vi khuẩn Streptococci
B-hemolytic. Streptokinase có chức năng tương tự với plasminogen ở người. Chức
năng chính là phụ thêm vào thay đổi cấu trúc trong phân tử plasminogen, làm trung
tâm hoạt động của phân tử plasminogen này hoạt động để hoạt hóa phân tử
plasminogen thứ hai bằng cách cắt phân tử plasminogen thứ hai tại vị trí Agr
560
-
Hình 1.1. Cấu trúc của tPA và uPA [9]
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8
Val
561
. Tiếp theo, plasminogen trong hỗn hợp Streptokinase- plasminogen sẽ được
chuyển thành plasmin, cuối cùng, hỗn hợp tách nhau hình thành dạng Streptokinase
và plasmin tự do. Cả hai loại của hỗn hợp Streptokinase đều ảnh hưởng ngang nhau
tới sự hoạt hóa của plasminogen:
Streptokinase + plasminogen → Streptokinase-plasminogen
Streptokinase- plasminogen + plasminogen → streptokinase- plasmin + plasmin
Streptokinase- plasmin + plasminogen → streptokinase- plasmin + plasmin
Streptokinase là một chất hoạt hóa plasminigen không đặc hiệu. Việc dùng
Streptokinase dẫn tới tình trạng phân hủy hệ thống. Một tác dụng không mong
muốn của việc dùng Streptokinase là gây cảm ứng việc đáp ứng của chất trợ đông
thông qua việc tăng giải phóng thrombin. Mặc dù đáp ứng trợ đông xảy ra với tất cả
các thuốc tan huyết khối, nhưng các số liệu in vitro cho thấy tác dụng này lớn nhất
với Streptokinase.
Tương ứng với các nhóm hoạt hóa plasminogen, hiện nay trên thị trường có 5
loại thuốc tan huyết khối được phép lưu hành: Alteplase tương ứng với chất hoạt hóa
plasminogen mô, có nguồn gốc từ DNA tái tổ hợp do hãng Genentech sản xuất [8];
Streptase tương ứng với streptokinase có nguồn gốc từ cầu khuẩn tan máu beta được sản
xuất bởi hãng Aventis Pharma; Urokinase biết đến với tên là Abbokinase được sản
xuất bởi hãng ImaRx Therapeutics, urokinase có nguồn gốc từ chất chiết tế bào thận
người; phức chất hoạt hóa Streptokinase plasminogen anisoylat hóa (APSAC); và
Tenecteplase, một dạng biến đổi của chất hóa hóa plasminogen mô người gắn với fibrin
và làm biến đổi plasminogen thành plasmin. Tất cả các dạng thuốc này được dùng để
điều trị nhồi máu cơ tim, huyết khối tĩnh mạch sâu, nghẽn mạch phổi, tái thông mạch.
Tuy nhiên, tùy từng trường hợp, các loại thuốc khác nhau được sử dụng để điều trị
một cách hiệu quả và ít tốn kém nhất. Ví dụ, Streptase là thuốc rẻ nhất nhưng chỉ
được dùng cho những trường hợp đặc biệt vì nhiều lý do như thiếu tính đặc hiệu với
sợi huyết, hiệu quả thấp, thời gian dùng thuốc kéo dài... Còn Alteplase được sử
dụng nhiều hơn trong điều trị nghẽn động mạch phổi lớn.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9
1.3. Chất hoạt hóa plasminogen mô ngƣời
Chất hoạt hóa plasminogen mô người là dạng chủ yếu của dạng hoạt động
nội sinh của plasminogen trong máu. Nó được tạo ra dưới dạng phân tử sợi đơn ở tế
bào thành mạch trong và được giữ trong huyết tương một cách liên tục hoặc giải
thoát một cách nhanh chóng bằng phản ứng kích thích của chất cảm ứng của tế bào
thành mạch máu [39]. Dạng hoạt động plasminogen được sử dụng làm tan huyết
khối về phương diện lâm sàng cho các quá trình điều trị tắc mạch phổi và chứng
nhồi máu cơ tim [9], [27], [46]. Không giống như nhiều protease serine khác, h-tPA
hoạt động dưới dạng sợi đơn, đặc biệt khi có mặt của fibrin hoặc fibrinogen.
Ở người, gen mã hóa h-tPA là một gen đơn bản có vị trí ở 8p12 nằm trên
nhiễm sắc thể số 8 [20]. Ở chuột, gen này cũng nằm trên nhiễm sắc thể số 8 và có vị
trí 24p22. Cấu trúc và chức năng của gen mã hóa cho h-tPA được xác định bằng kết
hợp nhân bản invitro của DNA hồng cầu từ những cá thể riêng biệt và phân lập
được các dòng từ thư viện gen người. Những dòng này được xác định bằng bản đồ
enzyme hạn chế, lai Southern blot và giải trình tự DNA [13], [23]. Kết quả xác định
và phân tích trình tự gen cho thấy, gen mã hóa chất hoạt hóa plasminogen có chiều
dài 36.594bp, bao gồm 32.720bp từ vị trí khởi đầu đến vị trí đuôi polyadenyl, có
thêm khoảng 353 và 344 bp của hai đầu 5’ và 3’, mười ba intron xen giữa mười bốn
exon, kích thước trung bình của các exon là 914bp, trong khi của intron từ 111 đến
14.257bp [20], [37 ], [41].
Thành phần base và tần suất dinucleotide trong mRNA của gen như sau:
A:26,4%; C:23,6%; G:25,3% và T:24,8% và trong trình tự ngược: A:24,8%;
C:26,3%; G:22,1% và T:26,9%. Trình tự cặp nucleotide như sau: AA(7,5%),
AC(5,2%), AG(8,1%), AT(5,6%), CA(7,7%), CC(6,8%), CG(1,9%), CT(7,3%),
GA(6,8%), GC(5,8%), GG(7,6%), GT(5,1%), TA(4,3%), TC(5,8%), TG(7,7%) và
TT(6,9%) [20].
Các kết quả phân tích cho thấy cấu trúc protein h-tPA bao gồm 5 vùng thuộc
hai chuỗi: chuỗi nặng của h-tPA (hay còn gọi chuỗi A, có khối lượng 39.000 kDa)
được xác định ở đầu amino, còn chuỗi nhẹ (hay còn gọi chuỗi B, khối lượng 33.000
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10
kDa) ở đầu carboxyl. Trong đó, chuỗi nặng chứa ba vùng: vùng “ngón tay” (F -
vùng finger ) gồm 47 amino acid từ vị trí acid amin thứ 4 - 50, người ta cũng thấy
cấu trúc tương tự trong fibronectin; vùng nhân tố sinh trưởng biểu bì (epidermal
growth factor region - EGF) từ amino acid có vị trí 51 - 87; vùng thứ ba bao gồm
hai cấu trúc kringle, vùng kringle 1 (K1 - kringle one region) từ amino acid 88 -
176, vùng kringle 2 (K2 - kingle two region) từ vị trí amino acid 177 đến 262. Các
cấu trúc đó cũng được tìm thấy trong prothrombin, plasminogen, urokinase và nhân
tố XII [14], [19], [20], [23], [38], [45], [52]. Chuỗi nhẹ của h-tPA, chứa vị trí tâm
hoạt động (gồm năm exon được ngăn cách bởi bốn intron), vùng serine protease (P -
serine protease domain) có vị trí từ amino acid 267 đến 527 và tương đồng với
chuỗi xúc tác của enzyme phân hủy protein serine khác [38], [45].
Các vùng này có thể nằm kế tiếp nhau hoặc được ngăn cách với nhau bởi các
vùng nối ngắn. Các vùng này góp phần tạo nên các đặc tính sinh học đặc hiệu của cả
phân tử. Vùng F đóng vai trò chủ yếu tạo nên tính ái lực cao với tơ máu. Hoạt tính này
thể hiện tính đặc hiệu cao của h-tPA trong quá trình phân giải các khối máu đông giàu
tơ máu. Vùng EGF thể hiện hoạt tính gắn h-tPA với bề mặt tế bào, chức năng này được
Hình1.2. Các vùng của tPA
Formatted: Font: 13 pt
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11
bảo thủ trong rất nhiều protein tPA ở động vật có vú. Vùng EGF chứa 6 cysteine, đây
là thành phần tạo nên cầu disulfide trong domain. Vùng kringle trong protease serine
rất quan trọng trong mối tương tác protein-protein trong quá trình hoạt hóa
plasminogen và phân giải tơ máu, hoặc quá trình chuyển đổi prothrombin-thrombin.
Vùng kringle 2 của h-tPA cũng liên quan chặt chẽ với quá trình gắn tơ máu và có khả
năng kích thích hoạt tính h-tPA đối với fibrin nên có vai trò quan trọng trong sự kết
hợp giữa h-tPA và tơ máu [16], [55]. Vùng kringle 1 không được xem như có liên quan
đến trong đặc tính kết hợp với tơ máu của h-tPA mặc dù trình tự amino acid của kringle
1 và kringle 2 có tính tương đồng cao [52]. Vùng P đảm nhiệm chức năng phân cắt
plasminogen bằng enzyme để tạo ra plasmin [37].
Protein h-tPA được tổng hợp và tồn tại trong tế bào màng trong mạch dưới
dạng chuỗi polypeptide sợi đơn, tuy nhiên h-tPA trưởng thành là một sợi đơn
glycoprotein có 530 amino acid; 32 amino acid trình tự đầu sẽ được cắt khỏi h-tPA
Hình 1.3. Cấu trúc h-tPA [38]
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12
trước khi h-tPA được đưa ra bên ngoài tế bào. Plasmin, kallikrein huyết tương, hoặc
nhân tố Xa hoạt hóa h-tPA bằng cách cắt h-tPA ở vị trí Arg 275- Ile 276 thành hai
sợi (A và B), hai sợi này liên kết với nhau bởi cầu disulfide [15], [20], [28], [34],
[45], [52].
Trong tự nhiên, h-tPA tồn tại ở dạng sợi đơn. Dạng hai sợi đã quan sát được
trong nuôi cấy tế bào ung thư tế bào hắc tố ở người. Nghiên cứu cho thấy h-tPA
dạng một sợi hoạt động có hiệu quả hơn dạng hai sợi. Điện di trên SDS (sodium
dodecyl sulfate) cho thấy, h-tPA dạng một sợi được chuyển thành dạng hai sợi trong
quá trình phân giải huyết khối [45]. Theo Berg, khi bị glycosyl hóa ở vị trí Asn- 184
sẽ gây ức chế trung gian đối với plasmin để chuyển h-tPA từ phân tử dạng sợi đơn
sang dạng sợi đôi, và khi glycosyl hóa ở vị trí Asn- 117 và/hoặc Asn- 448 sẽ làm
giảm kích thích hoạt hóa của h-tPA kết hợp với tơ máu và hoạt động phân giải
huyết khối [11].
1.4. Vai trò của chất hoạt hóa plasminogen mô trong quá trình làm tan máu
đông
Sự đông máu là một quá trình phức tạp qua đó hạn chế quá trình mất máu của cơ
thể. Khi thành mạch máu bị tổn thương, máu được cầm nhờ chỗ tổn thương được che
phủ bởi huyết khối chứa tiểu cầu và sợi huyết. Cơ chế đông máu được bảo thủ khá bền
vững trong tiến hóa; ở lớp thú, hệ thống đông máu bao gồm hai thành phần: tế bào (tiểu
cầu) và protein (các yếu tố đông máu). Phản ứng đông máu được kích hoạt ngay sau
chấn thương làm tổn hại đến nội mạc mạch máu. Tiểu cầu lập tức tạo nút chặn cầm máu
tại vết thương; đây chính là quá trình cầm máu ban đầu. Quá trình cầm máu thứ phát diễn
ra đồng thời; các yếu tố đông máu trong huyết tương đáp ứng trong một chuỗi phản ứng
để tạo các sợi huyết có vai trò củng cố nút chặn tiểu cầu.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13
Thành phần quan trọng nhất trong hệ thống phân giải tơ máu là glycoprotein
plasminogen, là chất do gan sinh ra và có mặt trong huyết tương và có mặt hầu hết ở
ngoài thành mạch. Plasminogen là dạng tiền enzyme (zymogen), là chất có vùng dễ
phân chia, dưới tác dụng của chất hoạt hóa plasminogen sẽ được chuyển đổi thành
dạng hoạt động và là dạng phân giải protein, plasmin. Mục tiêu đầu tiên của plasmin
là tơ máu, nhưng plasmin có thể làm giảm một vài thành phần của hỗn hợp ngoài
thành mạch và chuyển một số tiền hormone và tiền cytokine thành dạng hoạt động
của chúng. Plasmin thường liên quan đến sự di căn của bệnh ung thư. Sự phát sinh
của plasmin xảy ra trước tiên trên bề mặt tơ máu, thường có điểm kết hợp cho
plasminogen và yếu tố cơ bản hoạt hóa của nó trong máu, tPA [59].
Quá trình làm giảm
và phân hủy tơ máu sẽ
được cân bằng trong quá
trình sửa chữa thành mạch
máu bị tổn thương. Tế bào
thành mạch máu bị tổn
thương sẽ giải phóng chất
hoạt hoá plasminogen
(tPA, uPA), hoạt hóa hệ
Hình 1.4. Quá trình phân hủy huyết khối [9]
Hình1.5. Con đƣờng phân giải tơ máu (Fibrin) [58]
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14
thống phân giải tơ máu. Chất hoạt hóa plasminogen cắt plasminogen tạo thành
plasmin, là chất phân hủy huyết khối.
Nguyên tắc phân hủy tơ máu: bản thân quá trình phân hủy tơ máu được điều
hòa bởi các chất ức chế chất hoạt hoá plasminogen (plasminogen activator
inhibitors - PAIs) và chất ức chế plasmin (α2-antiplasmin), đây là những chất làm
chậm quá trình phân giải tơ máu. PAI-1, một chất quan trọng của PAI, làm cho tPA
và uPA không hoạt động và được giải thoát khỏi tế bào thành mạch và hoạt hóa tiểu
cầu. Chất ức chế tiền plasmin là α2-antiplasmin, rất nhanh giải phóng plasmin tự do
không hoạt hóa thoát khỏi huyết khối. Một vài α2- antiplasmin thường liên kết với
nhân tố XIIIa với tơ máu trong quá trình hình thành cục máu đông, nó có thể ngăn
ngừa quá mức plasmin hoạt động trong cục máu. Cả tPA và uPA đều nhanh chóng
được phân hủy bởi thận, một bộ phận của ngăn ngừa phân hủy huyết khối quá mức.
1.5. Nghiên cứu ứng dụng sản xuất chất hoạt hóa plasminogen mô ngƣời
Như đã trình bày, chất hoạt hóa plasminogen mô người đã được thương mại
hóa với tên gọi là Alteplase do hãng Genentech sản xuất. Đây là thuốc làm tan
huyết khối đặc hiệu (nghĩa là chúng kết hợp chọn lọc với plasminogen đã gắn với tơ
máu) [43], [44]. Dược phẩm này đã được Cơ quan Quản lý Thực phẩm và Dược
phẩm Hoa Kỳ (Food and Drug Administration - FDA) công nhận như là một dạng
thuốc chữa bệnh đột quỵ vào năm 1996. Về phương diện lâm sàng, h-tPA được xem
là thuốc tan huyết khối đặc hiệu (chúng kết hợp chọn lọc với plasminogen đã gắn
với tơ máu) và được lựa chọn để điều trị nhồi máu cơ tim, tắc mạch phổi, đột quỵ,
tắc động mạch ngoại biên và các bệnh khác liên quan đến tan huyết khối [36], [40].
Trong những năm từ cuối 1990 đến đầu năm 2000, tỷ lệ bệnh nhân bị đột quỵ được
điều trị bằng h-tPA chỉ chiếm 2%. Khoảng 9 năm trở lại đây, tỷ lệ bệnh nhân mắc
bệnh tim mạch và bị đột quỵ được điều trị bằng h-tPA tăng lên đáng kể, chiếm
khoảng 10- 20%.
Thuốc này có ưu điểm là không có tác dụng phụ, không gây chảy máu hệ
thống và hiện đang thuộc loại có doanh thu rất cao trên thị trường. Từ năm 1998
đến năm 2003, doanh thu mỗi năm đạt khoảng 200 triệu USD. Dự kiến, tới năm
2010 doanh thu đạt được lên tới 600 USD [22], [58].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15
Trong những nghiên cứu ứng dụng đầu tiên về h-tPA, các tế bào u nuôi cấy
được sử dụng làm nguồn sản sinh h-tPA cho các mục đích trị bệnh [26]. Tuy nhiên,
các ứng dụng lâm sàng đòi hỏi quy trình sản xuất protein thích hợp với sản lượng và
độ tinh sạch cao. Vì vậy, nghiên cứu tạo h-tPA tái tổ hợp sử dụng các tế bào động
vật có vú cũng được triển khai. Các tế bào buồng trứng của chuột đồng Trung Quốc
(Chinese hamster ovary - CHO) đã được chuyển gen h-tPA để tổng hợp protein h-
tPA tái tổ hợp [17]. Các sản phẩm DNA tái tổ hợp tạo ra từ hệ thống lên men môi
trường nuôi cấy tế bào động vật có vú cũng được thu nhận và làm sạch. Những nỗ
lực xây dựng quy trình đơn giản tạo h-tPA tái tổ hợp hiệu quả với giá thành hạ từ vi
sinh vật, đặc biệt là từ vi khuẩn, và cụ thể hơn là từ E. coli, rất được quan tâm
nghiên cứu [23], [40].
Vi khuẩn E. coli: Gen mã hóa h-tPA đã được nghiên cứu và biểu hiện trên vi
khuẩn E. coli từ những năm 1983 [23], [40]. Trong nghiên cứu của Pennica và đồng
tác giả (đtg), lượng h-tPA thu được chỉ đạt khoảng 50- 80 µg/l dịch nuôi, tương
đương với 1500- 2400 phân tử h-tPA có hoạt tính/ tế bào [40]. Đến năm 1998, sau khi
tinh sạch, hàm lượng protein h-tPA thu được vào khoảng 180 µg/l dịch nuôi [42].
Gần đây, Zhu và đtg đã biểu hiện thành công protein h-tPA trong vi khuẩn E. coli với
hàm lượng protein h-tPA chiếm 30% tổng số protein của vi khuẩn [57].
Nấm men: Để khắc phục những nhược điểm của vi khuẩn nói chung và E.
coli nói riêng, người ta cũng có thể dùng hệ thống biểu hiện là các sinh vật nhân
chuẩn bậc thấp làm vật chủ tách dòng, như nấm men (ví dụ, Saccharomyces
cerevisiae, Hansenulla polymorpha, Pichia pastoris) hay tảo. Ưu điểm của nấm
men là chúng có thể tiến hành rất nhiều dạng biến đổi (cấu trúc) protein và giống
như vi khuẩn, chúng có tốc độ sinh sản tương đối nhanh, nhu cầu dinh dưỡng khá
đơn giản, không sản sinh nội độc tố và có khả năng thích ứng cao với sản xuất quy
mô lớn. S. cerevisiae là nấm men được sử dụng rộng rãi nhất nhằm sản xuất các
protein tái tổ hợp. Hiện nay, nấm P. pastoris cũng được sử dụng rộng rãi, hơn 120
protein tái tổ hợp đã được biểu hiện ở tế bào chủ này trong đó rất nhiều gen có
nguồn gốc từ người và động vật.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16
Chất hoạt hóa plasminogen mô người là một trong những protein động vật
được tổng hợp trên nấm Aspergillus nidulans [51], S. cerevisiae [35] và Aspergillus
niger. Đối với nấm A. niger, hàm lượng h-tPA được tổng hợp khoảng 0,07mg/g
sinh khối và tăng lên 1,9mg khi bổ sung peptone. Chất hoạt hóa plasminogen mô
người được tạo ra trong A. niger bị cắt thành dạng hai sợi có trọng lượng phân tử
giống với dạng h-tPA hai sợi của khối u người, dạng hai sợi này thường xuất hiện
sau 16h nuôi cấy tế bào. Tuy nhiên, thông thường chỉ dưới 1% sản phẩm h-tPA tạo
ra trong A. niger có hoạt tính, và dạng h-tPA hoạt hoá không bị mất khỏi dịch trong
suốt quá trình nuôi cấy. Dạng h-tPA hoạt hoá không xuất hiện bề mặt trong giai
đoạn tĩnh của bể nuôi cấy, có thể do quá trình tổng hợp không đúng hoặc do quá
trình phân hủy protein đã xảy ra ở vùng phân hủy protein của protein h-tPA.
Tế bào động vật có vú: Do yêu cầu đa số các sản phẩm protein tái tổ hợp
cần sự biến đổi về cấu trúc nên các tế bào prokaryote không đáp ứng được. Các tế
bào eukaryote bậc thấp như nấm men hay tế bào côn trùng cũng không đáp ứng
được đối với các quá trình biến đổi tương tự ở động vật có vú như phân giải protein,
liên kết các tiểu đơn vị hoặc nhiều phản ứng kết hợp khác nhau như glycosylation,
methylation, carboxylation, amidation, hình thành các cầu nối disulfide hoặc
phosphoryl hóa các gốc amino acid, cho nên hệ thống tế bào động vật có vú như tế
bào trứng chuột đồng Trung Quốc (Chinese hamster ovary - CHO) và tế bào thận
chuột chưa trưởng thành (baby hamster kidney - BHK) thường được lựa chọn để
sản xuất các protein trị liệu cho người. Khoảng 60% protein tái tổ hợp dùng làm
dược phẩm được sản xuất từ các hệ thống tế bào vật chủ này.
Tuy nhiên, việc sử dụng tế bào động vật làm tế bào chủ có một số nhược điểm
như: Tốc độ sinh trưởng của tế bào động vật rất chậm so với tế bào vi sinh vật, vì
thế, sản lượng của chúng khá thấp và việc duy trì điều kiện nuôi cấy vô trùng trong
một thời gian dài thường gặp nhiều khó khăn hơn. Các tế bào động vật được bao
bọc bởi màng huyết tương, mỏng hơn nhiều so với thành tế bào dày chắc thường
thấy ở vi sinh vật hoặc tế bào thực vật và kết quả là chúng rất dễ bị biến dạng và vỡ.
Trong khi đó nhu cầu dinh dưỡng của tế bào động vật chưa được xác định một cách
đầy đủ, và môi trường nuôi cấy thường đòi hỏi bổ sung huyết thanh máu rất đắt tiền.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17
Do vậy giá thành sản xuất các sản phẩm sử dụng các hệ thống này khá cao. Sự lựa
chọn hệ thống biểu hiện trên có thể ảnh hưởng đến đặc tính, chất lượng và giá thành
của sản phẩm cuối cùng [12].
Động - thực vật biến đổi gen: Hiện nay, động vật và thực vật biến đổi
gen cũng được đưa vào ứng dụng để sản xuất các protein trị liệu [24], [25],
[32], [50]. Động vật biến đổi gen được thiết kế sao cho có thể tiết protein vào
các dịch thể dễ thu nhận như sữa (bò, cừu, dê...). Người ta đã tính toán và thấy
rằng sử dụng các động vật biến đổi gen để tổng hợp các protein trị liệu tái tổ
hợp sẽ có thể rẻ hơn bốn đến năm lần so với sử dụng các tế bào động vật có vú
nuôi cấy. Bên cạnh đó, thực vật, đặc biệt là ngô, cũng đã được nghiên cứu về
khả năng sản xuất các protein tái tổ hợp. Từ năm 1990, protein tái tổ hợp được
sản xuất từ cây thuốc lá và khoai tây chuyển gen để phục vụ cho y- dược đã bắt
đầu được thương mại hóa. Mười lăm năm tiếp theo, các loại DNA tái tổ hợp
được chuyển vào thực vật để thu nhận protein chữa bệnh như kháng sinh, sản
phẩm máu, cytokine, hormone sinh trưởng, enzyme tái tổ hợp, vaccine người và
động vật… [33]. Thực vật có nhiều ưu điểm hơn so với động vật trong việc tạo
ra các protein tái tổ hợp. Giống như nấm men, thực vật có khả năng tự thực
hiện nhiều khâu để tạo ra các protein phức tạp với chi phí cho trồng trọt khá
thấp. Sử dụng thực vật biến đổi gen không phát sinh các tranh cãi về đạo đức,
cũng như có thể tránh được các nguy cơ liên quan đến các virus, động vật, các
chất độc vi khuẩn. Tuy nhiên, hệ thống biểu hiện là thực vật biến đổi gen vẫn
còn một vài hạn chế. Thứ nhất, sản lượng protein tái tổ hợp do hệ thống biểu
hiện này sinh ra còn tương đối thấp. Thứ hai, tác dụng trị liệu của cùng một sản
phẩm protein có nguồn gốc thực vật và động vật là khác nhau. Ví dụ, nhiều
protein của người thường bị glycosyl hóa, nghĩa là sau khi được tạo ra, các
protein thường được gắn thêm một số gốc đường đặc trưng để giúp chúng kiểm
soát hoạt động chức năng một cách bình thường. Các nhà nghiên cứu đã thao
tác để vượt qua được hàng rào này bằng cách tạo ra các thực vật biến đổi gen
có thể tiến hành quá trình glycosyl hóa protein. Các thực vật biến đổi gen này
mang các gen của người mã hóa cho các enzyme xúc tác quá trình gắn các phân
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18
tử đường vào protein. Một nhóm nghiên cứu ở Hà Lan đã tiến hành biến đổi vật
chất di truyền của một cây thuốc lá và sau đó lai cây thuốc lá biến đổi gen này
với một cây được thiết kế để sinh ra một loại kháng thể của chuột. Kết quả là
kháng thể này cũng có dạng glycosyl hóa, rất giống với kháng thể sinh ra bởi
chuột hơn bất kỳ kháng thể thực vật nào được sinh ra trước đó. Có thể thấy rõ
rằng, khoa học hiện đại có vai trò rất to lớn trong việc hoàn thiện các hệ thống
biểu hiện protein tái tổ hợp.
1.6. Tình hình nghiên cứu ở Việt Nam
Ở Việt Nam, hướng nghiên cứu gen/ protein có giá trị sử dụng trong y dược,
tiến tới biểu hiện sản xuất protein tái tổ hợp là rất cần thiết và mới được tiếp cận
nghiên cứu ở nước ta trong thời gian gần đây. Một số phòng thí nghiệm đã tiến hành
phân lập, xác định trình tự một số gen từ các nguồn sinh vật khác nhau, trong đó có
cả gen người để nghiên cứu ứng dụng sản xuất dược phẩm công nghệ sinh học.
Trong đó, Viện Công nghệ sinh học đã thành công trong nghiên cứu tổng hợp
Trihobakin, protein tái tổ hợp có nguồn gốc thực vật có khả năng ức chế các dòng tế
bào ung thư cũng như thành công trong việc tinh chế protein bất hoạt ribosome
(RIP) phân lập từ cây mướp đắng [2], [3]. Cũng tại Viện Công nghệ sinh học, gen
mã hóa interleukin-2 của người, tác nhân điều biến miễn dịch, được sử dụng trong
điều trị ung thư, HIV, các bệnh nhiễm trùng, dị ứng đã được tách dòng và biểu hiện
[5], [6]; iterleukin-2 của người rh-LL2MM bị đột biến cũng được biểu hiện thành
công [4]. Ngoài ra, các nhà khoa học tại Trường Đại học Khoa học Tự nhiên, Đại
học Quốc gia thành phố Hồ Chí Minh cũng đã triểu khai tạo dòng biểu hiện mini-
proinsulin của người trong E. coli [7]. Bên cạnh đó, các nghiên cứu tạo vaccine tái
tổ hợp cũng được quan tâm nghiên cứu ở nhiều phòng thí nghiệm [1]. Tuy nhiên,
cho đến nay chưa có một công bố nào về nghiên cứu sản xuất h-tPA tái tổ hợp ở
nước ta, vì vậy đề tài này sẽ làm tiền đề cho quá trình nghiên cứu và sản xuất chất
hoạt hóa plasminogen tái tổ hợp.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19
CHƢƠNG 2: VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.1. Vật liệu, hóa chất và thiết bị
2.1.1. Vật liệu
Trong nghiên cứu này, chúng tôi sử dụng vật liệu ban đầu là cDNA mã hóa
h-tPA đã được chọn dòng trong vector pUC18 (pUC18/ h-tPA) trong nghiên cứu
trước đây [10].
Vector biểu hiện gồm hai loại: pET21a(+) được mua từ Hãng Novagen (Mỹ)
và pGEX6p1 được mua từ Hãng Pharmacia.
Bản đồ hai vector được trình bày trong hình 2.1:
Hình 2.1. Bản đồ vector pET21a(+) và pGEX6p1
Chủng E.coli DH5α được mua từ Hãng Invitrogen (Mỹ) và chủng E.coli
BL21(DE3) pLysS Competent Cells từ Hãng Promega (Mỹ).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20
2.1.2. Hóa chất
Các hóa chất sử dụng trong nghiên cứu được đặt mua từ nhiều hãng khác
nhau. Danh sách các hóa chất cần thiết, các dung dịch sử dụng và trình tự mồi được
trình bày tương ứng ở các Bảng 1, 3 và 4 trong phần Phụ lục.
2.1.3. Các thiết bị
Các thiết bị được sử dụng thuộc Phòng Thí nghiệm Trọng điểm Công nghệ
Gen và phòng Công nghệ ADN Ứng dụng, Viện Công nghệ sinh học, Viện Khoa
học và Công nghệ Việt Nam được mua từ nhiều hãng khác nhau. Các thiết bị
thường sử dụng được liệt kê ở Bảng 2 phần Phụ lục.
2.2. Phƣơng pháp nghiên cứu
2.2.1. Điện di DNA trên gel agarose
Mục đích: Điện di giúp phân tách các đoạn DNA có kích thước khác nhau,
từ đó xác định được sự có mặt các đoạn DNA quan tâm.
Nguyên tắc: Nguyên tắc của phương pháp này dựa trên đặc tính tích điện của
hầu hết các phân tử. Các phân tử ở dạng ion khác nhau về mức độ ion hóa, kích
thước phân tử có thể tách riêng biệt theo khả năng di động trong trường điện từ về
hai cực âm (-) và dương (+). Các phân tử DNA có khối lượng và điện tích khác nhau
được tách ra khi di chuyển từ cực âm sang cực dương của máy điện di trong một điện
trường có điện thế và cường độ thích hợp.
Hóa chất điện di: agarose 0,8- 1,5% (phụ thuộc vào kích thước phân tử
DNA. Ở đây, chúng tôi sử dụng agarose nồng độ 0,8% bởi nồng độ này phù hợp với
kích thước của đoạn gen), dung dịch đệm TAE 1X.
Quy trình điện di:
- Chuẩn bị gel agarose: hòa tan 0,8 gram agarose vào 100ml dung dịch TAE
1X, đun sôi cho dung dịch tan hoàn toàn. Để nhiệt độ xuống khoảng 50- 60
o
C, đổ
dung dịch agarose vào khay gel điện di có cài sẵn lược thích hợp. Sau 30- 60 phút,
khi gel đã đông cứng, gỡ lược ra và đặt vào bể điện di, đổ đệm TAE 1X ngập cách
mặt gel từ 1- 2 mm [48].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21
- Mẫu DNA được trộn với 3- 5l đệm tra mẫu và được tra vào các giếng trên
gel. Chạy điện di với hiệu điện thế 100V, 60- 80mA trong khoảng 30 phút.
- Bản gel được lấy ra khỏi khuôn và ngâm 5 phút trong dung dịch EtBr nồng
độ 0,5g/ml, sau đó rửa sạch bằng nước.
- Quan sát và chụp ảnh trên máy Bio- Rad với tia UV có bước sóng 320nm.
2.2.2. Điện di protein trên gel polyacyamide
Nguyên tắc: Các tiểu phần protein được xác định dựa vào tốc độ di chuyển
khác nhau của các tiểu phần protein trong trường điện. Ở một số điều kiện nhất
định, protein ở dạng ion và có mức độ ion hóa khác nhau, nên có thể tách riêng biệt
chúng theo khả năng di động trong trường điện từ về hai cực âm (-) và dương (+).
Kết quả nhận được phổ các vạch protein khác nhau. Phương pháp điện di là một
phương pháp nghiên cứu sinh hóa thông dụng và rất tiện lợi. Phương pháp điện di
protein thường được tiến hành trên chất mang ở dạng gel là lưới polymer. Lưới
polymer làm chậm tốc độ di chuyển các phân tử protein theo khối lượng, kích
thước, độ mang điện của chúng.
Phương pháp điện di protein trên gen polyacrylamit có chứa SDS được tiến
hành theo phương pháp của Laemmli [29]. Thành phần gel được trình bày ở Bảng
11 phần Phụ lục. Quy trình điện di như sau:
- Pha mẫu với Protein Sample Buffer 4X và biến tính mẫu ở 95
o
C trong 5
phút. Dùng 10 l mẫu tra vào từng giếng và tiến hành điện di trên gel
polyacrylamide 10% gồm gel cô 4% và gen tách 10%.
- Đổ dung dịch chạy (Running buffer) SDS- Page 1x và chạy điện di: Chạy
ở hiệu điện thế 110V trong 2- 3 giờ. Theo dõi đến khi thấy màu dung dịch đệm mẫu
bắt đầu thoát ra ngoài dung dịch đệm chạy thì kết thúc.
- Bản gel được nhuộm trong dung dịch nhuộm (Comasive Brilliant Blue
R250) trong khoảng từ 30 phút đến 1 giờ.
- Tẩy gel bằng cách ngâm bản gel đã nhuộm vào dung dịch tẩy (acid acetic
7%, metanol 20%) đến khi bản gel màu trắng thì kết thúc quá trình tẩy. Thời gian
tẩy khoảng 30 phút. Sau đó gel được bảo quản và chụp ảnh.