Tải bản đầy đủ (.ppt) (28 trang)

Các hàm truyền (xử lý số tín HIỆU DSP)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (210.96 KB, 28 trang )

Xử lý số tín hiệu

Chương 6:

Các hàm
truyền


1. Các dạng mô tả tương đương của
bộ lọc số
Đáp ứng
xung h(n)

Phương trình
sai phân I/O

Phương trình
chập vào/ra

Hàm truyền
H(z)

PP thiết kế
bộ lọc
Các tiêu
chuẩn
thiết kế

Đáp ứng tần
số H(ω)


Thực hiện
sơ đồ khối

Xử lý khối

Sơ đồ
cực/zero

Xử lý mẫu


2. Các hàm truyền
5  2z  1
H ( z) 
1  0.8 z  1

Ví dụ: xét hàm truyền sau:
 Từ H(z) suy ra được:
1. Đáp ứng xung h(n)
2. Phương trình sai phân I/O thỏa bởi h(n)
3. Phương trình chập I/O
4. Thực hiện sơ đồ khối
5. Sơ đồ cực/ zero
6. Đáp ứng tần số H(ω)


2. Các hàm truyền
Các dạng tương đương toán học của hàm truyền có thể dẫn đến
các phương trình sai phân I/O khác nhau và các sơ đồ khối khác
nhau cùng thuật tốn xử lý mẫu tương ứng

Ví dụ: Với hàm truyền
5  2z 1
Có thể viết dưới dạng:
H ( z) 
a. Dạng 1
1  0.8 z  1


b.

Dạng 2

5  2z  1
7.5
H ( z) 
 2.5 
1
1  0.8 z
1  0.8 z  1
5  2z  1
1
H ( z) 

(
5

2
z
)W ( z )
1

1  0.8 z


3. Đáp ứng hình sine
A.

Đáp ứng trạng thái ổn định
- Tín hiệu vào: sine phức, tần số ω0, dài vơ hạn

x(n) e j0 n

Ngõ ra có thể xác định bằng 2 cách:
(1) Chập trong miền thời gian
-



y (n)  h(m) x(n  m) H (0 )e j0 n


(2)

Phương pháp miền tần số
Phổ tín hiệu vào:
X() = 2( - 0) + (các phiên bản)


3. Đáp ứng hình sine
Phổ tín hiệu ra: (phiên bản thứ nhất)
Y() = H()X() = 2H(0)( - 0)

DTFT ngược:
1
y ( n) 
2


j 0 n
j n
Y
(

)
e
d


H
(

)
e
0




Tổng quát: H() là số phức

H 0   H  0  e
e


j 0 n

  H 0  e
H

j arg H  0 

j0 n  j arg H  0 


3. Đáp ứng hình sine


Tín hiệu vào gồm 2 tín hiệu sine tần số 1 và 2 kết hợp
tuyến tính & bộ lọc tuyến tính:

A1e

j1n

 A2 e

j 2 n

H

 

A1 H 1  e


j (1n arg H (1 ))

 A2 H 2  e


j ( 2 n arg H ( 2 ))

Tín hiệu vào tổng quát: phân tích Fourier thành các
thành phần sine rồi tính ngõ ra.


3. Đáp ứng hình sine


Độ trễ pha (Phase Delay):

arg H  
d   
 arg H    .d  



Độ trễ nhóm (Group Delay):

d
d g   
arg H  ω
d


=>

e

jn

  H   e
H

j  n  d    


3. Đáp ứng hình sine


Bộ lọc có pha tuyến tính: d()=D (constant)
 pha arg H   D tuyến tính theo 
 Các thành phần tần số đều có độ trễ D như nhau:

 

e

j n

  H   e
H

j ( n  D )



3. Đáp ứng hình sine
B.


Đáp ứng q độ
Tín hiệu vào: sine, bắt đầu tại t=0

x(n) e

j0 n

1

u (n)   X  z  
1  e j 0 z  1
Z

j 0
z

e
1
với ROC:



Giả sử bộ lọc có hàm truyền H(z):

H  z 


1 

p1 z  1

N  z
1  p2 z  1 ... 1  pM z  1



 




3. Đáp ứng hình sine




Ngõ ra: Y(z) = H(z).X(z)

N  z
Y  z 
1  e j0 z  1 1  p1 z  1 1  p2 z  1 ...1  pM z  1 



Giả sử bậc của N(z) nhỏ hơn M+1, khai triển phân số từng phần:


H  0 
B1
BM
Y  z 

 
j 0  1
1
1  p1 z
1  pM z  1
1 e z

với ROC: |z|>1


3. Đáp ứng hình sine


Biến đổi ngược:

y ( n )  H  0  e


j 0 n

n
1 1

 B p   BM p


Giả sử bộ lọc ổn định:

pi  1 , i 1, M



n
i

n 

p    0 , i 1, M

y (n)    H 0 e
n 

j 0 n

n
M

, n 0


3. Đáp ứng hình sine








pin  n
 0

Bộ lọc ổn định nghiêm ngặt, các hệ số
Cực có biên độ lớn nhất pI thì hệ số tương ứng sẽ tiến về
0 chậm nhất.
pi .
Ký hiệu:  max
i
Hằng số thời gian hiệu quả neff là thời gian tại đó



neff



với  là mức độ nhỏ mong muốn, ví dụ 1%

neff

1
ln 
ln 





ln 
1
ln 



3. Đáp ứng hình sine


Đáp ứng unit step: tín hiệu vào x(n) = u(n).
j 0 n
Trường hợp đặc biệt của e
u (n) với 0 = 0 (z = 1)

y (n) H  0   B p  B2 p  ...  BM p , n 0
n
1 1

n
2

n
M


y  n   n
  H  0

H(0) coi như đáp ứng DC của bộ lọc.
Độ lợi DC:


H  0  H  z 



z 1

 h(n)
n 0


3. Đáp ứng hình sine


Đáp ứng unit step thay đổi: tín hiệu vào x(n) = (-1)nu(n).
j 0 n
u (n) với 0 =  (z = -1)
Trường hợp đặc biệt của e

y ( n)  H    e

jn

n
1 1

n
2

n

M

 B p  B2 p  ...  BM p , n 0

y  n     H    1
n 

n

Độ lợi AC:

H   H  z 



n

(

1
)
h( n)

z  1
n 0


3. Đáp ứng hình sine
Ví dụ
1. Xác định đáp ứng quá độ đầy đủ của bộ lọc nhân quả

với tín hiệu vào dạng sine phức, tần số 0, cho

5  2z  1
H  z 
1  0.8 z  1

2.

Xác định đáp ứng DC và AC của bộ lọc trên. Tính hằng
số thời gian hiệu quả neff để đạt đến  = 1%


3. Đáp ứng hình sine


-

Bộ lọc ổn định dự trữ (marginally stable): có cực nằm
trên vịng trịn đơn vị.
Xét bộ lọc H(z) có cực trên vịng trịn đơn vị
*
1

Bộ lọc sẽ có cực liên hợp: p e

p1 e j1

.

 j1


-

Giả sử các cực khác nằm trong vòng tròn đơn vị

-

Đáp ứng quá độ

y (n) H 0 e j0 n  B1e j1n  B1*e  j1n  B2 p2n  ...

y (n)  n
  H 0 e j0 n  B1e j1n  B1*e  j1n


3. Đáp ứng hình sine


Nếu

0 1

ổn định. Ví dụ:

thì tạo ra cộng hưởng và ngõ ra không

0 1  e

j1


e

j 0

 p1

N ( z)
Y ( z) 
(1  p1 z  1 ) 2 (1  p2 z  1 )...(1  pM z  1 )
B1
B1'
B2



 ...
1
1 2
1
1  p1 z
(1  p1 z ) 1  p2 z


Biết:

1
Z 1
n




(
n

1
)
a
u ( n)
1 2
(1  az )

 y (n) B1e j1n  B1' (n  1)e j1n  B2 p2n  ...


4. Thiết kế cực – zero
1.

Các bộ lọc bậc nhất
Ví dụ: Thiết kế bộ lọc bậc 1 có hàm truyền dạng
G (1  bz  1 )
H ( z) 
1  az  1
với 0< a,b <1

|H()|

ej
|H(0)|

-b


a

1

|H()|
0






4. Thiết kế cực – zero
G (1  b)
H  0  H  z 1 
1 a
G (1  b)
H    H  z  1 
1 a
H ( ) (1  b)(1  a)


H (0) (1  a )(1  b)
Cần 2 phương trình thiết kế để xác định a và b.


4. Thiết kế cực – zero
Ví dụ : thiết kế bộ lọc có H()/H(0) = 1/21 và neff = 20 mẫu
để đạt  = 1%


a 

1 / neff

1 / 20

(0.01)

0.8

(1  b)(1  0.8) 1
  b 0.4
(1  b)(1  0.8) 21
1
1

0
.
4
z
H(z) G
1  0.8 z  1


4. Thiết kế cực – zero
2. Các bộ cộng hưởng
Thiết kế một bộ lọc cộng hưởng bậc hai đơn giản, đáp ứng
có một đỉnh đơn hẹp tại tần số 0
|H()|2

1

1/2

0

0

/2






4. Thiết kế cực – zero
- Để tạo 1 đỉnh tại  = 0, đặt 1 cực p R.e j0 , 0 < R < 1
và cực liên hợpp * R.e 

j 0

G
1  R.e j0 z  1 1  R.e  j0 z  1
G

1  a1 z  1  a2 z  2

H ( z) 
p
R

0
- 0

1





p*

a1  2 R cos 0 ,

a2 R 2




4. Thiết kế cực – zero
-

Đáp ứng tần số:

H   

-

G
1  R.e j0 e  j 1  R.e  j0 e  j



Chuẩn hóa bộ lọc:
H  0 





H 0  1

G

1
j 0  j 0
j 0 j 0
1  R.e e
1  R.e e





 G (1  R) 1  2 R cos( 20 )  R 2




4. Thiết kế cực – zero
-


Độ rộng 3-dB fullwidth: độ rộng tại ½ cực đại của đáp ứng biên độ bình phương

H  

2

1
1
2
 H 0  
2
2

-

Tính theo dB:

-

Giải ra 2 nghiệm 1 và 2 =>  = 2 - 1

H  
1
20 log10
10 log10    3dB
H  0 
 2



×