Các phương pháp biến đổi trong chứng minh BĐT
Tác giả: minhbka đưa lên lúc: 14:09:13 Ng y 09-11-2007à
1.Biến đổi tương đương : khi sử dụng phép biến dổi tương đương cần chú ý tới dấu của BĐT khi đảo
chiều hay nhân thêm biểu thức...
Ví dụ:Cho hai số a, b thỏa mãn điều kiện , chứng tỏ rằng :
Giải:
, bất đẳng thức này đúng do giả thiết
Đẳng thức xảy ra
2.Đưa về hàm số : khi đưa về hàm số ta thường sử dụng tính chất đơn điệu và liên tục
Ví dụ:Cho các số x, y thỏa mãn : và .
Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức :
Giải:
Từ giả thiết . Ta có :
Đặt với ; có
P là hàm nghịch biến trong đoạn
( đạt khi hoặc ).
( đạt khi ).
3.Sử dụng phương pháp đánh giá: đây là PP tương đối khó trong việc Cm BĐT,tùy từng dạng bài mà
có cách đánh giá khác nhau.Cần chú ý điều kiện đề bài để có hướng đi phù hợp nhất cho bài toán
Ví dụ 1:
Cho là ba số thay đổi, nhận giá trị thuộc đoạn [0 ; 2]. Chứng minh rằng:
Giải:
Do giả thiết
(đpcm)
Đẳng thức xảy ra chẳng hạn khi
Ví dụ 2:
Chứng minh rằng với mọi số nguyên ta đều có:
Giải:
bất đẳng thức cần chứng minh đúng với .
Với , đpcm (1)
Ta có :
( đpcm).
Ví dụ 3:
Cho . Chứng minh:
Giải:
Dấu “ ” xảy ra hoặc 2 trong 3 số bằng 1, số còn lại bằng 0
4.Sử dụng tam thức bậc 2:
Ví dụ:
Chứng minh rằng với mọi u, v thỏa mãn điều kiện , ta luôn có:
Giải:
- Nếu thì bất đẳng thức cần chứng minh hiển nhiên đúng.
- Nếu thì với và
đpcm
Vế trái (1) là tam thức bậc 2 với
nên (1) đúng ( đpcm)
5.Phương pháp quy nạp:
Ví dụ:
Chứng minh rằng với thì
Hãy nêu và chứng minh một kết quả tổng quát hơn kết quả của bài toán trên.
Giải:
Ta sẽ chứng minh kết quả tổng quát sau đây:
Với .
Chứng minh ( bằng quy nạp toán học theo n):
- Với ( do .
- Giả sử khẳng định đúng với , ta sẽ chứng minh khẳng định cũng đúng với .
Do khẳng định đúng với
Vì
Mà vế phải bằng
Vậy khẳng định đúng với
Kỹ thuật chọn điểm rơi trong các bài toán BĐT và cực trị
Tác giả: minhbka đưa lên lúc: 14:07:37 Ng y 09-11-2007à
Thời gian qua mình đã nhận được nhiều yêu cầu của các bạn hướng dẫn cách làm bài tập về BĐT và cực
trị.Đây cũng là mảng kiến thức sâu rộng và tương đối khó.Bài viết này sẽ hướng dẫn các bạn những hướng
suy nghĩ và giải quyết các bài tập dạng này thông qua PP chọn "điểm rơi"-tức là những điểm ta dự đoán
được để từ đó có hướng giải quyết phù hợp nhất.
Ký hiệu sqrt là căn bậc 2 và cbb là căn bậc 3
Ta hãy bắt đầu từ 1 bài toán đơn giản:
Bài 1: Cho .Tìm Min của:
Giải: Rõ ràng ko thể áp dụng Cosi ngay để vì dấu = xảy ra khi a=1, mâu thuẫn với
đk
Ta dự đoán từ đề bài rằng P sẽ nhỏ nhất khi a=3 và đây chính là "điểm rơi" của bài toán.Khi a=3 thì
và
Ta áp dụng Cosi như sau: ta có
Khi đó kết hợp với đk ta có
Dễ thấy khi a=3 thì .Vậy khi a=3
Bài 2: Cho a,b,c dương và abc=1.CMR:
Giải: Dự đoán dấu đẳng thức xảyra khi a=b=c=1.Lúc này và 1+b=2.Ta áp dụng Cosi như sau:
Tương tự cho 2 BĐT còn lại.Khi đó ta có .Tiếp tục áp
dụng Cosi cho 3 số ta có .Thay vào ta có
Bài 3:
Cho 3 số dương x,y,z thoả mãn x+y+z=1.CMR:
P= + + >=
Giải:
Đầu tiên ta thấy trong căn có dạng nên nghĩ ngay đến sử dụng Bunhi dạng
.Ở đây dễ thấy .Vậy còn a và b.Ta sẽ sử dụng PP "điểm
rơi".
Ta hãy cứ viết và dấu "=" đạt được khi .Ta chú ý tiếp đk
x+y+z=1 và "dự đoán" dấu = xảy ra ở bài toán khi .Khi đó ta có 9a=b.Cho a=1 và b=9 ta
được ngay:
Tương tự cho y và z.Cuối cùng ta sẽ có 1 bài toán đơn giản hơn rất nhiều và chỉ là TH đặc biệt của bài toán
1.
Cuối cùng là 1 bài toán mình xin dành lời giải cho các bạn:
Bài 4: Cho a,b,c dương và a+b+c=3.Tìm Min:
P= + +
Sử dụng hằng đẳng thức giải phương trình vô tỉ
Tác giả: boy148 đưa lên lúc: 19:00:41 Ng y 05-03-2008à
Dạng I)Phương trình dạng
Ví dụ 1:Giải phương trình:
Phương trình đã cho tương đương với:
Giải (1):
Giải (2):
Ví dụ 2:Giải phương trình:
Điều kiện:
Phương trình đã cho tương tương với:
Giải (1) ta có: x=0.
Giải (2) ta có x=1.
Dạng II)Phương trình dạng
Ví dụ 3:Giải phương trình:
Điều kiện
Phương trình đã cho tương đương với :
Giải (1) x=1.
Giải (2) x=0.
Ví dụ 4:Giải phương trình:
Điều kiện
Phương trình đã cho tương đương với:
Giải (1) ta có (vô nghiệm)
Giải (2) ta có:x=0.
Dạng III)Phương trình dạng:
Ví dụ 5:Giải phương trình:
Phương trình đã cho tương đương với :
Dạng IV)
Ví dụ 6:Giải phương trình:
Điều kiện:
Phương trình đã cho tương đương với:
Sau đây là một số bài tập áp dụng:
Giải phương trình:
Bài 1)
Bài 2)
Bài 3)
Bài 4)
Bài 5)
Kĩ thuật Cô-Si ngược dấu
Tác giả: boy148 đưa lên lúc: 16:57:04 Ng y 20-02-2008à
Bất đẳng thức Cô-Si là một trong những bất đẳng thức kinh điển rất quen thuộc với học sinh THPT .Chuyên
đề này muốn giới thiệu một phương pháp vận dụng bất đẳng thức Cô-Si đó là kĩ thuật Cô-Si ngược dấu.
Ví dụ 1) Cho các số dương a,b,c thỏa mãn điều kiện a+b+c=3.Chứng minh rằng:
Bài giải:
Ta luôn có :
Theo bất đẳng thức Cô-Si ta có: nên (1)
Hoàn toàn tương tự ta cũng có:
(2)
(3)
Cộng vế theo vế các bất đẳng thức (1),(2) và (3) ta có:
(đpcm).Dấu "=" xảy ra khi và chỉ khi
a=b=c=1
Trong bài này để sử dụng bất đẳng thức thì ta phải dùng tới biểu thức
Ví dụ 2)Chứng minh về mọi số dương a,b,c có a+b+c=3 thì ta có:
Ta có:
Theo bất đẳng thức Cô-Si ta có: nên
(1)
Hoàn toàn tương tự ta cũng có:
(2)
(3)
Cộng vế theo vế các bất đẳng thức (1),(2) và (3) ta cũng có:
Dấu "=" xảy ra khi và chỉ khi a=b=c=1
Nhờ kĩ thuật Cô-Si ngược dấu ta đã chứng minh được những bài toán mà nếu giải bằng các phương pháp
khác sẽ rất dài thậm chí không giải được ,sau đây là một số bài tập ứng dụng:
Bài 1)Chứng minh với mọi số dương a,b,c,d ta luôn có:
Bài 2)Chứng minh rằng với a,b,c,d là các số thực dương thỏa mãn a+b+c+d=4 ta luôn có:
Bài 3)Cho 3 số và a+b+c=3.Chứng minh rằng:
MỘT KĨ THUẬT CHỨNG MINH BĐT CÓ ĐIỀU KIỆN
Tác giả: nhoanh2006d đưa lên lúc: 15:29:02 Ng y 18-02-2008à
Chúng ta thường gặp các dạng toán chứng minh BĐT có dạng :Cho ,chứng minh có một kĩ
thuật là ta đi chứng minh : .Nếu chứng minh được như thế , từ điều kiện ta
suy ra được .Sau đây là một số ví dụ:
Ví dụ 1.Cho ,chứng minh :
Giải : Ta có :
mà nên
nên
Ví dụ 2:Cho x,y là các số dương thỏa mãn ,chứng minh rằng :
Giai: Ta có :
Mà
Ví dụ 4:Cho x,y là các số dương thỏa ,chứng minh rằng :
Giải: Ta có :
(x,y là các số dương)
tương tự 2 bài trên ta suy ra
Mong phương pháp này sẽ hỗ trợ