Tải bản đầy đủ (.pdf) (108 trang)

Luận văn Thạc sĩ Khoa học: Nghiên cứu điều chế chất xúc tác Superaxit rắn cho quá trình tổng hợp biodiesel từ dầu hạt Jatropha curcas

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.04 MB, 108 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
----------------------------NGUYỄN THỊ NHỊ HÀ

NGHIÊN CỨU ĐIỀU CHẾ CHẤT XÚC TÁC
SUPERAXIT RẮN CHO QUÁ TRÌNH TỔNG HỢP
BIODIESEL TỪ DẦU HẠT JATROPHA CURCAS
LUẬN VĂN THẠC SĨ KỸ THUẬT
NGÀNH: CƠNG NGHỆ HĨA HỌC

Người hướng dẫn khoa học
TS. ĐÀO QUỐC TÙY

HÀ NỘI – 2009


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

LỜI CẢM ƠN

Tôi xin bày tỏ lòng biết ơn sâu sắc đối với Thầy giáo, TS Đào Quốc Tùy đã tận
tình hướng dẫn và chỉ đạo sâu sắc trong suốt quá trình nghiên cứu và hồn thiện
luận văn này.
Tơi cũng xin trân trọng cảm ơn sự giúp đỡ, ủng hộ của các thầy cơ giáo Bộ mơn
Cơng nghệ Hữu cơ- hóa dầu và khí, Khoa Cơng nghệ Hóa học, Trường Đại học
Bách Khoa Hà Nội dành cho tơi trong cả q trình học tập cũng như nghiên cứu
và hồn thành luận văn.
Tơi cũng chân thành gửi lời cảm ơn tới các tác giả của những tài liệu tham khảo
đã được tôi sử dụng trong q trình nghiên cứu và hồn thành luận văn này.


Cuối cùng, tơi xin cảm ơn gia đình, bạn bè đã dành cho tôi sự giúp đỡ, động viên
vô cùng quý báu.

Hà Nội, tháng 10 năm 2009
Tác giả

Nguyễn Thị Nhị Hà

-0-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

MỤC LỤC
MỤC LỤC
DANH MỤC CÁC BẢNG TRONG LUẬN VĂN
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
LỜI MỞ ĐẦU ...................................................................................................... 7
CHƯƠNG I: TỔNG QUAN LÝ THUYẾT ....................................................... 10
I.1.Tổng quan về nhiên liệu sinh học .............................................................. 10
I.1.1.Giới thiệu chung ................................................................................ 10
I.1.2. Biodiesel nguồn gốc dầu thực vật ...................................................... 11
I.1.2.1. Tính chất nhiên liệu của biodiesl .................................................... 14
I.1.2.2. Ưu nhược điểm của biodiesl ........................................................... 15
I.1.2.3. Nguyên liệu cho quá trình sản xuất biodiesl................................... 18
I.2.Tổng quan về dầu thực vật ........................................................................ 20
I.2.1.Thành phần hóa học của dầu thực vật ................................................ 20
I.2.2.Tính chất lý học của dầu thực vật ....................................................... 23

I.2.3.Tính chất hóa học của dầu thực vật .................................................... 24
I.2.4.Các chỉ tiêu quan trọng của dầu thực vật ............................................ 25
I.2.5.Một số loại cây thông dụng dùng dầu từ hạt và quả làm nguyên liệu
sản xuất biodiesel ........................................................................................ 26
I.3. Quá trình tổng hợp biodiesel..................................................................... 33
I.3.1.Các phương pháp sản xuất biodiesel .................................................. 33
1.3.1.1. Phương pháp phối trộn và sử dụng trực tiếp .................................. 33
1.3.1.2. Phương pháp nhũ tương hóa .......................................................... 34
1.3.1.3. Phản ứng chuyển hóa este .............................................................. 34
1.3.1.4. Phương pháp cracking nhiệt........................................................... 34
I.3.2.Các phương pháp chuyển hóa este tạo biodiesel ................................ 34
1.3.2.1. Phương pháp siêu tới hạn ............................................................... 35
1.3.2.2. Phương pháp glycerin hóa.............................................................. 35
1.3.1.3. Các phương pháp sử dụng xúc tác ................................................. 35
I.3.3.Các yếu tố ảnh hưởng đến quá trình este hóa chéo. ........................... 37
1.3.3.1. Ảnh hưởng của nguyên liệu đầu vào.............................................. 37
-1-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

1.3.2.2. Ảnh hưởng của các thông số phản ứng .......................................... 37
I.3.4. Xúc tác superaxit rắn cho quá trình tổng hợp biodiesel .................... 38
I.3.5. Q trình chuyển hóa este sử dụng xúc tác axit ................................ 40
I.3.6. Tình hình nghiên cứu, sản xuất và sử dụng nhiên liệu biodesel trên
thế giới và ở Việt Nam ................................................................................ 41
I.4. Tổng quan về các nguyên liệu chính để chế tạo xúc tác........................... 42
I.4.1.Tổng quan về cao lanh ........................................................................ 46

I.4.2. Tổng quan về γ-Al2O3 ........................................................................ 49
CHƯƠNG II: THỰC NGHIỆM.......................................................................... 52
II.1. Quá trình điều chế các loại xúc tác superaxit dạng rắn ......................... 52
II.1.1. Điều chế xúc tác từ cao lanh............................................................. 52
II.1.2. Điều chế xúc tác từ Al2O3 ............................................................... 53
II.1.3. Điều chế xúc tác từ Zirconi .............................................................. 55
II.2. Quá trình tổng hợp biodiesel từ dầu hạt jatropha trên xúc tác superaxit
rắn. ................................................................................................................... 56
II.2.1. Nguyên liệu để tổng hợp biodiesel .................................................. 56
II.2.2. Q trình tổng hợp biodiesel ............................................................ 59
II.3. Tính tốn độ chuyển hóa ......................................................................... 60
II.4.Các phương pháp khảo sát đặc trưng xúc tác ........................................... 61
II.4.1. Phương pháp giải hấp phụ NH3 theo chương trình nhiệt độ (TPDNH3)............................................................................................................. 61
II.4.2.Phương pháp phổ nhiễu xạ tia Rơnghen (XRD) ............................... 62
II.5. Một số phương pháp phân tích chất lượng sản phẩm.............................. 63
II.5.1.Xác định độ nhớt động học (TCVN 3171 – 1995) ............................ 63
II.5.2. Xác định nhiệt độ chớp cháy cốc kín (ASTM – D93) ..................... 64
II.5.3. Xác định tỷ trọng .............................................................................. 65
II.5.4. Phương pháp xác định trị số xetan ................................................... 65
II.5.5. Phương pháp xác định hàm lượng cặn cacbon ................................. 66
II.5.6. Phương pháp sắc kí khí .................................................................... 66
II.5.7. Phương pháp phổ hấp thụ hồng ngoại (IR) ...................................... 67
-2-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

CHƯƠNG III: KẾT QUẢ VÀ THẢO LUẬN .................................................... 68

III.1. Kết quả nghiên cứu trên xúc tác cao lanh biến tính ............................... 68
III.1.1. Khảo sát sự ảnh hưởng của các loại axit và nồng độ axit đến q
trình biến tính cao lanh ................................................................................ 68
III.1.2. Khảo sát các yếu tố ảnh hưởng đến quá trình tổng hợp biodiesel .. 74
III.2. Kết quả nghiên cứu trên xúc tác SO42- / γ-Al2O3, PO43-/ γ-Al2O3 ......... 78
III.2.1. Điều chế nhôm hydroxit dạng Boehmit .......................................... 78
III.2.2. Điều chế γ-Al2O3 từ Boehmit .......................................................... 78
III.2.3. Điều chế xúc tác SO42- / γ-Al2O3, PO43-/ γ-Al2O3 .......................... 80
III.2.4. Khảo sát sự biến đổi tâm axit của xúc tác SO42- / γ-Al2O3 và PO43-/
γ-Al2O3 ........................................................................................................ 82
III.2.5. Khảo sát các yếu tố ảnh hưởng đến quá trình tổng hợp biodiesel .. 84
III.3. Kết quả nghiên cứu trên xúc tác Zirconi sunfat (SO42-/ZrO2)................ 91
III.3.1. Kết quả chụp XRD .......................................................................... 91
III.3.2. Khảo sát tâm axit của SO42-/ZrO2 ................................................... 92
III.3.3. Khảo sát các yếu tố ảnh hưởng đến quá trình tổng hợp biodiesel .. 93
CHƯƠNG IV KẾT LUẬN ................................................................................. 98
TÀI LIỆU THAM KHẢO ................................................................................... 99
TÓM TẮT LUẬN VĂN THẠC SĨ……………………………………...…....102
PHỤ LỤC .......................................................................................................... 105

-3-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

DANH MỤC CÁC BẢNG TRONG LUẬN VĂN
Bảng I.1. So sánh tính chất nhiên liệu diesel và biodiesel
Bảng I.2. Các thành phần axit béo của các loại dầu thực vật

Bảng I.3. Đánh giá về các cây nguyên liệu sản xuất dầu BioDiesel
Bảng I.4. Kết quả phân tích 2 giống hạt Jatropha: TTJ Việt Nam và Ưu tuyển số
2 Trung Quốc
Bảng I.5: Ảnh hưởng của nhiệt độ nung đến độ chuyển hóa trong phản ứng este
hóa axit palmictic
Bảng I.6: Tiêu chuẩn của biodiesel B100, ASTM D6751-08
Bảng II.1: Các xúc tác có thời gian kết tủa (NH4)2SO4 khác nhau
Bảng II.2: Các xúc tác có nồng độ (NH4)2SO4 kết tủa khác nhau
Bảng III.1: Thành phần khoáng vật của kaolin Phú Thọ – Lào Cai
Bảng III.2: Thành phần hóa học của hai mẫu cao lanh
Bảng III.3: Số liệu về độ chuyển hóa của dầu trong phản ứng tổng hợp
biodiesel
Bảng III.4: Độ chuyển hóa của dầu phụ thuộc vào tỷ lệ mol methanol/dầu
Bảng III.5: Độ chuyển hóa dầu theo thời gian làm việc của xúc tác
Bảng III.6. Độ chuyển hóa dầu tại các nhiệt độ khác nhau
Bảng III.7. Độ chuyển hóa của dầu phụ thuộc vào tỷ lệ metanol/dầu trên xúc
tác SO42- / γ-Al2O3
Bảng III.8. Độ chuyển hóa dầu theo thời gian làm việccủa xúc tác SO42-/γ-Al2O3
Bảng III.9. Độ chuyển hóa dầu theo thời gian làm việc của xúc tác PO43-/γAl2O3
Bảng III.10. Hiệu suất phụ thuộc vào thời gian tẩm và nhiệt độ phản ứng
Bảng III.11: Hiệu suất phụ thuộc vào nhiệt độ và nồng độ
Bảng III.12. : Hiệu suất phụ thuộc vào thời gian kết tủa Zr(OH)4 và nhiệt độ
Bảng III.13: Hiệu suất phụ thuộc vào thời gian sống của xúc tác.
Bảng III.14: Hiệu suất phụ thuộc vào tỷ lệ metanol/dầu.

-4-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV


Nguyễn Thị Nhị Hà – CNHH K79

DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
Hình I.1. Sơ đồ khơng gian mạng lưới cấu trúc của kaolinit
Hình I.2. Các loại cấu trúc cơ bản của khống sét tự nhiên
Hình I.3. Các vị trí trao đổi ion khác nhau đối với hạt kaolinit
Hình I.4. Cấu trúc khối của γ-Al2O3
Hình I.5. Vị trí ion Al3+ trong cấu trúc oxit nhơm
Hình II.1: Sơ đồ q trình tổng hợp xúc tác
Hình II.2: Sơ đồ thiết bị phản ứng tổng hợp biodiesel
Hình II.3: Sự tán xạ tia X từ các mặt phẳng tinh thể
Hình III.1: XRD của mẫu cao lanh nguyên khai Sơn Mãn – Lào Cai
Hình III.2: XRD mẫu cao lanh nguyên khai Thạch Khoán - Phú Thọ
Hình III.3: XRD của cao lanh đã được hoạt hóa bằng axit HCl 8N
Hình III.4: Phổ TPD của cao lanh hoạt hóa bằng HCl 8N
Hình III.5: Phổ TPD của cao lanh hoạt hóa tẩm H2SO4 1
Hình III.6: Phổ TPD của cao lanh hoạt hóa tẩm H3PO4 1M
Hình III.7: Đồ thị biểu diễn độ chuyển hóa của dầu phụ thuộc vào nhiệt độ trên
các xúc tác khác nhau.
Hình III.8: Đồ thị biểu diễn độ chuyển hóa dầu phụ thuộc vào tỷ lệ mol
metanol/dầu.
Hình III.9: Đồ thị biểu diễn độ chuyển hóa dầu của xúc tác theo thời gian
Hình III.10. Phổ nhiễu xạ tia X của Boehmit điều chế từ hydroxit nhơm Tân
Bình
Hình III.11. Phổ nhiễu xạ tia X của γ-Al2O3 điều chế từ Boehmit
Hình III.12. Phổ nhiễu xạ tia X của xúc tác SO42- / γ-Al2O3
Hình III.13. Phổ nhiễu xạ tia X của xúc tác PO43-/ γ-Al2O3
Hình III.14. TPD-NH3 của γ-Al2O3 trước khi tẩm
Hình III.15. TPD-NH3 của γ-Al2O3 tẩm H2SO4 1M
Hình III.16. TPD-NH3 của γ-Al2O3 tẩm H3PO4 1M

Hình III.17. Ảnh hưởng của nhiệt độ phản ứng đến độ chuyển hóa
Hình III.18. Đồ thị biểu diễn độ chuyển hóa dầu phụ thuộc vào tỷ lệ mol
metanol/dầu trên xúc tác SO42-/γ-Al2O3.
Hình III.19. Đồ thị biểu diễn độ chuyển hóa dầu của xúc tác theo thời gian
-5-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Hình III.20. Hiệu suất chuyển hóa phụ thuộc vào thời gian tẩm và nhiệt độ
Hình III.21: Phổ XRD của 3 mẫu xúc tác SZ-1h, SZ-3h, và SZ-8h
Hình III.22: Phổ XRD của 2 mẫu xúc tác SZ-1h và SZ-2h
Hình III.23: TPD của mẫu SZ-8 sau khi tẩm (NH4)2SO4 2M
Hình III.24: Hiệu suất phụ thuộc vào nhiệt độ và nồng độ tẩm.
Hình III.25: Hiệu suất phụ thuộc vào thời gian kết tủa Zr(OH)4 và nhiệt độ
phản ứng.
III.26: Hiệu suất phụ thuộc vào thời gian sống của xúc tác.
Hình III.27: Hiệu suất phụ thuộc vào tỷ lệ mol metanol/dầu

-6-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

LỜI MỞ ĐẦU


Ngày nay, hầu hết các nguồn năng lượng đang được sử dụng trên thế giới là
nguồn nhiên liệu hóa thạch như: than đá, dầu mỏ... trong đó nguồn năng lượng
dầu mỏ quan trọng nhất, chiếm tới 65%. Sự lệ thuộc vào nhiên liệu dầu mỏ quá
nhiều như vậy làm giá dầu biến động liên tục theo chiều tăng. Sự cạn kiệt dần
nguồn năng lượng hố thạch và khí đốt khiến cho việc tìm kiếm các nguồn năng
lượng thay thế là việc làm có tính sống cịn trong những thập kỷ tới. Theo cơng
bố mới nhất của tập đồn dầu mỏ BP, nếu khơng phát hiện được thêm trữ lượng
mới thì nguồn dầu mỏ trên thế giới cũng chỉ đủ dùng trong vòng 40 năm nữa.
Hơn nữa, việc sử dụng nhiên liệu xăng, diesel chủ yếu được lấy từ dầu khống
có các thành phần hydrocacbon và phi hydrocacbon độc hại cho môi trường và
sức khỏe con người, như các hợp chất chứa lưu huỳnh, nitơ, benzene, nhựa,
asphanten… tương đối cao, không những gây nên các vấn đề về động cơ, mà
còn gây ô nhiễm môi trường rất mạnh. Khí thải chủ yếu của nhiên liệu này là
SO2, SO3, NOx, CO, CO2, hydrocacbon, vật chất dạng hạt… Khí SOx khơng
những gây ăn mịn thiết bị mà còn ảnh hưởng xấu đến sức khoẻ của con người,
gây mưa axit… Khí CO2 là nguyên nhân gây ra hiệu ứng nhà kính. Khí CO được
tạo ra do q trình cháy khơng hồn tồn của nhiên liệu. Khơng giống như
những khí khác, khí CO khơng có mùi, khơng màu, khơng vị và khơng gây kích
thích da, nhưng nó rất nguy hiểm đối với con người. Lượng CO khoảng 70 ppm
có thể gây ra các triệu chứng như đau đầu, mệt mỏi, buồn nôn. Lượng CO
khoảng 150 đến 200 ppm gây bất tỉnh, mất trí nhớ và có thể gây chết người. Các
thành phần hydrocacbon trong khí thải của nhiên liệu, đặc biệt là các hợp chất
thơm rất có hại cho con người và là nguyên nhân gây ra bệnh ung thư. Các vật
chất dạng hạt có lẫn trong khí thải cũng gây ơ nhiễm khơng khí mạnh, chúng rất
khó nhận biết, là nguyên nhân gây ra các bệnh về hô hấp, tim mạch.
Các nước trên thế giới hiện nay đều quan tâm đến vấn đề về hiệu quả kinh tế
và mơi trường, vì vậy xu hướng phát triển chung của nhiên liệu là tối ưu hoá trị
số octan (của xăng) và xetan (của diesel), tìm mọi cách để giảm hàm lượng lưu
huỳnh xuống, và quan trọng nhất hiện nay là mở rộng nguồn nhiên liệu, tạo
nhiên liệu sạch ít gây ơ nhiễm. Cơng nghệ pin năng lượng, sử dụng khí hydro

vẫn là chuyện xa vời. Năng lượng mặt trời, năng lượng gió hay thủy triều vẫn
cịn nhiều khó khăn trong việc khai thác do những bất cập về cơng nghệ, chi phí,
-7-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

khả năng tồn trữ và tính hiệu dụng. Nhiên liệu sinh học, trong đó có biodiesel
(diesel sinh học) có thể coi là giải pháp có hiệu quả nhất hiện nay. nó vừa có lợi
về sự hoạt động của động cơ, về mặt môi trường sinh thái, lại có lợi về mặt kinh
tế khi giá dầu khoáng tăng cao.
Nhiên liệu sinh học là nhiên liệu có nguồn gốc từ sinh khối (biomass), tức là
từ thực vật, động vật và các sản phẩm phụ của chúng, nó có thể ở dạng lỏng, rắn
hay khí. Có nhiều cách phân loại nhiên liệu sinh học (ví dụ nhiên liệu sinh học
thế hệ thứ nhất, nhiên liệu sinh học thế hệ thứ hai), nhưng hiện nay có thể tạm
chia thành 3 loại:
Thứ nhất, nhiên liệu sinh học làm từ sản phẩm nông lâm nghiệp vốn là lương
thực thực phẩm, ví dụ: ngơ, đậu tương, sắn, cải dầu, lúa mì, củ cải đường, mía,
dầu cọ, lúa miến (sorghum), mù tạc...
Thứ hai, nhiên liệu sinh học làm từ sản phẩm nơng lâm nghiệp khơng phải
lương thực thực phẩm, ví dụ: hạt Cọc rào, cỏ kê Mỹ, cỏ trâu, tảo...
Thứ ba, nhiên liệu sinh học làm từ phế thải phân huỷ được từ sản xuất công
nghiệp, nông lâm nghiệp, nhà hàng ăn uống, khu dân cư, ví dụ: mỡ động thực
vật, thức ăn thừa, mùn cưa, vỏ bào, thân cây ngô, rơm rạ, trấu, phân khô, rác...
Hiện nay các sản phẩm nhiên liệu sinh học phổ cập trên thế giới là: diesel
sinh học viết tắt là BD; cồn sinh học: bioethanol, biobutanol, biomethanol, trong
đó nổi bật là Ethanol sinh học viết tắt là BE; nhiên liệu sinh học rắn, trong đó
nổi bật là Gỗ Viên. Nhiên liệu sinh học hiện nay được sử dụng trong giao thông

vận tải là etanol sinh học, diezel sinh học và xăng pha etanol. Có thể so sánh
giữa nhiên liệu dầu mỏ với nhiên liệu sinh học qua các tính chất như ở bảng sau:

-8-


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Bảng So sánh nhiên liệu sinh học với nhiên liệu dầu mỏ
Nhiên liệu dầu mỏ

Nhiên liệu sinh học

Sản xuất từ dầu mỏ

Sản xuất từ nguyên liệu thực vật

Hàm lượng lưu huỳnh cao

Hàm lượng lưu huỳnh cực thấp

Chứa hàm lượng chất thơm

Không chứa hàm lượng chất thơm

Khó phân hủy sinh học

Có khả năng phân hủy sinh học cao


Khơng chứa hàm lượng oxy

Có 11% oxy

Điểm chớp cháy thấp

Điểm chớp cháy cao

Như vậy, việc phát triển nhiên liệu sinh học có lợi về nhiều mặt như giảm
đáng kể các khí độc hại như SO2, CO, CO2 (khí nhà kính), các hydrocacbon
chưa cháy hết, giảm cặn buồng đốt… mở rộng nguồn năng lượng, đóng góp vào
an ninh năng lượng, và nhiều lợi ích xã hội khác.
Việc sản xuất BD đã được nhiều nhóm tác giả trong và ngồi nước nghiên
cứu phát triển từ nguồn ngun liệu chính là các loại dầu thực vật (dầu đậu
nành, dầu cọ, dầu dừa, dầu hạt cao su …) trong đó xúc tác sử dụng chủ yếu là
xúc tác kiềm (xúc tác đồng thể). Xúc tác kiềm tuy có nhiều ưu điểm như phản
ứng có hiệu suất cao, thời gian ngắn, nhiệt độ thấp, xúc tác rẻ và dễ chế tạo
nhưng tạo ra nhiều sản phẩm phụ khó phân tách triệt để [5,11,32,34].
Một hướng nghiên cứu mới hơn là sử dụng xúc tác bazơ dị thể, như
Na/NaOH/y-Al2O3 là hệ xúc tác dị thể đầu tiên được dùng để tổng hợp BD [25].
Tuy nhiên hệ xúc tác này vẫn được tiến hành trong pha lỏng nên việc tách xúc
tác và tinh chế sản phẩm có nhiều khó khăn. Đây cũng là phương pháp gián
đoạn, năng suất thiết bị không cao và không tự động hóa được.
Xúc tác axit rắn với các tâm Bronsted và Lewis có những thuận lợi như
khơng ăn mịn thiết bị, xúc tác có thời gian sống dài hơn, dễ phân tách sản phẩm,
thân thiện hơn với môi trường. Công nghệ này cho phép tiến hành phản ứng liên
tục và hỗn hợp lỏng chứa sản phẩm được tách ra khỏi xúc tác ngay sau phản
ứng. Ở quy mơ phịng thí nghiệm, xúc tác axit rắn dị thể đã thể hiện hoạt tính
-9-



Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

cao đối với phản ứng este hóa chéo dầu thực vật. Hiệu suất phản ứng và độ chọn
lọc đối với methyl ester đều khá cao.
Trong khuôn khổ luận văn này, với đề tài:
“NGHIÊN CỨU ĐIỀU CHẾ XÚC TÁC SUPERAXIT RẮN
CHO QUÁ TRÌNH TỔNG HỢP BIODIESEL TỪ DẦU JATROPHA CURCAS
TRÊN THIẾT BỊ XÚC TÁC CỐ ĐỊNH Ở ÁP SUẤT KHÍ QUYỂN”

mục đích nghiên cứu của tôi là: chế tạo được loại xúc tác rắn có lực axit mạnh
là các superaxit, đưa ra quy trình chế tạo xúc tác, nghiên cứu các điều kiện
công nghệ chuyển hóa biodiesel trên sơ đồ phản ứng xúc tác tầng cố định ở áp
suất khí quyển, kiểm tra các tính chất của biodiesel gốc đã tổng hợp được, và
đưa ra quy trình cơng nghệ tối ưu.

- 10 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

CHƯƠNG I
TỔNG QUAN LÝ THUYẾT
I.1.Tổng quan về nhiên liệu sinh học
I.1.1.Giới thiệu chung [5,8,10]

Nhiên liệu sinh học (NLSH) được định nghĩa là bất kỳ loại nhiên liệu nào
nhận được từ sinh khối. Nó là nhiên liệu tái tạo, được pha chế từ nguyên liệu có
nguồn gốc sinh học như: cồn, dầu mỡ động vật biến tính hóa học được sử dụng
để thay thế một phần hoặc tồn phần xăng, diesel có nguồn gốc dầu mỏ.
Hiện nay trên thế giới, các loại NLSH thương phẩm phổ biến là:
-Xăng sinh học (gasohol): là xăng tạo thành khi pha từ 10-25% cồn khan
với xăng chưng cất từ dầu mỏ khơng có phụ gia để có trị số octan 90, 92, 95, 97
và có tính chất hóa lý tương đương xăng thương phẩm dầu mỏ. Chúng được sử
dụng cho động cơ xăng truyền thống mà không cần phải thay đổi động cơ.
-E-Diesel (diesohol): được pha chế từ 5-15% Etanol 99 với diesel dầu mỏ
và phụ gia để có trị số xetan trên 45 và có tính chất hóa lý tương đương với
diesel thương phẩm dầu mỏ. Chúng được dùng cho động cơ diesel truyền thống
cũng không cần phải thay động cơ.
-Diesel sinh học (biodiesel): được sản xuất từ một số loại mỡ động vật và
dầu thực vật biến tính hóa học. Diesel sinh học là các este của axit béo và alcol,
khi trộn với diesel dầu mỏ theo một tỷ lệ thích hợp, chúng có thể sử dụng cho
động cơ diesel truyền thống mà không cần phải thay động cơ.
I.1.2.Biodiesel nguồn gốc từ dầu thực vật [5,8,13,31,32,41,42]
Trước đây, kể từ khi động cơ diesel được phát minh ra bởi Rudolf Diesel
thì nhiên liệu mà người ta sử dụng đầu tiên chính là dầu thực vật (DTV). Nhưng
dầu thực vật đã không được lựa chọn làm nhiên liệu cho động cơ diesel vì giá
của dầu thực vật đắt hơn giá của diesel khoáng. Gần đây với sự tăng giá của
nhiên liệu khoáng và sự hạn chế về số lượng của nó, nhiên liệu dầu thực vật
ngày càng được quan tâm và có khả năng thay thế cho nhiên liệu dầu khống
trong tương lai gần, vì những lợi ích về môi trường và khả năng tái sinh của dầu
thực vật.

- 11 -



Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Dầu thực vật làm nhiên liệu cho động cơ Diesel có hai loại: Sản phẩm
DTV điều chế trực tiếp từ các hạt, trái cây lấy dầu, và sản phẩm DTV đã qua
Este hóa (Biodiesel).
Việc sử dụng DTV như một nhiên liệu thay thế để cạnh tranh với dầu mỏ
đã được bắt đầu từ những năm 1980, vì sự thuận lợi của các loại dầu thực vật so
với nhiên liệu diesel là chất lỏng dễ di chuyển, sẵn có, có khả năng tái sinh
được, hàm lượng lưu huỳnh thấp hơn, hàm lượng chất thơm ít hơn, khả năng dễ
bị vi khuẩn phân hủy, độ nhớt cao hơn, khả năng bay hơi thấp hơn. Tuy nhiên
việc sử dụng trực tiếp DTV làm nhiên liệu có nhược điểm cơ bản sau: sự tạo cặn
cacbon, đóng cặn vịi phun nhiên liệu, tắc vịng bơi trơn, sự nhiễm bẩn của dầu
thực vật dẫn đến sự gel hóa hay oxi hóa sớm của dầu bơi trơn, tăng nguy cơ phá
hủy động cơ. Để sử dụng DTV làm nhiên liệu, cần áp dụng những phương pháp
xử lý dầu để tính chất của nó gần giống với nhiên liệu Diesel.
Theo quan điểm khai thác động cơ thì sự khác nhau cơ bản giữa DTV so
với nhiên liệu Diesel chính là độ nhớt và chỉ số Cetan.
Ảnh hưởng của độ nhớt và chỉ số Cetan của DTV làm cho hệ thống nạp
liệu và q trình cháy của động cơ hoạt động khơng bình thường, làm chất lượng
của quá trình phun và cháy kém hơn dẩn đến các chỉ tiêu kinh tế của động cơ sẽ
giảm đi.
Các giải pháp xử lý DTV làm nhiên liệu cho động cơ đốt trong là các
phương pháp làm giảm độ nhớt và tăng chỉ số Cetan của DTV.
DTV có độ nhớt cao, lớn gấp 10 lần đến 20 lần nhiên liệu diesel N 0 2D,
gây cặn trong động cơ, do đó khơng thể sử dụng trực tiếp trong động cơ diesel
hay trộn trực tiếp với nhiên liệu diesel khống. Vì vậy sự pha lỗng, nhũ hóa,
nhiệt phân, cracking xúc tác và metyleste hóa là các kỹ thuật được áp dụng để
giải quyết vấn đề độ nhớt cao của nhiên liệu:

- Pha loãng dầu thực vật: Độ nhớt của DTV có thể được làm thấp xuống
bằng việc trộn lẫn với etanol tinh khiết, hoặc hỗn hợp 25% dầu hướng dương và
75% dầu khống thơng thường thu được nhiên liệu như nhiên liệu diesel. Độ
nhớt của hỗn hợp thu được là 4,88 cSt tại 313 K, trong khi theo tiêu chuẩn
ASTM, giá trị lớn nhất là 4,0 cSt tại 313 K. Hỗn hợp này khơng phù hợp cho
tính sử dụng lâu dài của động cơ đốt trong.
- Sử dụng dạng nhũ hoá dầu thực vật : Nhũ hoá DTV với các chất lỏng
khơng thể hồ tan được như là etanol, metanol.. để giảm độ nhớt của dầu thực
vật.
- 12 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

- Chuyển hoá este tạo biodiesel: Quá trình này tạo ra các alkyl este axit
béo có trọng lượng phân tử và độ nhớt thấp hơn nhiều so với các phân tử DTV
ban đầu. Các este này có trọng lượng phân tử bằng một phần ba khối lượng phân
tử của DTV và có độ nhớt rất thấp (xấp xỉ bằng diesel khống). Vì vậy, biodiesel
thu được có tính chất phù hợp như một nhiên liệu sử dụng cho động cơ diesel.
- Cracking xúc tác dầu thực vật: Tạo ra các ankan, cycloankan,
alkylbenzen… Tuy nhiên việc đầu tư cho một dây chuyền cracking xúc tác rất
tốn kém.
- Nhiệt phân dầu thực vật: Nhiệt phân là phân huỷ các phân tử DTV bằng
nhiệt khơng có mặt của oxy tạo ra các ankan, ankadien, các axit cacboxynic, hợp
chất thơm và lượng nhỏ các sản phẩm khí. Quá trình nhiệt phân các hợp chất
béo đã được thực hiện cách đây hơn 100 năm đặc biệt ở nhiều nơi trên thé giới
có ít hoặc khơng có dầu mỏ.
Sau khi phân tích và xem xét các phương pháp trên thì ta thấy phương

pháp chuyển hoá este tạo biodiesel là sự lựa chọn tốt nhất, vì các đặc tính vật lý
của các metyl este rất gần với nhiên liệu diesel thông thường và các quá trình
này cũng tương đối đơn giản, chi phí khơng cao. Hơn nữa, các alkyl este có thể
cháy trong động cơ mà không cần phải thay đổi các chi tiết của động cơ với sự
tạo cặn thấp.
Biodiesel là các mono alkyl este của axit béo mạch dài có nguồn gốc từ
dầu thực vật hoặc mỡ động vật còn mới hoặc đã qua sử dụng, là sản phẩm của
phản ứng giữa rượu mạch thẳng như metanol, etanol với dầu hoặc mỡ
(triglyxerit) tạo thành este của các axit béo mạch dài và glyxerin.
Biodiesel có thể sử dụng trong động cơ đốt trong giống như dầu diesel.
Hỗn hợp B5 đến B20 (từ 5 đến 20% biodiesel và 80 đến 95% diesel) khơng địi
hỏi phải thay đổi cấu trúc của động cơ mà vẫn cung cấp khả năng tải trọng như
diesel từ dầu khống. Các hỗn hợp có thành phần cao hơn, thậm chí cả B100
(100% biodiesel) có thể sử dụng được trong những động cơ chế tạo từ năm 1994
chỉ với sự thay đổi rất nhỏ hoặc không cần thay đổi. Tuy nhiên việc vận chuyển
và tồn chứa lại đòi hỏi phải có sự quản lý đặc biệt.
I.1.2.1.Tính chất nhiên liệu của biodiesel [5,25,26,28]
Biodiesel bao gồm 14 loại metyl este của các axit béo khác nhau, có tính
chất vật lý rất giống với dầu diesel. Tuy nhiên tính chất phát khí thải thì
biodiesel tốt hơn dầu diesel. Sản phẩm cháy của biodiesel sạch hơn nhiều so với
diesel khoáng. Sử dụng biodiesel làm giảm đáng kể các hydrocacbon chưa cháy
- 13 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

hết, các hợp chất lưu huỳnh, muội than… Tính chất vật lý của biodiesel so với
diesel truyền thống được thể hiện trong bảng I.1 sau:


Tính chất

Diesel

Biodiesel

Hydrocacbon C10-C12

FAME C12-C22

Nhiệt cháy dưới

131,295

117,093

Độ nhớt động học ở 40 oC

1,3÷4,1

1,9÷6,0

Tỷ trọng riêng, kg/l ở 60 oF

0,85

0,88

Tỷ trọng lb/gal ở 15 oC


7.079

7,328

Hàm lượng nước ppm

161

Max: 0,5%

Hàm lượng cacbon, % khối lượng

87

77

Hàm lượng hidro, % khối lượng

13

12

Hàm lượng oxi, % khối lượng

0

11

Hàm lượng lưu huỳnh, % k/lượng


Max:0,05

0÷0,0024

Điểm sơi, oC

188÷343

182÷338

Điểm chớp cháy, oC

60÷80

100÷170

Điểm vẩn đục, oC

-15÷5

-3÷12

Điểm rót, oC

-35÷-15

-15÷10

Trị số xetan


40÷55

48÷65

Tỷ lệ khơng khí/nhiên liệu

15

13,8

HFRR, microns

685

314

60÷135

8,6

Thành phần nhiên liệu

Trị số iot

Bảng I.1. So sánh tính chất nhiên liệu diesel và biodiesel

- 14 -



Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Tính chất của bioediesel từ các nguồn nguyên liệu khác nhau thì khác
nhau.
I.1.2.2. Ưu nhược điểm của nhiên liệu biodiesel [5,10,28,30]
So với nhiên liệu diesel truyền thống đi từ dầu mỏ thì nhiên liệu biodiesel
có nhiều ưu điểm hơn. Biodiesel là nhiên liệu sinh học nên có khả năng tái sinh,
làm giảm lượng chất thải có hại cho mơi trường, thúc đẩy nền nông nghiệp phát
triển.
a.Ưu điểm:
*Về mặt môi trường
- Giảm lượng phát thải khí CO2, do đó giảm được lượng khí thải gây ra
hiệu ứng nhà kính.
- Khơng có hoặc chứa rất ít các hợp chất của lưu huỳnh (<0,001% so với
đến 0,2% trong dầu Diesel)
- Hàm lượng các hợp chất khác trong khói thải như: CO, SOX, HC chưa
cháy, C giảm đi đáng kể nên có lợi rất lớn đến mơi trường và sức khoẻ con
người.
- Không chứa HC thơm nên không gây ung thư.
- Giảm ô nhiễm môi trường nước và đất do có khả năng tự phân huỷ
(phân hủy sinh học) phân huỷ nhanh hơn Diesel 4 lần, phân huỷ từ 85 ¸ 88%
trong nước sau 28 ngày) và không độc.
- Giảm sự tiêu dùng các sản phẩm dầu mỏ.
*Về mặt kỹ thuật
- Có chỉ số xetan cao hơn Diesel. Thông thường trị số xetan của diesel từ
50-52 và 53-54 đối với động cơ cao tốc. Tuy nhiên trị số xetan cao q cũng
khơng cần thiết vì gây lãng phí nhiên liệu, một số thành phần nhiên liệu trước
khi cháy ở nhiệt độ cao trong xilanh bị thiếu oxy nên phân hủy thành cacbon tự

do, tạo thành muội gây sự cố cho động cơ trong quá trình vận hành. Biodiesel là
các alkyl este mạch thẳng do vậy nhiên liệu này có trị số xetan cao hơn diesel
khống, trị số xetan của biodiesel thường từ 56-58. Với trị số xetan như vậy
biodiesel hồn tồn có thể đáp ứng dễ dàng yêu cầu của những động cơ đòi hỏi
nhiên liệu chất lượng cao với khả năng tự bắt cháy cao mà không cần phụ gia
tăng trị số xetan. Đây là ưu điểm rất lớn của nhiên liệu biodiesel.
- 15 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

- Biodiesel rất linh động có thể trộn với diesel theo bất kì tỉ lệ nào.
- Biodiesel có điểm chớp cháy cao hơn diesel, đốt cháy hoàn toàn, an toàn
trong tồn chứa và sử dụng.
- Biodiesel có tính bơi trơn tốt. Ngày nay để hạn chế lượng SOx thải ra
khơng khí, người ta hạn chế tối đa lượng S trong dầu Diesel. Nhưng chính
những hợp chất lưu huỳnh lại là những tác nhân giảm ma sát của dầu Diesel. Do
vậy dầu Diesel có tính bơi trơn khơng tốt và địi hỏi việc sử dụng thêm các chất
phụ gia để tăng tính bơi trơn. Trong thành phần của Biodiesel có chứa Oxi.
Cũng giống như S, O có tác dụng giảm ma sát. Cho nên Biodiesel có tính bơi
trơn tốt.
- Do có tính năng tượng tự như dầu Diesel nên nhìn chung khi sử dụng
khơng cần cải thiện bất kì chi tiết nào của động cơ (riêng đối với các hệ thống
ống dẫn, bồn chứa làm bằng nhựa ta phải thay bằng vật liệu kim loại).
- Tăng hiệu suất máy: Do tỷ trọng của biodiesel cao hơn so với diesel nên
tăng hiệu suất máy do dịng nhiên liệu vào được điều khiển theo thể tích, cùng
một thể tích vào, nhưng do tỷ trọng của biodiesel cao nên lượng biodiesel vào
van tiết lưu lớn, bay hơi nhiều hơn do đó tăng hiệu suất máy.

*Về mặt kinh tế
- Sử dụng nhiên liệu Biodiesel ngoài vấn đề giải quyết ơ nhiễm mơi
trường nó cịn thúc đẩy ngành nơng nghiệp phát triển, tận dụng tiềm năng sẵn có
của ngành nông nghiệp như dầu phế thải, mỡ động vật, các loại dầu khác ít có
giá trị sử dụng trong thực phẩm.
- Đồng thời đa dạng hố nền nơng nghiệp và tăng thu nhập ở vùng miền
nông thôn.
- Hạn chế nhập khẩu nhiên liệu Diesel, góp phần tiết kiệm cho quốc gia
một khoản ngoại tệ lớn.
b.Nhược điểm
- Biodiesel có nhiệt độ đơng đặc cao hơn Diesel một ít gây khó khăn cho
các nước có nhiệt độ vào mùa đơng thấp. Tuy nhiên đối với các nước nhiệt đới,
như Việt Nam chẳng hạn thì ảnh hưởng này khơng đáng kể.
- Biodisel có nhiệt trị thấp hơn so với diesel.

- 16 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

- Làm hỏng các bộ phận làm bằng cao su: nhiên liệu biodiesel có xu
hướng làm hỏng các bộ phận bằng cao su bên trong động cơ vì trong biodiesel
có rượu. Nếu động cơ sử dụng 100% biodiesel trong vịng 160.000 km thì các bộ
phận cao su sẽ phải thay thế. Để hạn chế nhược điểm này các nhà sản xuất động
cơ đã thay thế các bộ phận này bằng các vật liệu tổng hợp, ví dụ fluoelatome.
- Trở ngại lớn nhất của việc thương mại Biodiesel trước đây là chi phí sản
suất cao. Do đó làm cho giá thành Biodiesel khá cao, nhưng với sự leo thang giá
cả nhiên liệu như hiện nay thì vấn đề này khơng cịn là rào cản. Mặt khác, nhược

điểm này có thể khắc phục được bằng cách đi từ nguồn nguyên liệu rẻ tiền hơn
như: dầu không dùng làm thực phẩm, dầu sơ chế hoặc dầu thải, dầu thu hồi, cặn
dầu sau tinh chế... Hơn nữa, trong quá trình sản xuất biodiesel tạo ra sản phẩm
phụ là glyxerin là một chất có giá trị lớn và được ứng dụng nhiều trong công
nghiệp như trong công nghiệp sản xuất dược phẩm, mực viết, kem đánh răng,
thuốc lá các loại muối dính để chế biến phân bón, do đó nó sẽ bù lại phần nào
giá của biodiesel.
- Có tác dụng rửa sạch cặn bẩn khỏi động cơ nên dễ làm tắc phin lọc khi
lần đầu tiên sử dụng thay thế diesel gốc khống.
- Do tính chất thời vụ của dầu thực vật nên cần phải có những chiến lược
sản xuất và tồn trữ nguyên liệu hợp lý nếu muốn sử dụng được biodiesel như
một nhiên liệu chính và thường xuyên.
- Tính kém ổn định: Do biodiesel là ankyl este của dầu thực vật nên rất dễ
bị phân huỷ sinh học và kém bền oxi hóa, biodiesel dễ phân hủy sinh học gấp 4
lần so với diesel gốc khoáng, hỗn hợp B20 thì dễ bị phân hủy gấp 2 lần so với
diesel gốc khống. Chính vì vậy gây ra nhiều khó khăn trong q trình tồn chứa,
bảo quản biodiesel.
- Thải nhiều khí NOx: Khi sử dụng nhiên liệu biodiesel với những động cơ
cũ thì khí thải NOx tăng lên so với diesel thường. Tuy nhiên cũng có thể khắc
phục nhược điểm này bằng hai cách là giảm nhiệt độ đốt cháy và lắp hộp xúc tác
ở ống xả động cơ.
- Q trình sản xuất biodiesel khơng đảm bảo: Khi rửa biodiesel khơng
sạch thì khi sử dụng vẫn gây ra các vấn đề ơ nhiễm do vẫn cịn xà phịng, kiềm
dư, glyxerin tự do, metanol là những chất gây ô nhiễm mạnh. Do đó phải có tiêu
chuẩn để đánh giá chất lượng của biodiesel.
Để khắc phục nhược điểm của biodiesel người ta thường sử dụng
biodiesel ở dạng B10-B20 và sử dụng thêm phụ gia chống oxi hóa như:
- 17 -



Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

pyrogallol, axit gallic, propyl gallate, catechol, axit nordihydroguaiaretic, 2-tbutyl-4methoxyphenol,
2,6-di-t-butyl-4-methoxyphenol,
2,6-di-t-butyl-4methylphenol, t-butyl hydroquinone với tỷ lệ từ 0,1 đến 0,5 % cho B100. Dùng
phụ gia tăng chỉ số xetan như: di-tert-butyl peroxide với hàm lượng 1% hoặc 2ethylhexyl nitrat với hàm lượng 0,5% có thể giảm NOx xuống mức cho phép.
- Hiện nay Biodiesel thường được sản xuất chủ yếu là theo mẻ. Đây là
điều bất lợi vì năng suất thấp, khó ổn định được chât lượng sản phẩm cũng như
các điều kiện của quá trình phản ứng. Một phương pháp có thể tránh hoặc tối
thiểu khó khăn này là sử dụng q trình sản xuất liên tục bằng cách sử dụng xúc
tác superaxit rắn.
I.1.2.3. Nguyên liệu cho quá trình sản xuất biodiesel [8,10,28,30,42]
a.Dầu mỡ động thực vật
Nguyên liệu dùng để sản xuất biodiesel là các loại dầu thực vật (dầu dừa,
dầu đậu nành, dầu mè, dầu sở, dầu hạt hướng dương, dầu jatropha…), mỡ động
vật (mỡ lợn, mỡ bò, mỡ cá…) và các loại dầu thải. Thành phần chủ yếu cùa dầu,
mỡ là triglyxerit, axit béo tự do và các tạp chất khác tùy thuộc vào mức độ xử lý
trước khi đưa vào làm nguyên liệu sản xuất biodiesel.
Nguyên liệu để sản xuất biodiesel là đặc trưng của mỗi quốc gia và phụ
thuộc vào nguồn cung cấp sẵn có. Mỹ sử dụng dầu đậu tương và mỡ động vật,
Canada sử dụng dầu hạt Canola, và Nhật Bản ưa chuộng mỡ động vật hơn. Dầu
cọ thì được dùng nhiều ở Malaysia. Nhưng nhiều nước thì nhập khẩu dầu thực
vật, trong khi mỡ động vật cũng khan hiếm. Những nước này (chẳng hạn như
Ấn độ) chỉ có thể xem xét việc sử dụng dầu thực vật không ăn được cho sản
phẩm biodiesel.
Nguồn dầu thực vật Việt Nam rất phong phú. Tuy nhiên vùng nguyên liệu
cây có dầu của Việt Nam chưa tập trung và chưa nhằm vào mục đích lấy dầu là
chính. Đối với Việt Nam, các dầu bông, dừa, sở, đậu tương, cọ và hướng dương

là các dầu tiềm năng hơn cả, đặc biệt gần đây là dầu jatropha.
b.Rượu
Các alcol hay rượu được sử dụng trong quá trình tổng hợp biodiesel
thường là các monoalcol mạch thẳng bậc một và bậc hai có từ 1-8 nguyên tử
cacbon như metanol, etanol, iso-propanol, butanol. Trong đó metanol và etanol
được sử dụng nhiều nhất, đặc biệt là metanol vì giá rẻ và có tính chất hóa lý ưu
việt hơn (metanol mạch ngắn hơn và phân cực hơn, không tạo hỗn hợp đẳng phí
- 18 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

với các chất khác đặc biệt là nước), khi sử dụng xúc tác kiềm (như NaOH) thì
xúc tác dễ hịa tan trong metanol và đặc biệt metanol cho độ chuyển hóa cao hơn
các alcol khác.
c. Xúc tác
Xúc tác sử dụng cho quá trình tổng hợp biodiesel có thể là xúc tác bazơ,
xúc tác axit hoặc enzyme, xúc tác axit mạnh mang trên chất mang. Có thể phân
chia xúc tác thành các loại sau:
*Xúc tác đồng thể:
-Xúc tác axit lỏng: H2SO4 , HCl, H3PO4 …
-Xúc tác bazơ kiềm: NaOH, KOH…
*Xúc tác dị thể:
-Xúc tác axit rắn: zeolite, ZrO2, cao lanh biến tính…
-Xúc tác bazơ rắn: CaO, MgO…
Các chất xúc tác thường được mang trên chất mang.
-Xúc tác enzyme


- 19 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

I.2.Tổng quan về dầu thực vật [1,5,7,8,9,10,15,33]
Dầu thực vật là một trong những nguyên liệu sử dụng rộng rãi trong các
ngành công nghiệp thực phẩm, y tế (thuốc, vitamin, dung môi, …), mỹ phẩm,
nhuộm, hóa chất (sơn, chống thấm, chất tẩy rửa, nhựa, dầu mỡ bơi trơn, phụ gia,
chất dẻo,…).
Hiện nay trong tình hình nguồn ngun liệu hóa thạch đang dần cạn kiệt
cùng với vấn đề ô nhiêm môi trường ngày càng nghiêm trọng, nhiều nước trên
thế giới đã tìm những nguồn năng lượng mới, trong đó dầu thực vật là nguồn
nguyên liệu tốt để tổng hợp nhiên liệu sinh học biodiesel dùng cho động cơ
diesel.
Các loại dầu thực vật thường được dùng để sản xuất biodiesel: dầu đậu
nành, dầu bông, dầu cọ, dầu dừa, dầu hướng dương, dầu cao su, dầu hạt cải, dầu
jatropha…Tùy vào điều kiện của từng nước cũng như nguồn nguyên liệu có sẵn
và điều kiện kinh tế mà lựa chọn loại ngun liệu thích hợp.
I.2.1.Thành phần hóa học của dầu thực vật
Các loại dầu khác nhau có thành phần hóa học khác nhau, nhưng thành
phần chủ yếu của chúng là:
*Lipit:
Các cấu tử hóa học quan trọng của hạt dầu quyết định giá trị sử dụng
trong công nghiệp của chúng được xếp thành một nhóm chất lipit. Lipit hịa tan
tốt trong các dung môi hữu cơ không phân cực như xăng, tetraclorua cacbon và
các chất khác. Thực tế chúng khơng tan trong nước. Hàm lượng lipit thường từ
¼ đến 1/3 khối lượng hạt. Trong các hạt dầu, lipit thường liên kết với các chất

khác như protein, saccarit và các dẫn xuất của chúng tạo thành các kiểu hợp chất
khác nhau và bền vững.
*Triglyxerit
Triglyxerit là các este của rượu ba chức glyxerin với axit béo có phân tử
lượng cao. Triglyxerit là thành phần chủ yếu (95-97%) của dầu.
Công thức cấu tạo của triglyxerit:

- 20 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Trong đó R1 , R2, R3 là các gốc hydrocacbon của axit béo, khi chúng có
cấu tạo giống nhau thì gọi là glyxerit đồng nhất, nếu khác nhau thì gọi là
glyxerit hỗn tạp. Phần lớn các dầu thực vật có thành phần glyxerit hỗn tạp.
Thành phần khác nhau của dầu thực vật đó là các axit béo. Các axit béo có
trong dầu thực vật đại bộ phận ở dạng kết hợp trong glyxerit và một lượng nhỏ ở
trạng thái tự do. Các glyxerit có thể thuỷ phân thành axit béo theo phương trình
phản ứng sau:

Các axit béo này có thể no hoặc khơng no. Các axit béo thường chứa một
chức, mạch thẳng và có số nguyên tử cacbon chẵn (thường là 18). Trong mỡ
động vật và dầu có nguồn gốc thực vật có những axit béo chứa 1, 2, 3 nối đôi.
Các axit béo phổ biến trong dầu thực vật là axit oleic (C18:1), linoleic (C18:2),
axit béo no như axit palmitic (C16:0), axit stearic (C18:0). Tính chất vật lý và
tính chất hóa học của axit béo do số nối đôi và số nguyên tử cacbon tạo ra. Các
axit béo không no dễ bị oxy hóa bởi oxi khơng khí làm cho dầu bị hắc đắng, bị
polyme hóa tạo thành màng, bị khử ở vị trí nối đơi chuyển thành axit béo no.

Khả năng phản ứng của các axit béo không no tăng cùng với sự tăng của nối đơi.
Tính chất của dầu và mỡ do thành phần của các axit béo và vị trí của chúng
trong phân tử triglyxerit quyết định.
*Photpho lipit:
Là lipit phức tạp, trong thành phần cấu tạo có photpho. Hàm lượng của
chúng dao động từ 0,25 – 2% so với lượng dầu trong hạt.
Về cấu tạo hóa học, photpho lipit là dẫn xuất của triglyxerit, có cơng thức
hóa học :

- 21 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

X có thể là nhóm thế (amin, hydro, etanol)
*Sáp :
Theo cấu tạo hóa học sáp thuộc loại lipit đơn giản. Chúng là các este của
các axit béo mạch cacbon dài, có 20-26 nguyên tử cacbon và rượu 1 hoặc 2
chức.

Trong đó:

R1: gốc rượu , R2: gốc axit béo.

*Các thành phần khác:
-Hợp chất không béo, khơng xà phịng hóa:
Đây là nhóm các hợp chất hữu cơ có cấu tạo hóa học đặc trưng khác nhau,
tan tốt trong dung môi của dầu. Khi ép dầu thì các hợp chất này hịa tan vào dầu

làm cho dầu có màu sắc và mùi vị riêng biệt.
-Hợp chất chứa nitơ:
Hợp chất này có trong hạt dầu chiếm 1/4- 1/5 khối lượng hạt. Trường hợp
ngoại lệ thì chiếm khoảng 1/2-1/3 khối lượng hạt. Trên 90% các hợp chất chứa
nitơ là protein.
Protein được chia làm hai loại: protein đơn giản và protein phức tạp.
+Protein đơn giản chiếm 80-90% trong hạt dầu gồm:
Protein hòa tan trong nước: abumin
- 22 -


Điều chế xúc tác superaxit rắn và sản xuất biodiesel từ DTV

Nguyễn Thị Nhị Hà – CNHH K79

Protein hòa tan trong dung dịch NaCl 10%: Globulin
Protein hòa tan trong dung dịch NaOH 0,1%: Glutelin và một số các
protein không tan.
+Protein phức tạp: thường là các loại ezyme.
Lipaza thủy phân glyxerit.
Photpho lipaza thủy phân mối liên kết este của photpho lipit.
Lipoxigenaza xúc tiến sự phân hủy các phần axit béo làm dầu bị hắc, hơi.
Ngồi ra cịn có các glucozidaza, lireza.
-Saccarit và các dẫn xuất của nó.
Trong hạt dầu, lượng saccarit tự nhiên chủ yếu là xenlulozơ và
hemixenlulozơ tạo nên những tế bào của những mơ thực vật.
-Ngun tố khống (chất tro)
Các nguyên tố khoáng phần lớn tập trung trong phần hạt quả, vỏ hạt. Hàm
lượng tro chủ yếu của hạt gồm oxit photpho, oxit kali, oxit mage chiếm 90%
tổng lượng tro chung.

I.2.2.Tính chất lý học của dầu thực vật
- Nhiệt độ nóng chảy và nhiệt độ đơng đặc: Vì các dầu khác nhau có thành
phần hố học khác nhau do vậy với các loại dầu khác nhau thì có nhiệt độ nóng
chảy và nhiệt độ đơng đặc khác nhau. Các giá trị nhiệt độ này khơng ổn định nó
thường là một khoảng nào đó. Đối với dầu thực vật, nhiệt độ đơng đặc và nhiệt
độ nóng chày của chúng thường chênh lệch nhau từ 10 ÷ 14 0C.
- Tính tan của dầu thực vật: Vì dầu khơng phân cực do vậy chúng tan rất
tốt trong dung môi không phân cực, chúng tan rất ít trong rượu và hầu như
khơng tan trong nước. Độ tan của dầu vào trong dung môi phụ thuộc vào nhiệt
độ hoà tan.
- Màu sắc: : Dầu có màu sắc như thế nào là tùy thuộc và thành phần các
hợp chất có trong dầu. Dầu tinh khiết khơng màu, dầu có màu vàng là do có
chứa clorofin, màu đỏ là do các carotenoit và các dẫn xuất.

- 23 -


×