Thêm một bài tích phân!
Tính I =
dx
x
1
3
0
3
1+
∫
=
dx
x x x
1
2
0
3
( 1)( 1)+ − +
∫
=
x
dx
x
x x
1
2
0
1 2
1
1
− +
+
÷
+
− +
∫
=
x
dx dx
x
x x
1 1
2
0 0
1 2
1
1
− +
+
+
− +
∫ ∫
• A =
dx x
x
1
1
0
0
1
ln 1 ln 2
1
= + =
+
∫
• B =
x
dx
x x
1
2
0
2
1
− +
− +
∫
=
x
dx
x x x x
1
2 2
0
1 2 1 3
2
1 1
−
− −
÷
− + − +
∫
=
x x dx
x x
1
1
2
2
0
0
1 3 1
ln 1
2 2
1
− − + +
− +
∫
=
dx
x x
1
2
0
3 1
2
1− +
∫
• C =
dx
x x
1
2
0
3 1
2
1− +
∫
=
dx
x
1
2
0
3 1
2
1 3
2 4
− +
÷
∫
Đặt
x t t
1 3
tan ,
2 2 2 2
π π
− = − < <
⇒
dx t dt
2
3
(tan 1)
2
= +
x t x t0 ; 1
6 6
π π
= ⇒ = − = ⇒ =
⇒ C =
t
dt
t
2
6
2
6
3
(tan 1)
3
2
3
2
(tan 1)
4
π
π
−
+
+
∫
=
dt
6
6
3
3 3
6 6 3
π
π
π π
π
−
= + =
÷
∫
Vậy: I =
3
ln 2
3
π
+
.