Tải bản đầy đủ (.pdf) (47 trang)

Luận văn tốt nghiệp đại cương về dao động tử điều hòa

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.06 MB, 47 trang )

TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2
KHOA VẬT LÝ

======

NGUYỄN THỊ HOAN

ĐẠI CƢƠNG VỀ DAO ĐỘNG TỬ ĐIỀU HỊA

KHĨA LUẬN TỐT NGHIỆP ĐẠI HỌC

HÀ NỘI, 2018


TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2
KHOA VẬT LÝ

======

NGUYỄN THỊ HOAN

ĐẠI CƢƠNG VỀ DAO ĐỘNG TỬ ĐIỀU HÒA
Chuyên ngành: Vật lý lý thuyết

KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC

Ngƣời hƣớng dẫn khoa học

TS. NGUYỄN HUY THẢO

HÀ NỘI, 2018




LỜI CẢM ƠN
Qua thời gian nghiên cứu và làm việc, tơi đã hồn thành khóa luận của
mình. Tơi xin gửi lời cảm ơn chân thành tới thầy giáo TS. Nguyễn Huy Thảo,
ngƣời đã tận tình hƣớng dẫn, chỉ bảo và cung cấp cho tôi những tài liệu quý
báu trong suốt q trình tơi thực hiện khóa luận này. Bên cạnh đó tơi đã nhận
đƣợc sự góp ý chân thành của các thầy cơ giáo trong khoa vật lý nói chung và
các thầy cô giáo trong tổ vật lý lý thuyết nói riêng.
Ngồi ra, tơi xin gửi lời chúc tốt đẹp nhất đến bố mẹ, gia đình và bạn bè
đã ln bên cạnh, giúp đỡ và động viên tôi vƣợt qua những khó khăn để hồn
thành khóa luận.
Mặc dù đã có nhiều cố gắng trong quá trình nghiên cứu nhƣng chắc hẳn
sẽ cịn nhiều hạn chế. Tơi rất mong nhận đƣợc sự góp ý của q thầy cơ và
các bạn để đề tài này đƣợc hồn thiện hơn.
Tơi xin chân thành cảm ơn!
Hà Nội, ngày.... tháng.... năm 2018
Sinh viên

Nguyễn Thị Hoan


LỜI CAM ĐOAN
Khóa luận tốt nghiệp của tơi hồn thành dƣới sự hƣớng dẫn tận tình của
thầy giáo TS. Nguyễn Huy Thảo. Trong q trình nghiên cứu hồn thành
khóa luận tơi có tham khảo tài liệu của một số tác giả đã ghi trong phần tài
liệu tham khảo.
Tôi xin cam đoan những kết quả nghiên cứu trong khố luận hồn tồn là
trung thực và chƣa từng đƣợc cơng bố bởi bất kì nơi nào khác.
Hà Nội, ngày.... tháng.... năm 2018

Sinh viên

Nguyễn Thị Hoan


MỤC LỤC
MỞ ĐẦU ........................................................................................................... 1
1. Lý do chọn đề tài ........................................................................................... 1
2. Mục đích nghiên cứu ..................................................................................... 1
3. Đối tƣợng và phạm vi nghiên cứu................................................................. 1
4. Nhiệm vụ nghiên cứu .................................................................................... 1
5. Phƣơng pháp nghiên cứu............................................................................... 2
6. Cấu trúc của đề tài ......................................................................................... 2
NỘI DUNG ....................................................................................................... 3
CHƢƠNG I: MỘT SỐ KHÁI NIỆM CƠ BẢN................................................ 3
1.1. Cơ học lƣợng tử.......................................................................................... 3
1.2. Dao động tử điều hịa ................................................................................. 4
1.3. Phƣơng trình Schrodinger .......................................................................... 6
1.4. Kí hiệu ket-bra............................................................................................ 8
1.5. Tốn tử Hermite ......................................................................................... 8
1.6. Không gian Hilbert ................................................................................... 11
CHƢƠNG II: DAO ĐỘNG TỬ ĐIỀU HÒA ................................................. 12
2.1. Đại số của dao động tử điều hịa .............................................................. 12
2.2. Vector riêng, các tốn tử xung lƣợng và hàm sóng của dao động tử điều
hịa ................................................................................................................... 18
CHƢƠNG III: MỘT SỐ BÀI TOÁN VỀ DAO ĐỘNG TỬ ĐIỀU HỊA...... 26
3.1. Bài tốn về hàm sóng và các mức năng lƣợng của dao động tử điều hòa26
3.2. Bài tốn về trị trung bình của các đại lƣợng vật lý của dao động tử điều
hòa ................................................................................................................... 34
KẾT LUẬN CHUNG ...................................................................................... 40

TÀI LIỆU THAM KHẢO ............................................................................... 41


DANH MỤC CÁC ĐỒ THỊ, HÌNH VẼ
Hình 1.1. Dao động của con lắc đơn quanh vị trí cân bằng. ............................. 5
Hình 1.2. Dao động của con lắc lị xo quanh vị trí cân bằng. ........................... 5
Hình 1.3. Dao động của các ion xung quanh nút mạng tinh thể. ...................... 5


MỞ ĐẦU
1. Lý do chọn đề tài.
Nhƣ chúng ta biết cơ học lƣợng tử là một lý thuyết vật lý nghiên cứu sự
vận động của vật chất trong thế giới vi mơ, các hạt trong thế giới đó gọi là vi
hạt. Vấn đề ở đây là các quy luật vận động của vi hạt không tuân theo các quy
luật cổ điển. Chỉ có cơ học lƣợng tử mới giải quyết một cách sâu sắc các quy
luật và chính xác các hiện tƣợng này.
Tuy nhiên, bên cạnh đó nội dung cơ sở lý thuyết cũng nhƣ bài tập vận
dụng của cơ học lƣợng tử tƣơng đối khá phức tạp, chỉ có một số ít bài tốn có
lời giải chính xác cho phƣơng trình Schrodinger xác định các trạng thái dừng
nhƣ: Bài tốn hạt trong hố thế vng góc, dao động tử điều hịa và bài tốn về
ngun tử hidro (chuyển động của hạt trong trƣờng xuyên tâm).
Nhƣng trong đó dao động tử điều hịa là bài tốn cơ bản nhất, có lời giải
chính xác khơng những trong cổ điển mà cả trong cơ lƣợng tử và đây cũng là
bài toán giải đƣợc chính xác trong cơ lƣợng tử.
Khi tìm hiểu về dao động tử điều hịa có rất nhiều con đƣờng khác nhau,
và với các lí do trên, tơi đã chọn đề tài “Đại cƣơng về dao động tử điều
hòa” làm đề tài khóa luận tốt nghiệp.
2. Mục đích nghiên cứu.
Tìm hiểu về dao động tử điều hòa theo biểu diễn số hạt (vector ket-bra)
và một số bài toán về dao động tử điều hòa.

3. Đối tƣợng và phạm vi nghiên cứu.
Đối tƣợng nghiên cứu: Cơ học lƣợng tử.
Phạm vi nghiên cứu: Đại cƣơng về dao động tử điều hòa.
4. Nhiệm vụ nghiên cứu.
Nghiên cứu về dao động tử điều hòa theo biểu diễn số hạt (vector ketbra) và một số bài tốn về dao động tử điều hịa.
1


5. Phƣơng pháp nghiên cứu.
Đọc, tra cứu và tổng hợp tài liệu có liên quan.
6. Cấu trúc của đề tài.
Ngồi phần mở đầu, kết luận và danh mục tài liệu tham khảo, cấu trúc
của khóa luận gồm ba chƣơng:
CHƢƠNG I: MỘT SỐ KHÁI NIỆM CƠ BẢN
CHƢƠNG II: DAO ĐỘNG TỬ ĐIỀU HỊA
CHƢƠNG III: MỘT SỐ BÀI TỐN VỀ DAO ĐỘNG TỬ ĐIỀU HÒA

2


NỘI DUNG
CHƢƠNG I: MỘT SỐ KHÁI NIỆM CƠ BẢN
1.1. Cơ học lƣợng tử.
Cơ học lƣợng tử đƣợc hình thành vào nửa đầu thế kỷ XX từ đề xuất của
các nhà khoa học Max Planck, Albert Einstein, Niels Bohr, Werner
Heisenberg, Erwin Schrodinger, Max Born, John von Neumann, Paul Dirac,
Wolfgang Pauli,…
Cơ học lƣợng tử là một trong những lý thuyết cơ bản của môn vật lý. Cơ
học lƣợng tử là phần mở rộng và bổ sung cho cơ học cổ điển (hay còn gọi là
cơ học Newton), là cơ sở của nhiều ngành vật lý nhƣ vật lý chất rắn, vật lý hạt

nhân và cả trong hóa học nhƣ hóa lƣợng tử. Khái niệm lƣợng tử dùng để chỉ
một số đại lƣợng vật lý nhƣ năng lƣợng không liên tục mà gián đoạn.
Cơ học lƣợng tử là một lý thuyết cơ học, nghiên cứu về chuyển động và
các đại lƣợng vật lý liên quan đến chuyển động nhƣ xung lƣợng và động năng
của các vật chất nhỏ bé, và thể hiện rõ lƣỡng tính sóng-hạt. Lƣỡng tính sóng
hạt đƣợc giả định là tính chất cơ bản của vật chất, vì thế mà cơ học lƣợng tử
đƣợc coi là cơ bản hơn cơ học Newton vì cơ học lƣợng tử cho phép mơ tả
chính xác và đúng rất nhiều hiện tƣợng vật lý mà cơ học Newton khơng thể
giải thích đƣợc nhƣ ở nguyên tử hay nhỏ hơn là hạ nguyên tử (proton,
notron, electron và các hạt cơ bản khác). Cơ học cổ điển khơng thể giải thích
đƣợc tại sao các ngun tử lại bền vững và khơng thể giải thích đƣợc một số
hiện tƣợng nhƣ siêu dẫn, siêu chảy. Hầu hết các tiên đoán của cơ học lƣợng tử
đã đƣợc thực nghiệm chứng minh sau một thế kỷ. Cơ học lƣợng tử là sự kết
hợp chặt chẽ của ít nhất bốn loại hiện tƣợng mà cơ học cổ điển khơng tính
đến, đó là: (i) việc lƣợng tử hóa một số đại lƣợng vật lý, (ii) lƣỡng tính sóng
hạt, (iii) vƣớng lƣợng tử, (iv) nguyên lý bất định. Trong một số trƣờng hợp,

3


các định luật của cơ học lƣợng tử chính là các định luật của cơ học cổ điển ở
mức độ chính xác cao hơn.
Cơ học lƣợng tử đƣợc kết hợp với thuyết tƣơng đối để tạo nên cơ học
lƣợng tử tƣơng đối tính và đối lập với cơ học lƣợng tử phi tƣơng đối tính (khi
bỏ qua tính tƣơng đối của chuyển động). Ta dùng khái niệm cơ học lƣợng tử
để chỉ cả hai loại trên. Cơ học lƣợng tử đồng nghĩa với vật lý lƣợng tử. Tuy
nhiên, nhiều nhà khoa học coi cơ học lƣợng tử có ý nghĩa nhƣ cơ học lƣợng tử
phi tƣơng đối tính, và nhƣ thế nó hẹp hơn vật lý lƣợng tử.
Một số nhà vật lý cho rằng cơ học lƣợng tử cho ta một mơ tả chính xác
về vật lý học ở hầu hết các điều kiện khác nhau. Dƣờng nhƣ là cơ học lƣợng

tử khơng cịn đúng ở lân cận các hố đen khi xem xét vũ trụ nhƣ một toàn thể.
Ở phạm vi này thì cơ học lƣợng tử lại mâu thuẫn với lý thuyết tƣơng đối rộng,
một lý thuyết về hấp dẫn. Vấn đề giữa cơ học lƣợng tử và thuyết tƣơng đối
rộng vẫn là một lĩnh vực nghiên cứu rất sơi nổi.
Ngồi ra, một số vấn đề cơ bản của cơ học lƣợng tử vẫn đƣợc nghiên cứu
cho đến nay.
1.2. Dao động tử điều hòa.
Trong cơ học cổ điển, dao động tử điều hòa là một hệ thống cơ học thực
hiện dao động mà chuyển động có thể mơ tả bởi những hàm số điều hòa của
thời gian, mà cụ thể ở đây thƣờng là hàm sin và cosin. Năng lƣợng của dao
động tử điều hịa có thể nhận các giá trị liên tục và tần số bức xạ trùng với tần
số dao động cơ học của dao động tử điều hịa. Ví dụ nhƣ dao động của con lắc
đơn, dao động của con lắc lò xo quanh vị trí cân bằng.

4


Hình 1.1. Dao động của con lắc đơn quanh vị trí cân bằng.

Hình 1.2. Dao động của con lắc lị xo quanh vị trí cân bằng.
Trong cơ học lƣợng tử, dao động tử điều hòa là khi một vi hạt thực hiện
dao động nhỏ điều hịa xung quanh vị trí cân bằng. Năng lƣợng của các dao
động tử điều hòa có giá trị gián đoạn (khác với lý thuyết cổ điển). Ví dụ nhƣ
dao động của nguyên tử trong phân tử, dao động của các ion xung quanh nút
mạng tinh thể.

Hình 1.3. Dao động của các ion xung quanh nút mạng tinh thể.
5



Xét chuyển động của hạt trong trƣờng thế U  x  , hạt chuyển động thực
hiện những dao động nhỏ quanh vị trí cân bằng x0  0 nên ta có thể triển khai
thế năng này dƣới dạng [2]:
U
1  2U 2
1  nU n
U  x  U0 
x
x  ... 
x  ...
x
2 x 2
n! x n

Dao động nhỏ quanh vị trí cân bằng nên các số hạng ứng với xn và n  3
ta có thể bỏ qua, mà

U
 0 (do thế năng điều hòa), nên:
x
1  2U 2
U  x  U0 
x
2 x 2

(1.1)

Vậy một hạt thực hiện những dao dộng điều hòa nhƣ (1.1) là dao động
tử điều hòa.
Hay chuyển động của dao động tử điều hòa gọi là dao động điều hòa và

đó là một hiện tƣợng rất quan trọng của vật lý nói chung và của cơ học lƣợng
tử nói riêng.
1.3. Phƣơng trình Schrodinger.
Phƣơng trình Schrodinger là một phƣơng trình cơ bản của vật lý lƣợng
tử mô tả sự biến đổi trạng thái lƣợng tử của một hệ vật lý theo thời gian, thay
thế cho các định luật Newton và biến đổi Galileo trong cơ học cổ điển.
Trong cơ học lƣợng tử, trạng thái lƣợng tử của một hệ vật lý đƣợc mô tả
đầy đủ nhất bởi một vector trạng thái thí dụ nhƣ hàm sóng trong khơng gian
cấu hình, nghiệm của phƣơng trình Schrodinger. Nghiệm của phƣơng trình
Schrodinger khơng chỉ mô tả các hệ nguyên tử và hạ nguyên tử (proton,
notron, electron và các hạt cơ bản khác) mà cả các hệ vĩ mơ, thậm chí có thể
là tồn bộ vũ trụ. Phƣơng trình này đƣợc đặt tên theo nhà vật
lý ngƣời Áo Erwin Schrodinger, ngƣời đầu tiên thiết lập vào năm 1926.

6


Tùy thuộc điều kiện từng bài toán khác nhau mà nghiệm phƣơng trình
Schrodinger có dạng khác nhau. Nhƣ vậy khi nghiên cứu chuyển động của hạt
hoặc hệ hạt trong trƣờng thế nào đó ta sẽ biết đƣợc năng lƣợng E và hàm
sóng  tƣơng ứng ở những trạng thái khác nhau. Khi xác định đƣợc năng
lƣợng và hàm sóng của hạt ở trạng thái nào đó ta có thể tính toán đƣợc các
yếu tố ứng với phép đo đại lƣợng F nào đó của hệ lƣợng tử nhƣ mật độ xác
suất, xác suất, trị trung bình,…
Phƣơng trình Schrodinger có nhiều dạng khác nhau, tùy thuộc vào các
điều kiện khác nhau của hệ vật lý.

ˆ có năng lƣợng
* Đối với hạt chuyển động trong trƣờng lực tổng quát W,
biến đổi theo thời gian thì phƣơng trình Schrodinger tổng qt có dạng [1]:

2

ˆ  ( x, y , z , t )
i
 ( x, y, z , t )  (  2  W)
t
2m

Có Hˆ  

2

2m

ˆ
2  W

Nghiệm của phƣơng trình Schrodinger tổng quát là:


 ( x, y, z, t )   0 ( x, y, z)e

i
 Ent

n 0

Trong đó: En là năng lƣợng.

 0 ( x, y, z) là hàm sóng chỉ phụ thuộc khơng gian của hạt ở

trạng thái lƣợng tử n.
* Đối với hạt có khối lƣợng m chuyển động trong trƣờng thế U( x, y, z )
phƣơng trình Schrodinger có dạng:
2 ( x, y, z ) 

2m

 E  U ( x, y, z) ( x, y, z)  0

Đây là phƣơng trình schrodinger dừng không phụ thuộc vào thời gian mà
chỉ phụ thuộc vào không gian.
7


1.4. Kí hiệu ket-bra.
Trong lĩnh vực cơ học lƣợng tử, ký hiệu bra-ket là biểu diễn chuẩn dùng
để mô tả những trạng thái lƣợng tử và đƣợc kí hiệu là:


với phần bên trái  gọi là bra và phần bên phải  gọi là ket. Ký hiệu đƣợc
giới thiệu bởi nhà tốn học Paul Dirac năm 1939 nên cịn có tên gọi là ký hiệu
Dirac, mặc dù Grassman đã dùng ký hiệu  |  cho tích vơ hƣớng của mình
hàng trăm năm trƣớc đó.
Tuy vậy, ngày nay ứng dụng chủ yếu của ký hiệu bra-ket chủ yếu nằm ở
cơ học lƣợng tử. Hầu hết các hiện tƣợng đƣợc giải thích bằng cơ học lƣợng tử
(bao trùm cả một phần của vật lý hiện đại) đều đƣợc biểu diễn dƣới dạng braket. Cách biểu diễn này thuận lợi hơn biểu diễn hàm sóng ở chỗ là tính độc
lập trong biểu diễn trừu tƣợng của đối tƣợng mà nó ký hiệu, cộng với tính linh
hoạt khi tạo ra những biểu diễn đặc thù (tọa độ, động lƣợng hoặc hàm riêng
cơ sở) một cách dễ dàng, hoặc phụ thuộc quá nhiều vào khơng gian tuyến tính
có liên quan.

1.5. Tốn tử Hermite.
Tích vơ hƣớng [1]:

 x , Fxˆ   F T
i

j

ij

Ta gọi Fij là phần tử  i, j  của toán tử Fˆ , còn phần tử:

 Fxˆ , x    x Fxˆ 

*

i

j

j,

i

 Fij*  Fij

(dấu (+) ở trên Fij chỉ phép toán vừa lấy liên hợp phức vừa chuyển vị trí
i  j của Fij ), Fij đƣợc gọi là phần tử liên hợp của phần tử Fij của toán tử

8



Fˆ , cịn tốn tử tƣơng ứng với nó là toán tử Fˆ  đƣợc gọi là toán tử liên hợp
của toán tử Fˆ .



 



ˆ
ˆ
Nếu: Fij  Fij , tức là xi ,Fx
hay Fˆ  Fˆ 
j  Fxi , x j

thì tốn tử Fˆ đƣợc gọi là tốn tử tự liên hợp hay tốn tử Hermite.
Tính chất của toán tử Hermite [1, 3, 4]:
a. Tổng của hai toán tử Hermite là một tốn tử Hermite.
b. Tích của tốn tử Hermite với một số là một toán tử Hermite khi số đó
là thực.
c. Tích của hai tốn tử Hermite là toán tử Hermite khi hai toán tử giao
hoán với nhau.
Chứng minh:
Ta có:

ˆ   Gˆ  Fy
ˆ ˆ  y, x   FG
ˆ ˆ  x    y,F(G

ˆ ˆ x)    Fy
ˆ , Gx
 ˆ , x   GF
 y, FG
  ˆ ˆ  y, x 
ˆ ˆ (đpcm).
ˆ ˆ là toán tử hecmite khi FG
ˆ ˆ  GF
Vậy FG

d. Các trị riêng của toán tử Hermite là số thực.
Chứng minh:

ˆ  x  a u  x
Au
n
n n
Nếu A là toán tử Hermite thì an là số thực.
Thực vậy, ta có:

 

*

* ˆ
ˆ
n dx   un Aun dx
 un Au

Hay





 u a u dx   u a u dx
*
n n n

* *
n n n





9


Ở đây, các thừa số bên trong dấu tích phân đều là những số, khơng phải
tốn tử nên ta có thể thay đổi thứ tự, còn an là hằng số khơng phụ thuộc biến
số x, có thể đƣa ra khỏi dấu tích phân.
Vậy


(an  a )  un*un dx  0
*
n




Tích phân nói chung khác khơng, nên:

an  an*  0
an trùng với lƣợng tử liên hợp phức của nó, vậy trị riêng an là số thực.

e. Tập hợp các vector riêng của tốn tử Hermite trong trƣờng hợp khơng
suy biến là trực giao.
Chứng minh:
Giả sử X '  X là tập hợp các vector riêng của toán tử Hermite Fˆ nào

ˆ f x .
đó: X '   xm  ; Fx
j
j j









ˆ  f  x , x   Fx
ˆ ,x  f *x ,x .
Ta có: xi , Fx
j
j
i
j

i
j
i
i
j

Từ đây suy ra:  f j  fi *   xi , x j   0 .
Nếu xi  x j ,  xi , xi   0 với xi  0 , cho nên f j  f j*.
Nếu xi  x j trong trƣờng không suy biến fi  f j .
Do đó  xi , x j   0 (đpcm).
f. Các hàm riêng của toán tử Hermite là trực giao.
Chứng minh:
Giả sử các hàm sau: f1  x  , f 2  x  ,… f k  x  ,… f n  x  là các hàm riêng
của tốn tử Aˆ thì ta có các hàm này là trực giao tức là:
f L ( x ) f K ( x)   ( L  K )

10


Hàm Delta   x  nhận giá trị 1 nếu x  0 , và nhận giá trị 0 khi x khác 0. Nhƣ
vậy  ( L  K ) nhận giá trị 1 nếu L  K , và nhận giá trị 0 khi L khác K .
Ta có thể viết điều kiện chuẩn hóa cho các hàm riêng f1  x  , f 2  x  ,…

f k  x  ,… f n  x  của toán tử Aˆ :

 dxf

L

( x) f K ( x)   ( L  K )


g. Các hàm riêng của toán tử Hermite hợp thành một hệ đủ: Nghĩa là một
hàm riêng U ( x) bất kỳ của tốn tử Aˆ có thể biểu diễn thành một tổ hợp tuyến
tính theo các hàm f1  x  , f 2  x  ,… f k  x  ,… f n  x  của toán tử Aˆ :
n

U( x)   Ck f k ( x)
k 1

Trong đó Ck là các số thực đƣợc chọn duy nhất.
1.6. Không gian Hilbert.
Không gian Hilbert là một dạng tổng qt hóa của khơng gian Euclid mà
khơng bị giới hạn về vấn đề hữu hạn chiều. Đó là một khơng gian có tích vơ
hƣớng, nghĩa là trong đó có khái niệm về khoảng cách và góc (đặc biệt là khái
niệm trực giao hay vng góc). Hơn nữa, khơng gian Hilbert thỏa mãn một
yêu cầu nữa là tính đầy đủ để chắc chắn rằng giới hạn là tồn tại khi cần, làm
các định nghĩa khác nhau trong tính tốn vi tích phân dễ dàng hơn. Các khơng
gian Hillbert cho phép các trực giác hình học có thể áp dụng vào một số
không gian hàm vô hạn chiều. Chúng cung cấp một khung để hệ thống hóa và
tổng quát hóa khái niệm chuỗi Fourier theo một hệ bất kì của các hàm số trực
giao và của phép biến đổi Fourier, là những khái niệm trung tâm của giải tích
hàm. Khơng gian Hilbert đóng vai trị quan trọng trong việc hình thức hóa
tốn học cơ học lƣợng tử.

11


CHƢƠNG II: DAO ĐỘNG TỬ ĐIỀU HÒA
2.1. Đại số của dao động tử điều hòa.
Trong phần này ta đƣa ra dạng toán học về đại số của dao động tử điều

hịa. Việc tìm các tính chất tốn học về đại số của dao động tử điều hịa có
nghĩa là tìm ra cách các toán tử tác động trên vector của khơng gian Hilbert.
Để làm đƣợc điều đó, ta đƣa ra toán tử mới aˆ và toán tử aˆ  (kết hợp của aˆ ) :
aˆ 


1   ˆ
i
Q
Pˆ  ,

2
 

(2.1)


1   ˆ
i
aˆ 
Q
Pˆ  ,

2
 


trong đó: Qˆ là toán tử tọa độ.

Pˆ là toán tử xung lƣợng.

Tiếp theo, ta định nghĩa toán tử mới [3, 5]:

Nˆ  aˆ  aˆ,

(2.2)

Nˆ đƣợc gọi là toán tử số hạt.

Thế (2.1) vào (2.2), ta đƣợc:

 ˆ 2
1 ˆ2 i ˆ ˆ ˆ ˆ
Nˆ 
Q 
P 
PQ  QP ,
2
2 
2



với:

ˆ ˆ  Iˆ,
ˆ ˆ  QP
PQ
i
Pˆ 2  2 ˆ 2
ˆ

H

Q ,
2
2

Hˆ là toán tử năng lƣợng.
Nên:

12




1 ˆ 1ˆ
Nˆ 
H  I.

2
Tƣơng tự, tính:

ˆ ˆ 
aa

1 ˆ 1ˆ
H  I.

2

Do đó, ta thu đƣợc hệ thức giao hoán:

 aˆ , aˆ    aa
ˆ ˆ   aˆ  aˆ  Iˆ.

(2.3)

Hơn nữa, có thể biểu diễn toán tử năng lƣợng Hˆ theo aˆ và aˆ  :

ˆ
1 

Hˆ  aˆ  aˆ 
I    Nˆ  Iˆ  .
2
2 


(2.4)

Để tìm các giá trị riêng và các vector riêng của toán tử Hˆ và tốn tử Nˆ .
Giả sử rằng có ít nhất một vector riêng của tốn tử Nˆ trong khơng gian
Hilbert, và gọi giá trị riêng  (đây không phải một giả thuyết tầm thƣờng, vì
có nhiều tốn tử khơng có vector riêng trong khơng gian Hilbert). Gọi  là
vector riêng, do đó:
Nˆ    .

Ta có:










ˆ ˆ   aˆ  aˆ  aˆ  aa
ˆ ˆ   Iˆ aˆ  aˆ aˆ  aˆ  Iˆ 
Na







 aˆ Nˆ  Iˆ   aˆ    1     1 aˆ .

Do đó

Nˆ  aˆ      1 (aˆ ).
Vậy aˆ  0 hoặc aˆ là một vector riêng của toán tử Nˆ với giá trị riêng

  1.
Với trƣờng hợp:

13


 1  aˆ .
Lặp lại tính tốn ở trên  1 , ta thấy:

ˆ ˆ .
 2  aa

Là không hoặc một vector riêng với giá trị riêng   2. Tiếp tục theo
cách này và có đƣợc một chuỗi các vector:

 m  aˆ m

( m = 0, 1, 2,…),

đó là các vector riêng của tốn tử Nˆ với giá trị riêng (   m ) khi  m  0 .
Tƣơng tự tính đƣợc Nˆ  aˆ   bằng:
Nˆ  aˆ       1  aˆ  .

Vì thế  1  aˆ  là vector không hoặc vector riêng của tốn tử Nˆ với
giá trị riêng   1, ln có  1  0 . Giả sử aˆ   0, có nghĩa:
aˆ   0.

Nhƣng

aˆ 

2

  aˆ  , aˆ   ,

Và theo định nghĩa:
ˆ ˆ  .
 aˆ  , aˆ     , aa















Do hệ thức giao hoán của aˆ và aˆ  , ta đƣợc:
ˆ ˆ     , aˆ aˆ    , 
 , aa












 aˆ  
2




2



 0,

khi   0 .
Do đó  1 ln là vector riêng của tốn tử Nˆ với giá trị riêng   1.
Một lần nữa lặp lại quá trình trên, ta có đƣợc một dãy của vector  n ( n = 0,
1, 2,…), là vector riêng của toán tử Nˆ với giá trị riêng   n .
14


Giả sử khi  m có thể bằng khơng. Ta có:



 m



, Nˆ  m     m   m , m      m   m

2






 m



2
, Nˆ  m   m , aˆ  aˆ m   aˆ m ,

ln khơng âm, khi đó:

 m

aˆ m

  m

2

 0.

Do chuỗi các vector riêng  m phải kết thúc sau một số bƣớc hữu hạn,
và phải tồn tại một vector 0 :
aˆ0  0.

Trong đó: vector 0 là vector riêng của toán tử Nˆ với giá trị riêng bằng
0, khi Nˆ 0  aˆ  aˆ0  aˆ  0  0.
Tiếp theo ta định nghĩa các vector chuẩn hóa:

0 


0
,
0

1  C1aˆ 0 ,
.

….

n  Cn  aˆ   0 ,
n


khi Cn là số phức.
Ta thấy vector n là vector riêng của toán tử Nˆ , với giá trị riêng n , và
Cn đƣợc chọn sao cho n đƣợc chuẩn hóa. Nhƣ vậy, ta có:
Nˆ n  nn ,

n  1.

15

(2.5)


Các số Cn đƣợc tính nhƣ sau. Ta có:

1  n   aˆ  n0 , aˆ  n0  Cn ,
2


2

nhƣng

 aˆ

0 , aˆ  n0  

1

n

 aˆ 


Cn1

2

n 1

, aˆ n1  ,

vì vậy:

1

Cn


2

Cn1



n 1

2

ˆ ˆ n1 .
, aa

Sử dụng phƣơng trình (2.3):

1

2

Cn

2

Cn1


Cn

2
2


Cn1
n

Cn

2
2

Cn1
n

Cn



n 1

,(aˆ  aˆ  1)n1 

 , Nˆ  1 
n1

n1

n1,n1 

2

Cn1


2

;

Do đó phải lựa chọn Cn sao cho:

n Cn  Cn1 .
2

2

Khi 0 đƣợc chuẩn hóa thì C0  1, cịn khi n đƣợc chuẩn hóa thì:

Cn 

1
.
n!

Ngồi ra, ta có với một vector chuẩn hóa 0 thuộc khơng gian Hilbert có
các thuộc tính:

16


aˆ0  0.

Sau đó áp dụng cho 0 các tốn tử aˆ  để có đƣợc một hệ các vector
riêng của toán tử Nˆ .


n 

1 n
aˆ 0 ,
n!

với các giá trị riêng n = 0, 1, 2,…
Từ đó các vector riêng đã đƣợc chuẩn hóa, và trực giao với nhau bởi vì
chúng là các vector riêng của một tốn tử Hermitian với các giá trị riêng khác
nhau. Nhƣ vậy, ta có mối quan hệ trực giao:

 ,    
n

n'

nn'

,

và n hình thành một hệ thống trực giao trong khơng gian Hilbert. Các tốn tử

aˆ và aˆ  đƣợc định nghĩa trên hệ thống trực giao này bởi:
aˆn  nn1 ,

aˆ n  n  1n1.

Do thuộc tính này, toán tử aˆ đƣợc gọi là toán tử hủy và toán tử aˆ  là
toán tử sinh. Cả hai đều đƣợc gọi là toán tử bậc thang. Tất cả các yếu tố của

đại số về dao động tử điều hịa đều có hàm của tốn tử aˆ và tốn tử aˆ  đƣợc
xác định trên các yếu tố của hệ thống trực giao này. Xem xét tất cả các vector:

   nn ,
n

trong đó: n là các số phức.
Tiếp theo ta tính ma trận chéo của tốn tử năng lƣợng Hˆ giữa vector n
với một giá trị cố định n . Sử dụng phƣơng trình (2.4) và (2.5), ta đƣợc:

1
1
Hˆ n   ( Nˆ  )n   (n  )n
2
2

17


1
(n , Hˆ n )   (n , Nˆ n )   (n , n )
2
1
1
2
  (n  ) n   (n  ).
2
2
Gọi


1
En   (n  ).
2
Trong đó: En là các giá trị riêng của toán tử năng lƣợng Hˆ . Tập hợp tất
cả các giá trị riêng của toán tử năng lƣợng Hˆ gọi là quang phổ của toán tử.
Quang phổ En n  1,2,3... của toán tử năng lƣợng Hˆ là năng lƣợng quang
phổ của dao động tử điều hòa. Quang phổ của toán tử tọa độ Qˆ là liên tục và
là các số thực. Quang phổ của toán tử số hạt Nˆ và toán tử năng lƣợng Hˆ là
gián đoạn.
Vậy ta đã cơ bản hồn thành việc tìm các giá trị riêng và vector riêng của
toán tử Nˆ và toán tử Hˆ hay tìm hiểu về đại số của dao động tử điều hịa.
2.2. Vector riêng, các tốn tử xung lƣợng và hàm sóng của dao động tử
điều hịa.
Trong phần này, chúng ta sẽ tìm hiểu các tính chất của hàm sóng thơng
qua kiểm tra các tính chất của tốn tử Pˆ và tốn tử Qˆ .
Đầu tiên, ta tìm hiểu các giá trị riêng x của toán tử Qˆ . Ta có [5]:
Qˆ x  x x

(2.6)

Và tìm ra x n là biến đổi giữa một vector riêng n  n (của toán tử Hˆ
và toán tử Nˆ ) và vector riêng x (của toán tử Qˆ ):

n   x x n.
x

18


Ta có:


Qˆ n 

2

(aˆ  aˆ  ) n
(2.7)



2

( n n  1  n  1 n  1 ),

với n = 0, 1, 2,…
Lấy tích vơ hƣớng với x , ta đƣợc:

n Qˆ x 

2

( n n  1 x  n  1 n  1 x ).

(2.8)

Mặt khác, lấy tích vơ hƣớng của (2.6) với n , ta đƣợc:

n Qˆ x  x n x .

(2.9)


So sánh (2.8) và (2.9), ta đƣợc:

x nx 

2

( n n  1 x  n  1 n  1 x ).

(2.10)

Hoặc đặt n  1  m , ta đƣợc:

m nx 

2

x m 1 x  m 1 m  2 x ,

(2.11)

với m = 0, 1, 2,…
Cho n = 0 (tức là m = 1), (2.7) trở thành:

Qˆ 0 

2

0 1 0 1 


2

1;

và (2.11) trở thành:

11x 

2

19

x 0x .

(2.11a)


×