Tải bản đầy đủ (.doc) (4 trang)

Tài liệu ĐỀ VÀ ĐÁP ÁN THI THỬ ĐH

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.97 KB, 4 trang )

TRƯỜNG THPT HIỆP ĐỨC
Giáo viên: Phạm Văn Hùng
ĐỀ THI THỬ ĐẠI HỌC NĂM 2009-2010
Môn thi: TOÁN – Khối A, B
Thời gian : 180 phút, không kể thời gian giao đề
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I:(2,0 điểm) Cho hàm số
3
(3 1)y x x m
= − −
(C ) với m là tham số.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) khi
1m =
.
2. Tìm các gíá trị của m để đồ thị của hàm số (C) có hai điểm cực trị và chứng tỏ rằng hai
điểm cực trị này ở về hai phía của trục tung.
Câu II:(2,0 điểm)
1. Giải phương trình:
3 3
17
8cos 6 2 sin 2 3 2 cos( 4 ).cos2 16cos
2
x x x x x
π
+ + − =
.
2. Tính tích phân :
( ) ( )
1
2
1


1 1
x
dx
I
e x

=
+ +

.
Câu III:(2,0 điểm)
1. Tìm các giá trị của tham số m để phương trình:
2
4
2
1
x
x
m e e
+ = +
có nghiệm thực .
2. Chứng minh:
( )
1 1 1
12x y z
x y z
 
+ + + + ≤
 ÷
 

với mọi số thực x , y , z thuộc đoạn
[ ]
1;3
.
Câu IV:(1,0 điểm) Cho hình chóp S.ABC có chân đường cao là H trùng với tâm của đường tròn
nội tiếp tam giác ABC và AB = AC = 5a , BC = 6a . Góc giữa mặt bên (SBC) với mặt đáy là
0
60
.Tính theo a thể tích và diện tích xung quanh của khối chóp S.ABC.
II. PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần: A hoặc B.
A. Theo chương trình chuẩn
Câu Va:(1,0 điểm) Trong mặt phẳng tọa độ (Oxy) , cho tam giác ABC vuông cân tại A với
( )
2;0A

( )
1 3G ;
là trọng tâm . Tính bán kính đường tròn nội tiếp tam giác ABC.
Câu VI.a:(2,0 điểm)
1. Giải phương trình:
( )
3
log 4.16 12 2 1
x x
x
+ = +
.
2. Tìm giá trị nhỏ nhất của hàm số
( )
1y x ln x

= −
.
B. Theo chương trình nâng cao
Câu Vb:(1,0 điểm) Trong mặt phẳng tọa độ (Oxy) , cho tam giác ABC với
( )
0 1A ;
và phương
trình hai đường trung tuyến của tam giác ABC qua hai đỉnh B , C lần lượt là
2 1 0x y
− + + =

3 1 0x y
+ − =
. Tìm tọa độ hai điểm B và C.
Câu VI.b:(2,0 điểm)
1. Giải phương trình:
3 3
log 1 log 2
2 2
x x
x
+ −
+ =
.
2. Tìm giới hạn:
( )
2
ln 2
lim
1

1
x
x
x



.
-----Hết-----
Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NAM
TRƯỜNG THPT HIỆP ĐỨC
ĐÁP ÁN
ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010
Môn thi: TOÁN – Khối A, B
Câu Ý NỘI DUNG
Điểm
Câu I
(2,0đ)
Ý 1
(1,0 đ)
Khi m =1


3
3 1y x x
= − +
. Tập xác định D=R . 0,25 đ
Giới hạn:

lim ; lim
x x
y y
→−∞ →+∞
= −∞ = +∞
.
y’= 3x
2
– 3 ; y’=0
1x
↔ = ±
.
0,25 đ
Bảng biến thiên .
Hàm số đồng biến trên khoảng
( ) ( )
; 1 , 1;
−∞ − + ∞
và nghịch biến
trên khoảng
( )
1;1

.
Hàm số đạt CĐ tại x = -1 ; y

= 3 và đạt CT tại x = 1 ; y
CT
= -1 .
0,25 đ


Điểm đặc biệt: ĐT cắt Oy tại (0 ; 1) và qua (-2 ; -1) ; (2 ; 3).
Đồ thị ( không cần tìm điểm uốn) .
0,25 đ
Ý 2
(1,0 đ)
y’ = 0

3x
2
– 3m = 0 ;
' 9m
∆ =
.
0,25 đ
0m

: y’ không đổi dấu

hàm số không có cực trị .
0,25 đ
0m
>
: y’ đổi dấu qua 2 nghiệm của y’=0

hàm số có 2 cực trị.
KL:
0m
>
.

0,25 đ
0m
>


0P m
= − < →
đpcm.
0,25 đ
âu II
(2,0 đ)
Ý 1
(1,0 đ)
Biến đổi:
3
4cos 3 2 sin 2 8cosx x x+ =
0,25 đ
2
2cos .(2cos 3 2 sin 4) 0x x x
↔ + − =
0,25 đ
2
cos 0 2sin 3 2 sin 2 0x v x x
↔ = − + =
. 0,25 đ

2
2
4
3

2
4
x k
x k
x k
π
π
π
π
π
π

= +



↔ = +



= +

, k
Z∈
KL:
0,25 đ
Ý 2
(1,0 đ)
Khi x = 2y



1y
= ± →
2
1
x
y
=


=

;
2
1
x
y
= −


= −

(loại) . 0,25 đ
Khi y=2x

-3 x
2
= 3 : VN .
KL: nghiệm hệ PT là
( )

2;1
.
0,25 đ
Câu III
(2,0 đ)
Ý 1
(1,0 đ)
Đặt
2
x
t e=
ĐK: t > 0 .
PT trở thành:
4
4
1m t t
= + −
.
0,25 đ
Xét
4
4
( ) 1f t t t= + −
với t > 0 .
3
4
4
4
'( ) 1 0
1

t
f t
t
 
= − <
 ÷
+
 

hàm số NB trên
( )
0;
+ ∞
.
0,50 đ

( ) ( )
4 4 24
1
lim ( ) lim 0
1 1
t t
f t
t t t t
→+∞ →+∞
= =
+ + + +
; f(0) = 1.
KL: 0< m <1.
0,25 đ

Ý 2
(1,0 đ)
Ta có:
( ) ( )
2
3
1 3 1 3 0 4 3 0 4t t t t t t
t
≤ ≤ ↔ − − ≤ ↔ − + ≤ ↔ + ≤
. 0,25 đ
Suy ra :
3 3 3
4 ; 4 ; 4x y z
x y z
+ ≤ + ≤ + ≤
( )
1 1 1
3 12Q x y z
x y z
 
→ = + + + + + ≤
 ÷
 

0,50 đ
( ) ( )
1 1 1 1 1 1
3 6 12
2
Q

x y z x y z
x y z x y z
   
+ + + + ≤ ≤ → + + + + ≤
 ÷  ÷
   
0,25 đ
Câu IV
(1,0 đ) Gọi M là trung điểm BC

A , M , H thẳng hàng
0
BC SM 60BC AM SMH⊥ → ⊥ → ∠ =
.
0,25 đ
AM=4a
2
3
12 ; 8
2
ABC
ABC
S
a
S a p a r
p
→ = = → = =
=MH . 0,25 đ
3
.

3 3
6 3
2
S ABC
a
SH V a
→ = → =
. 0,25 đ
Hạ HN , HP vuông góc với AB và AC
;AB SN AC SP
→ ⊥ ⊥
HM = HN = HP
2
3 3 24
XQ
SM SN SP a S ap a
→ = = = → = =
.
0,25 đ
Câu Va
(1,0 đ)
Đặt AB = a
( )
2
2 2
2 ;
2 2
ABC
a
a

BC a S p
+
→ = → = =
. 0,50 đ

2 2
ABC
S
a
r
p
→ = =
+
. 0,25 đ
( )
1; 3 2 3 3 2AG AG AM a= − → = → = → =
uuur
( )
3 2 1r→ = −
.
0,25 đ
Câu VIa
(2,0 đ)
Ý 1
(1,0 đ)
PT
2 1 2 2
4.16 12 3 4.4 4 .3 3.3
x x x x x x x+
↔ + = ↔ + =

.
Chia 2 vế cho
2
3 0
x
>
, ta có:
2
4 4
4 3 0
3 3
x x
   
+ − =
 ÷  ÷
   
.
0,50đ
Đặt
4
3
x
t
 
=
 ÷
 
. ĐK:
2
3

0 ; 4 3 0 1( ); ( )
4
t t t t kth t th
> + − = ↔ = − =
. 0,25 đ
Khi
3
4
t
=
, ta có:
1
4 3 4
1
3 4 3
x
x

   
= = ↔ = −
 ÷  ÷
   
.
0,25 đ
Ý 2
(1,0 đ)
TXĐ:
( )
0;D
= + ∞

;
1
' ln
x
y x
x

= +
. 0,25 đ
y’= 0
1x
↔ =
; y(1) = 0 vì
1
ln
x
y x
x

= +
là HSĐB 0,50 đ
Khi 0 < x < 1
' 0y
→ <
; khi x > 1
' 0y
→ >
.
KL: miny = 0
1x

↔ =
.
0,25 đ
Câu Vb
(1,0 đ)
Tọa độ trọng tâm tam giác ABC là
2 1
4 1
;
3 1
7 7
x y
G
x y
− =

 


 ÷
+ =
 

.
0,25 đ
Gọi
( )
1
;2 1 ( )B b b d
− ∈

;
( )
2
1 3 ; ( )C c c d
− ∈

Ta có:
5 2
3
7 7
3 1
2
7 7
b c b
b c c
 
− = =
 
 

 
 
+ = = −
 
 
.
0,50 đ
KL:
2 3 10 1
; ; ;

7 7 7 7
B C
   
− −
 ÷  ÷
   
. 0,25 đ
Câu VIb
(2,0 đ)
Ý 1
(1,0 đ)
ĐK: x > 0 . Đặt
3
log 3
t
t x x
= ↔ =
. 0,25 đ
Ta có:
2
1 9 2 4 2
2.2 2 3 .2 3
4 4 3 9 3
t
t t t t t
   
+ = ↔ = ↔ = =
 ÷  ÷
   
. 0,50 đ

Khi t = 2 thì
3
log 2 9x x= ↔ =
(th)
KL: nghiệm PT là
9x
=
.
0,25 đ
Ý 2
(1,0 đ)
Đặt
1. : 1 0t x Suyra x t
= − → ⇔ →
. 0,25 đ
Giới hạn trở thành:
( )
( )
0
ln 1
lim
2
t
t
t t


+
( )
( )

( )
0
ln 1
1 1
lim .
2 2
t
t
t t

+ −

= = −
− +
.
0,50đ
KL:
( )
2
1
ln 2
1
lim
1 2
x
x
x


= −


. 0,25đ
* Lưu ý: Học sinh có lời giải khác với đáp án chấm thi nếu có lập luận đúng dựa vào
SGK hiện hành và có kết quả chính xác đến ý nào thì cho điểm tối đa ở ý đó ; chỉ cho điểm
đến phần học sinh làm đúng từ trên xuống dưới và phần làm bài sau không cho điểm.
…..HẾT…..

×