Chun đề 1 PHƯƠNG TRI
̀
NH VƠ TY
̉
* Dạng 1 :
A 0 (hoặc B 0 )
A B
A B
≥ ≥
= ⇔
=
T
n n
A B=
* Dạng 2 :
2
B 0
A B
A B
≥
= ⇔
=
T
n
A B=
Da
̣
ng 3
A B=
T
n n
A B
+ +
=
Da
̣
ng 4
A B A B= ⇔ =
n
A B
+
=
+ − = − − = − + −
+ − − = − + + =
+ + − − + =
2 2 2
3 3
1. :
) 4 2 2 (1) ) 4 2 8 12 6 (4)
) 3 1 4 1 (2) ) 12 14 2 (5)
) 11 11 4 (3)
Ví dụ Giảicác phươngtrình
a x x x d x x x x
b x x e x x
c x x x x
( )
− ≥
≥
≥
⇔ ⇔ ⇔ ⇔ =
= ∨ =
− =
+ − = −
=
2
2
2
) :
2 0
2
2
(1) 3
0 3
3 0
4 2 2
: 3
a Tacó
x
x
x
x
x x
x x
x x x
Vậy x
( )
≥ −
⇔ + = + + ⇔ + = + + + + ⇔ + = −
− ≥
≥
≥
⇔ ⇔ ⇔ ⇔ =
= ∨ =
− =
+ = −
=
2
2
1
) :
3
(2) 3 1 1 4 3 1 1 4 2 4 4 2
2 0
2
2
5
0 5
5 0
4 2
: 5
b Tacóđiềukiện x
x x x x x x x
x
x
x
x
x x
x x
x x
Vậy x
( )
± + ≥
⇔ + + + − + + − − = ⇔ − − = −
− ≥
⇔ ⇔ =
− − = −
=
2 2
2
) : 11 0 ( )
(3) 11 11 2 11 16 11 8
8 0
5 ( ( ))
2 11 8
: 5
c Tacóđiềukiện x x a
x x x x x x x x x
x
x thỏa a
x x x
Vậy x
= − + ≥ = − +
− + = − + =
−
⇔ = − ⇔ − = ⇔ = ∨ = ⇔ ⇔ =
− + =
− + =
=
2 2 2
2 2
2
2
2
2
) 2 8 12 0, 2 8 12
2 8 12 0 2 8 12 0
12
(4) 6 2 0 0 2 2
2
2 8 8 0
2 8 12 2
: 2
d Đặt t x x ta có t t x x
x x x x
t
t t t t t x
x x
x x
Vậy x
( )
+ = + + +
⇔ − + + + − + − + + =
− + = −
− + + =
⇔ − + = − ⇔ + − = ⇔ = − ∨ =
= − ∨ =
= − = +
3 3 3
3 3 3 3
3 3
3 3
3 3
) 1: : ( ) 3 ( )
(5) 12 14 3 12 . 14 12 14 8
12 . 14 .2 6 ( )
12 14 2 ( )
( ) 12 14 27 2 2 195 0 15 13 ( ( ))
: 15 13
2 : 12 ; 14 .
e C Tacó a b a b ab a b
x x x x x x
x x a
x x b
a x x x x x x thỏa b
Vậy x x
C Đặt u x v x Ta
+ = + =
+ = = − =
⇔ ⇔ ⇔ ∨
= − = = −
+ = + − + =
− = − ⇔ =
− = ⇔ =
3 3 3
3
3
:
2 2
2 1 3
3 3 1
26 ( ) 3 ( ) 26
* 12 1 13
* 12 3 15
có
u v u v
u v u u
uv v v
u v u v uv u v
x x
x x
* Phương pháp 1 : Biến đổi về dạng cơ bản
Ví dụ : Giải phương trình sau :
1)
−=−
xx
(x=6) 4)
!
=−++−
xxx
1
(x )
2
= −
2)
"
−=−+−
xxx
(
"
=
x
) 5)
+=+−
xxx
(
#
"
±−
=
x
3)
$
=−−
xx
(
"
=
x
) 6)
xx
=−
(
±=
x
)
* Phương pháp 2 : Đặt điều kiện (nếu có) và nâng luỹ thừa để khử căn thức
1)
!
++−=+
xxx
(
11
x 0 x )
3
= ∨ =
4)
"
=−−−−−
xxx
(x=2)
2)
$
=+−−
xx
(
!
=
x
) 5)
%
+=−+
xxx
(
=
x
)
3)
+=++
xxx
(
+−
=
x
) 6)
+−=+
xx
(
=
x
)
* Phương pháp 3 : Đặt ẩn phụ chuyển về phương trình hoặc hệ pt đại số
1)
xxxx ##&"&
+=−+
(x 1 x 4)= ∨ = −
5)
"##&&
=−++−++
xxxx
(x 0 x 3)= ∨ =
2)
=+−+−
xxx
(x 1 x 2 2)= ∨ = −
6)
−−=−
xx
(x 1 x 2 x 10)= ∨ = ∨ =
3)
#"#&&"
=−++−++
xxxx
(
"
±
=
x
) 7)
'
−+−=−++
xxxx
(x=5)
4)
'
=+−++−
xxxx
(x=1; x=2) 8)
"!
+−+−=−+−
xxxxx
(x=2)
Lu
̣
n tâp:&
(
)
*(
+,-
./
)
/-
)
0
10.
2
)
)
-*&2
)
+
*(
#.33#
145(
)
26(
#
" & #x x x− = − =
#
! & #x x x x− + + = =
#
$ & 7 #x x x x x+ + = + = =
#
& %#
$
x
x x
x
−
= − =
−
3#
& #x x x x− − = − = −
8#
' " & #x x x x− = − − − − = −
#
$ 7
x x x x x
− = − − = =
÷
#
"
x x x x
− − = − =
÷
245(
)
26(
#
& #x x x− + + = =
#
7 7
x x x x x x
− + − = − = = =
÷
345
)
26(
#
( ) ( )
" ' & $7 #x x x x x x+ + − + + = = − =
#
% " $ 7
x x x x x x
− + + − + = = − =
÷
#
$ ! & 7 #x x x x x x x x+ + + + + = + + = − =
#
% $ $ & #x x x x x+ − + = − + − + =
445
)
26(
#
& #x x x x x− − + + − = =
#
' & #x x x x x− + − = − + =
#
"
7
x x x x
− ±
+ = − = =
÷
÷
#
$
7
x x x x
+ + − = = ± = −
÷
3#
% % & '#x x x x x− − + = + = ±
8#
' " % & #x x x− + − − = = −
545
)
26(
#
& #
x x
x
x
x
+ −
+ = =
−
#
& %#x x x x x− + − − = =
#
"
"
x x x x x
±
+ + − + + − = =
÷
÷
#
" ' & #x x x+ + + = =
3#
! & #x x x− + + = =
8#
" & #x x x+ + − = =
#
& #x x x x− + − + = =
#
& 7 "#
x
x x x x x x
+
+ − + − − = = =
645(
)
26(
#
x x x x+ + + = + +
&9:#
#
x
x x x x
x
+
+ + = − + + +
+
&
. x x= − = +
#
#
x x x x+ + + = + + +
&9: 79:;#
#
x x x x x+ + = + +
&9:#
3#
x
x x
x
+ + =
+
&9:#
I. C ơ bản :
4
! x x x+ = − −
4
x x x x+ + + = + +
4
& # 'x x x+ − = + +
4
x x x x+ + + = + + +
"4
x x x x x+ + = + +
'4
x x x x x x+ + + = + + +
$4
& #x x x x x x− − − − + −
%4
% ' x x x x+ + + − = +
!4
" x x x− − − − − =
4
( )
x x x x+ − = − −
4
x x x x− − + + − − =
4
"
x
x x x x
+
+ + + + + − + =
II. È n phu :
4
x x x x− − + + − =
4
=++
+
xx
x
"4
" 'x x+ + − =
'4
x x x x+ − = + −
$4
x x x x+ − = + −
%4
x x x x
x
+ − = +
!4
x x x x+ − = +
4
+
− + + − = −
−
1
( 3)( 1) 4( 3) 3
3
x
x x x
x
4
! " x x x x x
− + − = − + − +
4
x x+ + =
4
( )
" x x+ = +
4
2 3
2 5 1 7 1x x x+ − = −
"4
− + = + +
2 2
(4 1) 1 2 2 1x x x x
'4
2 2
2(1 ) 2 1 2 1x x x x x− + − = − −
$4
( )
' x x x x− + + − =
%4
x x x x x+ + − = + +
!4
(
)
x x x x+ − + = + +
4
x x x x+ − = + − + −
4
& # x x x x− + = + +
4
& # x x x x+ + = + +
4
$ $x x+ + =
4
+ = −
3
3
1 2 2 1x x
"4
x x+ = −
'4
' % x x x+ = − −
$4
x x− + − =
%4
2 2
3 2 1( 99)x x x x NT− + − + − = −
!4
x x
− = − −
4
! x x x x x+ + + − + = +
4
x x x− = −
4
' "x x x− − = +
4
(
)
x x x+ − = + −
4
( ) ( )
x x x x+ − = −
"4
( ) ( )
x x x x
+ − − − + = + −
'4
' x x+ =