Tải bản đầy đủ (.ppt) (20 trang)

Chapter 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (337.97 KB, 20 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

MANAGERIAL ECONOMICS



MANAGERIAL ECONOMICS



12



12

thth

Edition

<sub> Edition</sub>



By


By



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Linear Programming



Linear Programming



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Chapter 9


Chapter 9


OVERVIEW


OVERVIEW



Basic Assumptions



Production Planning for a Single Product


Production Planning for Multiple Products


Graphic Specification and Solution



Algebraic Specification and Solution


Dual in Linear Programming



Dual Specification




</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Chapter 9


Chapter 9



KEY CONCEPTS


KEY CONCEPTS



linear programming


optimal solution



relative distance


method



feasible space



objective function


corner point



slack variables



simplex solution


method



primal


dual



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

Basic Assumptions


Inequality Constraints



Resource constraints limit usage to ≤ some




fixed amount.



Output quantity or quality constraints limit



production to ≥ some fixed amount.



Linear Assumptions



Constant output prices.


Constant input prices.



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

Production Planning for a Single


Product



Production Processes



 Equal distances along the same process ray indicate


equal output quantities.


 Equal distances along different process rays indicate


different output quantities.


Production Isoquants



 Linear segments represent input combinations used


to produce a given level of output.



 Least-cost input combination is on feasible isocost


line closest to origin.


 Maximum output with limited resources is on feasible


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7></div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8></div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9></div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10></div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

Production Planning for Multiple


Products



Objective Function Specification



 Maximize profits, revenue or quantity subject to ≤


resource constraints.


 Minimize cost subject to ≥ output constraints.


Constraint Equation Specification



 Resource use cannot exceed availability.


 Output quantity/quality constraints must be met.


Nonegativity Requirement



</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

Graphic Specification and Solution


Solving the LP Problem



Analytic expression is the first step.




Graphic representation builds intuition.



Graphing the LP Problem



The LP feasible space graph shows



possibilities.



The LP objective function depicts most



</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13></div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14></div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15></div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16></div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

Algebraic Specification and


Solution



 Slack Variables


 Slack variables convert ≥ or ≤ constraints into equalities.
 Zero slack implies full employment.


 Positive slack implies excess capacity.
 Algebraic Solution


 Corner point with highest value is maximum.
 Corner point with lowest value is minimum.
 Slack Variables at the Solution Point


 Binding constraints imply no slack.
 Nonbinding constraints imply slack.


 Computer-based solution methods work best for



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18></div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

Dual in Linear Programming



Duality Concept



Pairs of symmetrical LP problems are called



the primal and dual.



Every primal has a dual and

<i>vice versa</i>

.


Primal and dual solutions are related.



Shadow Prices



Shadow prices are opportunity costs.



Remember: costs of constrained resources



</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

Dual Specification and Solution



Dual Objective Function



 Dual of profit maximization problem seeks minimum


cost solution.


 Dual of minimum cost problem seeks highest


production value given resource constraints.


Dual Constraints




 Binding constraints imply no slack.
 Nonbinding constraints imply slack.


Dual Slack Variables



</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×