Tải bản đầy đủ (.ppt) (27 trang)

Thuc Vat co Hoa

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (502.38 KB, 27 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

Photosynthesis: Calvin Cycle



Copyright © 1999-2008 by Joyce J. Diwan.
All rights reserved.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Light reactions:</b> Energy of light is conserved as


 <sub>“high energy” phosphoanhydride bonds of </sub><b><sub>ATP</sub></b>


 <sub>reducing power of </sub><b><sub>NADPH</sub></b><sub>. </sub>


Proteins & pigments responsible for the light reactions


are in <b>thylakoid</b> (grana disc) <b>membranes</b>.


Light reaction pathways will be not be presented here.
grana disks


(thylakoids)


stroma
compartment


2 outer


membranes


Chloroplast
<b>Photosynthesis </b>


takes place in


chloroplasts.
It includes light
reactions and


reactions that are
not directly


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

The free energy of cleavage of ~P bonds of <b>ATP</b>, and
reducing power of <b>NADPH</b>, are used to fix and reduce


<b>CO<sub>2</sub></b> to form <b>carbohydrate</b>.


Enzymes & intermediates of the <b>Calvin Cycle</b> are located
in the chloroplast <b>stroma</b>, a compartment somewhat


analogous to the mitochondrial matrix.
grana disks


(thylakoids)


stroma
compartment


2 outer


membranes


Chloroplast
<b>Calvin Cycle</b>,



earlier designated
the photosynthetic
"dark reactions,"
is now called the


<b>carbon reactions</b>


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Ribulose Bisphosphate Carboxylase</b> (RuBP Carboxylase),
catalyzes CO<sub>2</sub> fixation:


ribulose-1,5-bisphosphate + CO<sub>2</sub>  2 3-phosphoglycerate


Because it can alternatively catalyze an oxygenase reaction, the
enzyme is also called RuBP Carboxylase/Oxygenase


(<b>RuBisCO</b>). It is the <b>most abundant</b> enzyme on earth.


Ribulose-1,5-bisphosphate
(RuBP)


OH
H<sub>2</sub>C


C
H


C
C


OH


H


H<sub>2</sub>C OPO<sub>3</sub>


2-OPO<sub>3</sub>
2-O


3-Phosphoglycerate
(3PG)


OH
H<sub>2</sub>C


C
H


C O
O


OPO <sub>3</sub>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>-RuBP Carboxylase</b> - postulated mechanism:


Extraction of <b>H+</b> from <b>C3</b> of ribulose-1,5-bisphosphate
promotes formation of an <b>enediolate intermediate</b>.


Nucleophilic attack on CO<sub>2</sub> leads to formation of a <b></b>


<b>-keto acid intermediate</b>, that reacts with water and cleaves
to form 2 molecules of <b>3-phosphoglycerate</b>.



O H
H<sub>2</sub>C


C
H
C
C
O H
H


H<sub>2</sub>C O P O <sub>3</sub>2


O P O <sub>3</sub>2
O


O H
H<sub>2</sub>C


C
H


C
C


O H


H<sub>2</sub>C O P O<sub>3</sub>2


O P O<sub>3</sub>2



 <sub>O</sub>


H+ O H


H <sub>2</sub>C
C
H


C
C


O


H <sub>2</sub>C O P O<sub>3</sub>2


O P O<sub>3</sub>2
H O C O<sub>2</sub>
C O<sub>2</sub>


O H
H <sub>2</sub>C


C
H


C


O P O <sub>3</sub>2
O



O


H<sub>2</sub>O


1


5
4
3
2


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>Transition state analogs</b> of the postulated -keto acid


intermediate bind tightly to RuBP Carboxylase and <b>inhibit</b>


its activity.


Examples: 2-carboxyarabinitol-1,5-bisphosphate (<b>CABP</b>,
above right) & carboxyarabinitol-1-phosphate (CA1P).



2-Carboxyarabinitol-1,5-bisphosphate (inhibitor)


OH
H<sub>2</sub>C


C
H
C


C
OH
H


H<sub>2</sub>C OPO<sub>3</sub>2


OPO<sub>3</sub>2
HO CO<sub>2</sub>


Proposed -keto acid
intermediate


OH
H<sub>2</sub>C


C
H


C
C


O


H<sub>2</sub>C OPO <sub>3</sub>2


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

 <b><sub>8 large catalytic subunits</sub></b><sub> (</sub><b><sub>L</sub></b><sub>, 477 residues, blue, cyan)</sub>
 <b><sub>8 small subunits</sub></b><sub> (</sub><b><sub>S</sub></b><sub>, 123 residues, shown in red).</sub>


Some bacteria contain only the large subunit, with the
smallest functional unit being a homodimer, <b>L2</b>.



Roles of the small subunits have not been clearly defined.
There is some evidence that interactions between large &
small subunits may regulate catalysis.


RuBisCO PDB 1RCX


RuBisCO PDB 1RCX


<b>RuBP </b>


<b>Carboxylase</b>


in plants is a
complex


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

Large subunits within


RuBisCO are arranged as


<b>antiparallel dimers</b>, with the
N-terminal domain of one


monomer adjacent to the
C-terminal domain of the other.
Each <b>active site</b> is at an


<b>interface</b> between monomers
within a dimer, explaining the
minimal requirement for a



dimeric structure.


The substrate binding site is at the mouth of an -barrel


domain of the large subunit.


Most active site residues are polar, including some
charged amino acids (e.g., Thr, Asn, Glu, Lys).



ribulose-1,5-bisphosphate


PDB 1RCX


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

"Active" RuBP Carboxylase has a <b>carbamate</b> that binds an
essential <b>Mg++</b> at the active site.


The carbamate forms by reaction of <b>HCO<sub>3</sub></b> with the 
-amino group of a <b>lysine</b> residue, in the presence of <b>Mg++</b>.


HCO<sub>3</sub> that reacts to form carbamate is distinct from CO


2 that
binds to RuBP Carboxylase as substrate.


<b>Mg++</b> bridges between oxygen atoms of the carbamate &


substrate <b>CO<sub>2</sub></b>.



Carbamate Formation


with RuBP Carboxylase Activation


Enz-Lys NH<sub>3</sub>+ H<sub>N</sub> <sub>C</sub>


O


O


+ HCO<sub>3</sub> <sub>+</sub><sub> H</sub>


2O + H+


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

Binding of either RuBP or a transition state analog to
RuBP Carboxylase causes a <b>conformational change</b> to
a "<b>closed</b>" conformation in which access of solvent


water to the active site is blocked.


RuBP Carboxylase (RuBisCO) can spontaneously


<b>deactivate</b> by decarbamylation.


In the <b>absence of the carbamate</b> group, RuBisCO


tightly binds ribulose bisphosphate (RuBP) at the active
site as a <b>“dead end” complex</b>, with the closed


conformation, and is inactive in catalysis.



</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>RuBP Carboxylase Activase</b> is an ATP hydrolyzing


(ATPase) enzyme that causes a conformational change in
RuBP Carboxylase from a closed to an open state.


This allows release of tightly bound RuBP or other sugar
phosphate from the active site, and carbamate formation.
Since photosynthetic light reactions produce ATP, the


<b>ATP dependence</b> of RuBisCO activation provides a


mechanism for <b>light-dependent activation</b> of the enzyme.
The activase is a member of the <b>AAA family of ATPases</b>,
many of which have <b>chaperone-like</b> roles.


RuBP Carboxylase Activase is a <b>large</b> multimeric protein


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

When <b>O<sub>2</sub></b> reacts with ribulose-1,5-bisphosphate, the


products are 3-phosphoglycerate plus the <b>2-C</b> compound
<b>2-phosphoglycolate</b>.


This reaction is the basis for the name RuBP
Carboxylase/Oxygenase (RuBisCO).


OH
H <sub>2</sub>C


C


H


C O


O


OPO <sub>3</sub>2




H <sub>2</sub>C
C


OPO <sub>3</sub>2


O 
O


3 -p h o s p h o - p h o s p h o g ly c o la te
g ly c e ra te


<b>Photorespiration:</b>


<b>O<sub>2</sub></b> can <b>compete with CO<sub>2</sub></b>


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

The complex pathway that <b>partly</b> <b>salvages</b> <b>C</b> from
2-phosphoglycolate, via conversion to 3-phosphoglycerate,


involves enzymes of chloroplasts, peroxisomes &
mitochondria.



This pathway recovers 3/4 of the C as 3-phosphoglycerate.
The rest is <b>released</b> as <b>CO2</b>.


<b>Photorespiration </b>is a<b> wasteful </b>process, substantially


reducing efficiency of CO2 fixation, even at normal ambient
CO2.


OH
H <sub>2</sub>C


C
H


C O
O


OPO <sub>3</sub>2




H <sub>2</sub>C
C


OPO <sub>3</sub>2


O 


O



3 -p h o s p h o - p h o s p h o g ly c o la te
g ly c e r a te


<b>Photorespiration:</b>


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

 <sub>Most plants, designated </sub><b><sub>C</sub><sub>3</sub></b><sub>, fix CO</sub><sub>2</sub><sub> initially via RuBP </sub>
Carboxylase, yielding the 3-C 3-phosphoglycerate.


 Plants designated <b>C<sub>4</sub></b> have one cell type in which
phosphoenolpyruvate (PEP) is carboxylated via the


enzyme PEP Carboxylase, to yield the <b>4-C oxaloacetate</b>.
Oxaloacetate is converted to other 4-C intermediates that


are transported to cells active in photosynthesis, where


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>C<sub>4</sub></b> <b>plants maintain a high ratio of CO<sub>2</sub>/O<sub>2</sub></b> within


photosynthetic cells, thus minimizing photorespiration.
Research has been aimed at increasing expression of


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Continuing with Calvin Cycle:</b>


The normal RuBP Carboxylase product,
3-phospho-glycerate is converted to glyceraldehyde-3-P.


<b>Phosphoglycerate Kinase</b> catalyzes transfer of <b>P<sub>i</sub></b> from


<b>ATP</b> to the carboxyl of <b>3-phosphoglycerate</b> (RuBP



Carboxylase product) to yield <b>1,3-bisphosphoglycerate</b>.


OH
H <sub>2</sub> C


C
H


C O


O


OPO <sub>3</sub> 2 




OH
H <sub>2</sub> C


C
H


C O PO 3


2


O


OPO <sub>3</sub> 2 



OH
H <sub>2</sub> C


C
H


CHO


OPO <sub>3</sub> 2 


A T P A D P N A D P H N A D P +


P <sub>i</sub>


1 , 3 - b i s p h o s p h o -
g l y c e r a t e
3 - p h o s p h o -


g l y c e r a t e g l y c e r a l d e h y d e - 3 - p h o s p h a t e


P h o s p h o g l y c e r a t e
K i n a s e


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<b>Glyceraldehyde-3-P Dehydrogenase</b> catalyzes reduction
of the carboxyl of 1,3-bisphosphoglycerate to an <b>aldehyde</b>,
with release of <b>P<sub>i</sub></b>, yielding <b>glyceraldehyde-3-P</b>.


This is like the Glycolysis enzyme running backward, but
the chloroplast Glyceraldehyde-3-P Dehydrogenase uses



<b>NADPH</b> as e donor, while the cytosolic Glycolysis


enzyme uses NAD+ as e acceptor.


OH
H <sub>2</sub> C


C
H


C O


O


OPO <sub>3</sub> 2 




OH
H <sub>2</sub>C


C
H


C O PO 3


2 


O



OPO <sub>3</sub>2 


OH
H <sub>2</sub> C


C
H


CHO


OPO <sub>3</sub> 2 


A T P A D P N A D P H N A D P +


P <sub>i</sub>


1 , 3 - b i s p h o s p h o -
g l y c e r a t e
3 - p h o s p h o -


g l y c e r a t e g l y c e r a l d e h y d e - 3 - p h o s p h a t e


P h o s p h o g l y c e r a t e
K i n a s e


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>Continuing with Calvin Cycle:</b>


A portion of the <b>glyceraldehyde-3-P</b> is converted <b>back to </b>



<b>ribulose-1,5-bisP</b>, the substrate for RuBisCO, via


reactions catalyzed by:


Triose Phosphate Isomerase, Aldolase, Fructose
Bisphosphatase, Sedoheptulose Bisphosphatase,
Transketolase, Epimerase, Ribose Phosphate


Isomerase, & Phosphoribulokinase.


Many of these are similar to enzymes of Glycolysis,


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

Summary of Calvin cycle:


<b>3 </b> <b>5-C</b> ribulose-1,5-bisP (total of <b>15 C</b>) are carboxylated
(<b>3 C</b> added), cleaved, phosphorylated, reduced, &


dephosphorylated, yielding


<b>6 </b> <b>3-C</b> glyceraldehyde-3-P (total of <b>18 C</b>). Of these:
<b>1</b> <b>3-C</b> glyceraldehyde-3-P exits as <b>product</b>.


<b>5</b> <b>3-C</b> glyceraldehyde-3-P (<b>15 C</b>) are recycled back
into <b>3</b> <b>5-C</b> ribulose-1,5-bisphosphate.


<b>C<sub>3</sub> + C<sub>3</sub></b> <b> C<sub>6 </sub></b>


<b> C<sub>3</sub> + C<sub>6</sub></b> <b> C<sub>4</sub> + C<sub>5</sub></b>


<b> C<sub>3</sub></b> <b>+ C<sub>4</sub></b> <b> C<sub>7</sub></b>



<b> C<sub>3</sub> + C<sub>7</sub></b>  <b>C<sub>5</sub> + C<sub>5</sub></b>


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

Overall:


<b> 5 C<sub>3</sub></b>  <b>3 C<sub>5</sub></b>


Enzymes:


TI, Triosephosphate
Isomerase


AL, Aldolase


FB,
bisphosphatase


SB,
Bisphosphatase


TK, Transketolase


EP, Epimerase


IS, Isomerase


PK,


ribulokinase



TK


EP


PK


glyceraldehyde-3-P dihydroxyacetone-P


fructose-6-P


xyulose-5-P + erythrose-4-P


sedoheptulose-7-P


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

<b>3 CO<sub>2</sub> + 9 ATP + 6 NADPH </b>


<b> glyceraldehyde-3-P + 9 ADP + 8 P<sub>i</sub> + 6 NADP+</b>


<b>Glyceraldehyde-3-P</b> may be converted to <b>other CHO</b>:


• <sub>metabolites (e.g., fructose-6-P, glucose-1-P)</sub>
• <sub>energy stores (e.g., sucrose, starch)</sub>


• cell wall constituents (e.g., cellulose).


<b>Glyceraldehyde-3-P </b>can also be utilized by plant cells as
carbon source for synthesis of <b>other compounds</b> such as
fatty acids & amino acids.



g l y c e r a l d e h y d e -
3 - p h o s p h a t e


OH
H <sub>2</sub> C


C
H


CHO


OPO <sub>3</sub> 2 


O
C


O


c a r b o n
d i o x i d e


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

There is evidence for <b>multienzyme complexes</b> of Calvin
Cycle enzymes within the chloroplast stroma.


<b>Positioning</b> of many Calvin Cycle enzymes <b>close</b> <b>to</b> the
enzymes that produce their substrates or utilize their


reaction products may <b>increase efficiency</b> of the pathway.
grana disks



(thylakoids)


stroma
compartment


2 outer


membranes


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

Regulation of Calvin Cycle



<b>Regulation</b> <b>prevents</b> the Calvin Cycle from being


<b>active in the dark</b>, when it might function in a


<b>futile cycle</b> with Glycolysis & Pentose Phosphate
Pathway, wasting ATP & NADPH.


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

<b>Light-activated</b> e transfer is linked to <b>pumping of H+</b>


into thylakoid disks. pH in the stroma increases to about 8.
Alkaline pH activates stromal Calvin Cycle enzymes


RuBP Carboxylase, Fructose-1,6-Bisphosphatase &
Sedoheptulose Bisphosphatase.


The light-activated H+ shift is countered by <b>Mg++</b> release


from thylakoids <b>to stroma</b>. RuBP Carboxylase (in stroma)


requires Mg++ binding to carbamate at the active site.


stroma


(alkaline)


Chloroplast


H2O  OH




+ H+


<sub>h</sub>


(acid inside
thylakoid disks)


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

Some plants <b>synthesize a transition-state inhibitor</b>,
carboxyarabinitol-1-phosphate (CA1P), <b>in the dark</b>.


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

disulfide


Thioredoxin f PDB 1FAA


<b>Thioredoxin</b> is a small protein with a <b>disulfide</b> that
is reduced in chloroplasts via light-activated


</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

During illumination, the <b>thioredoxin</b> disulfide is <b>reduced</b> to



a dithiol by <b>ferredoxin</b>, a constituent of the photosynthetic


light reaction pathway, via an enzyme
Ferredoxin-Thioredoxin Reductase.


<b>Reduced thioredoxin</b> <b>activates</b> several <b>Calvin Cycle </b>


<b>enzymes</b>, including Fructose-1,6-bisphosphatase,


Sedoheptulose-1,7-bisphosphatase, and RuBP Carboxylase


Activase, by reducing disulfides in those enzymes to thiols.


th


io


re


do


xi


n


 <sub>S </sub>
 <sub>S </sub>


th



io


re


do


xi


n


 <sub>SH </sub>
 <sub>SH </sub>


|


ferredoxin<sub>Red</sub> ferredoxin<sub>Ox</sub>


Ferredoxin-
Thioredoxin


</div>

<!--links-->
Hợp chất Flavonoid trong thực vật có hoa
  • 8
  • 519
  • 5
  • Tài liệu bạn tìm kiếm đã sẵn sàng tải về

    Tải bản đầy đủ ngay
    ×