53
3.3 Mô phỏng số bằng phần mềm Maple và Pro/Engineer
3.3.1 Mô phỏng bằng phần mềm Maple
Maple là sản phẩm phần mềm của hãng Maplesoft
®
. Hãng được thành lập vào
năm 1988 và có trụ sở chính tại Waterbo (Canada). Phiên bản mới nhất của hệ
chương trình này là Maple 9.5 (năm 2004). Maple là môi trường dành cho
tính toán và lập trình tiên tiến một tập hợp các hàm toán học phong phú, mỗi
hàm tương đương với một nhóm các chương trình con. Đặt biệt khi sử dụng
máy tính cá nhân, các cộng cụ tính toán và sử lý các biểu thức toán học bằng
chữ (symbolic) của Maple đã vượt xa các chương trình khác trên cả hai
phương diện: mạnh và dễ
tiếp cận. Hệ chương trình này có một giao diện làm
việc tiện lợi cho người sử dụng, đặt tính đồ hoạ trực tiếp (cho phép vẽ đồ thị
ngay trong trang làm việc). Các tính năng của Maple liên tục dược cải tiến và
mở rộng trong các phiên bản tiếp theo. Người sử dụng có thể xem các thông
tin cụ thể về hệ chương trình này trên dịa chỉ :
http:\\www.maplesoft.com\products\maple\
Áp dụng phần mềm này ta giải quyết bài toán
động học thuận và bài toán
động học ngược của Robot song song 3RPS cụ thể như đã phân tích ở các
mục trước của chương 3.
*Bài toán động học thuận :
Biết được quy luật chuyển động của các chân d
1
,d
2
,d
3
ta tìm quy luật chuyển
động của điểm P (p
x
,p
y
,p
z
,
zyx
p,p,p
&&&
).
+ Bài toán vị trí: ta giải hệ phương trình (3.18), hệ này có 6 phương trình 6
ẩn số (α
1
, α
2
, α
3
, p
1
, p
2
, p
3
), chú ý ở đây 3 phương trình sau của hệ (3.18) chỉ
chứa d
i
và α
i
(i=1,2,3) nên việc giải hệ 6 phương trình được đơn giản lại giải
hệ 3 phương trình với 3 ẩn số là α
i
(i=1,2,3). Sau đó thay các giá trị d
i
và α
i
(i=1,2,3) vào 3 phương trình đầu ta tính được giá trị p
x
,p
y
,p
z
.Ở đây để giải hệ
phương trình phi tuyến Maple có hỗ trợ hàm giải hệ phương trình phi tuyến
nhưng trong bài toán này dùng hàm này khả năng hội tụ quá chậm. Vì vậy để
khắc phục điều này bằng cách xây dựng một hàm giải hệ phương trình này
bằng phương pháp Newton_Raphson và kết quả là khả năng hội tụ nhanh
hơn.
+ Bài toán tích Jacobi (bài toán tìm vận tốc điểm P:
zyx
p,p,p
&&&
): để tìm
zyx
p,p,p
&&&
giải hệ phương trình đại số tuyến tính hệ(3.33). Trong Maple hỗ trợ
hàm giải hệ phương trình đại số tuyến tính, hàm có cấu trúc như sau:
linalg[linsolve](A,B) trong đó A,B là hệ số của phương trình đại số
A.x=B
Nhờ vào hàm trên ta giải hệ (3.33) một cách dễ dàng.
*Bài toán động học ngược
Biết được quy luật chuyển động của điểm P (p
x
,p
y
,p
z
,
zyx
p,p,p
&&&
), tìm quy luật
chuyển động của các chân d
i
và
i
d
&
(i=1,2,3)
54
-Bài toán tìm vị trí (tìm d
i
): tương tự như bài toán động học thuận ta giải hệ
(3.18) hệ 6 phương trình 6 ẩn số dễ dàng tìm được d
i
,
i
α
(i=1,2,3).
-Bài toán phân tích Jacobi (hay bài toán tìm
i
d
&
): tương tự như bài toán động
học thuận ta giải hệ phương trình đại số tuyến tính, hệ (3.34) ta tìm được
i
d
&
.
3.3.2 Mô phỏng bằng phần mềm Pro/Engineer
Pro/Engineer là phần mềm ứng dụng, hỗ trợ trong việc thiết kế và mô phỏng
cho các kỹ sư thiết kế Cơ Khí. Đây là phần mềm rất mạnh với nhiều tính năng
đa dạng ưu việc hơn nhiều phần mềm thiết kế khác như: SolidWorks,
Invertor, Mastercam, Cimatron, Alaska… giúp cho kỹ sư Cơ Khí thiết kế
nhanh chóng, hiệu quả. Thông tin phầ
n mềm này có thể xem trên trang Web
có địa chỉ sau:
http:\\www.ptc.com\Wildfire\
Khái quát một số công cụ hỗ trợ trong việc thiết kế của phần mềm này:
+ Part : là hỗ trợ thiết kế từng chi tiết.
+ Assembly: hỗ trợ trong việc lắp các chi tiết lại với nhau tạo thành sản phẩm
Cơ Khí hoàn chỉnh.
+ Drawing: hỗ trợ trong việc xuất các bản vẽ kỹ thuật cho các sản phẩm Cơ
Khí
+ Manufacturing: hỗ trợ trong việc lập trình hỗ trợ gia công cho các máy
CNC trong việc gia công cơ khí.
+ Mold Design and Casting: hỗ trợ trong việc thiết kế khuôn.
+ Piping: hỗ trợ trong việc thiết kế hệ thống đường ống.
+ Sheetmetal: hỗ trợ trong việc thiết kế các tấm dập trong các sản phẩm cơ
khí.
+ Surfacing: hỗ trợ thiết kế bề mặt, đặt biệt là các bề mậ
t phức tạp, các bề mặt
vô định hình.
+ Electrical Design: hỗ trợ thiết kế hệ thống dây cáp, hệ thống bo mạch trong
các thiết bị điện tử.
+ Simulation: hỗ trợ mô phỏng thế giới thực một số vấn đề sau:
- Mechanism Design: hỗ trợ mô phỏng động học (Kinematic), tĩnh học
(Static), động lực học (Dymatic), cân bằng lực (Force balance).
- Structural Simulation: hỗ trợ mô phỏng trạ
ng thái ứng xuất của một cơ cấu
Cơ Khí.
- Thermal simulation: mô phỏng sự phân bố nhiệt và sự truyền nhiệt trong vật
liệu.
…
Sử dụng phần mềm này ta thiết kế 3D robot song song 3RPS cụ thể và mô
phỏng động học của robot này. Ở đây robot được thiết kế giống như robot
được ví dụ mô phỏng trong Maple, để sau này ta dễ dàng so sánh kết quả mô
phỏng của hai phần mềm này.
55
Trong ví dụ mô phỏng em đưa ra hai con robot song song 3RPS cụ thể như
hình (3.35) và (3.36).
Sơ đồ mô tả qui trình thiết kế mô phỏng động học bằng phần mềm
Pro/Engineer:
56
Thiết kế:
Chi tiết 1
(Part 1)
Lắp:
Cụm chi tiết 1
(Assemply 1)
Lắp:
Cụm chi tiết m
(Assemply m)
Thiết kế:
Chi tiết 2
(Part 2)
Thiết kế:
Chi tiết i
(Part i)
Thiết kế:
Chi tiết n-1
(Part n-1)
Thiết kế:
Chi tiết n
(Part n)
Lắp hoàn chỉnh một sản phẩm Cơ Khí
(Assemply)
Chạy mô phỏng
Thiết lập chế độ mô phỏng
(Simulation)
Thiết lập điều kiện đầu cho việc mô phỏng động học:
- Đặt các hàm điều khiển tại các khớp dẫn: f
1
(t), f
2
(t), f
3
(t)
Thiết lập chế độ mô phỏng động học (Kinematic)
Lấy kết quả: động học (Position, Velocity,
Acceleration…) được biểu diễn dưới dạng đồ thị của
một số vị trí cần tìm
57
Hình 3.5: Robot 1 có các thông só sau:
g=250 mm, h=250 mm,
1397d897
i
≤≤
(i=1,2,3).
Hình 3.6: Robot 2 có các thông só sau:
g=550 mm, h=250 mm,
1397d897
i
≤≤
(i=1,2,3).
58
3.4 Kết quả tính toán và mô phỏng bằng Maple và Pro/Engineer
3.4.1 Bài toán động học thuận
a) Phương án 1
Cơ cấu robot:
g = 250 mm
h = 250 mm
Quy luật chuyển động các chân:
d
1
= 200*cos(
25.0/t**2 π
) +1150 (mm)
d
2
= 200*cos(
25.0/t**2 π
) +1150 (mm)
d
3
= 200*cos(
25.0/t**2 π
) +1150 (mm)
Kết quả như sau:
Trên các hình (3.7) (3.9) (3.11) (3.13) (3.15) (3.17) là kết quả đồ thị của
Pro/Engineer
Trên các hình (3.8) (3.10) (3.12) (3.14) (3.16) (3.18) là kết quả đồ thị của
Maple
59
Hình 3.7: Đồ thị tọa độ điểm P theo phương x
p
x
[mm]
t[s]
p
x
[mm]
60
Hình 3.8: Đồ thị tọa độ điểm P theo phương x
Hình 3.9: Đồ thị tọa độ điểm P theo phương y
t[s]
p
y
[mm]
t[s]
p
y
[mm]
61
Hình 3.10: Đồ thị tọa độ điểm P theo phương y
Hình 3.11: Đồ thị tọa độ điểm P theo phương z
62
Hình 3.12: Đồ thị tọa độ điểm P theo phương z
Hình 3.13: Đồ thị vận tốc điểm P theo phương x
p
z
[mm]
t[s]
vp
x
[mm/s]
t[s]
63
Hình 3.14: Đồ thị vận tốc điểm P theo phương x
Hình 3.15: Đồ thị vận tốc điểm P theo phương y
vp
x
[mm/s]
t[s]
64
Hình 3.16: Đồ thị vận tốc điểm P theo phương y
vp
y
[mm/s]
t[s]