Bài tập dài LTĐKTĐ
Bài tập dài môn học
Lý thuyết điều khiển tự động
I.Thiết kế hệ thống điều khiển tự động có:
-Khâu điều chỉnh PID có hàm truyền:
W
PID
(s)=Kp(1+
sTi.
1
+Td.s)
-Đối tượng điều khiển là một khâu quán tính bậc nhất và khâu trễ có hàm
truyền :
W
ĐT
(s)= e
-Ls
/(Ts+1)
-Các tham số L,T của đối tương điều khiển: L=9;T=15
*Sơ đồ khối hệ thống điều khiển như sau:
Input + + + Output
- +
Ki=Kp/Ti;
Kd=Kp.Td;
II.Tính toán các tham số Kp,Ti,Td đảm bảo tính ổn định của hệ thống:
-Theo Ziegler-Nichols thì để đảm bảo tính ổn định của hệ thống trên cần có
các tham số Kp,Ti,Td thoả mãn bảng sau ứng với từng bộ điều khiển:
Các bộ điều
khiển
Kp
Ti Td
P T/L
∞
0
PI 0.9T/L L/0.3 0
PID 1.2T/L 2L 0.5L
III.Xét tính ổn định.Tìm các điểm cực và điểm không.
Khảo sát chất lượng của hệ thống với từng khâu điều khiển.
1.Khâu điều khiển P :
a) Chương trình chạy trên MATLAB:
>>L=9;T=15;Kp=T/L;n=3;
Kp
Ki/s
KD.s
1
T.s+1
e
-
Ls
Bài tập dài LTĐKTĐ
>> [n,d]=pade(L,n)
n =
-1.0000 1.3333 -0.7407 0.1646
d =
1.0000 1.3333 0.7407 0.1646
>> Wtre=tf(n,d)
Transfer function:
-s^3 + 1.333 s^2 - 0.7407 s + 0.1646
------------------------------------
s^3 + 1.333 s^2 + 0.7407 s + 0.1646
>> Wdt=tf(1,[T 1])*Wtre
Transfer function:
-s^3 + 1.333 s^2 - 0.7407 s + 0.1646
---------------------------------------------
15 s^4 + 21 s^3 + 12.44 s^2 + 3.21 s + 0.1646
>> Wpid=Kp;
>> W=feedback(Wpid*Wdt,1)
Transfer function:
-1.667 s^3 + 2.222 s^2 - 1.235 s + 0.2743
------------------------------------------------
15 s^4 + 19.33 s^3 + 14.67 s^2 + 1.975 s + 0.439
>> [p z]=pzmap(W)
p =
-0.5895 + 0.6817i
-0.5895 - 0.6817i
-0.0549 + 0.1817i
-0.0549 - 0.1817i
z =
Bài tập dài LTĐKTĐ
0.4086 + 0.3899i
0.4086 - 0.3899i
0.5160
>> step(W)
MATLAB cho kết quả sau:
Hình 1
-Nhận thấy rằng với Kp nhận giá trị trong bảng Ziegler-Nichols thì hệ
thống ổn định với thời gian quá độ là 77.7sec
và chỉ tiêu chất lượng σ
max
= 42% >20%
b)Chỉnh định lại các tham số của luật điều khiển P
Bài tập dài LTĐKTĐ
Như vậy với Kp = T/L chưa đạt mức chỉ tiêu yêu cầu là σ
max
dưới 20%.Ta
chỉnh lại giá trị của Kp bằng 0.5*(T/L) thì được quá trình quá độ của hệ
thống và các điểm cực điểm không mới như sau:(Hình 2)
T=15;L=9;Kp=1.2*(T/L);n=3;Ti=2*L;Td=0.5*L;
Hình 2
Từ đồ thị trên ta có σ
max
=4.25% < 20% và thời gian quá độ là 59sec<77.7sec
(Thời gian quá độ thực nghiệm Z-N).Vậy với Kp=0.5*(T/L) là đạt yêu cầu.
-Các điểm cực và các điểm không mới:
>> [p z]=pzmap(W)
p =
-1.0096
-0.2899 + 0.1343i
Bài tập dài LTĐKTĐ
-0.2899 - 0.1343i
-0.0771 + 0.0474i
-0.0771 - 0.0474i
z =
0.4086 + 0.3899i
0.4086 - 0.3899i
0.5160
-0.4208
-0.0792
2.Khâu điều chỉnh PI
a) Chương trình chạy trên Matlab:
>> L=9;T=15;Kp=0.9*(T/L);Ti=L/0.3;n=3;
>> [n,d]=pade(L,n)
n =
-1.0000 1.3333 -0.7407 0.1646
d =
1.0000 1.3333 0.7407 0.1646
>> Wtre=tf(n,d)
Transfer function:
-s^3 + 1.333 s^2 - 0.7407 s + 0.1646
------------------------------------
s^3 + 1.333 s^2 + 0.7407 s + 0.1646
>> Wdt=tf(1,[T 1])*Wtre
Transfer function:
-s^3 + 1.333 s^2 - 0.7407 s + 0.1646
---------------------------------------------
15 s^4 + 21 s^3 + 12.44 s^2 + 3.21 s + 0.1646
Bài tập dài LTĐKTĐ
>> Wpid=Kp*tf([Ti 1],[Ti 0])
Transfer function:
45 s + 1.5
----------
30 s
>> W=feedback(Wpid*Wdt,1)
Transfer function:
-45 s^4 + 58.5 s^3 - 31.33 s^2 + 6.296 s + 0.2469
------------------------------------------------------------
450 s^5 + 585 s^4 + 431.8 s^3 + 64.96 s^2 + 11.23 s + 0.2469
>> [p z]=pzmap(W)
p =
-0.5801 + 0.6553i
-0.5801 - 0.6553i
-0.0574 + 0.1592i
-0.0574 - 0.1592i
-0.0250
z =
0.4086 + 0.3899i
0.4086 - 0.3899i
0.5160
-0.0333
>> step(W)
MATLAB cho quá trình quá độ như sau: