Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.29 KB, 5 trang )
<span class='text_page_counter'>(1)</span>ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP 9 NĂM HỌC: 2012 – 2013 ĐỀ 1 Thời gian làm bài: 90 phút. Họ và tên:……………………………….. Ngày tháng 12 năm 2012. Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2 3 2 2 2. Chứng minh rằng Bài 2.(2điểm). 1. 3 3 1 2 2. a4 a 4. . 4 a. a 2 2 a ( Với a 0 ; a 4 ) Cho biểu thức : P = 1) Rút gọn biểu thức P. 2) Tính P tại a thoả mãn điều kiện a2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : 1 x2 (d1): y = 2 và (d2): y = x 2. 1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) . Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC.. Bài làm. …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………….
<span class='text_page_counter'>(2)</span> …………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………….
<span class='text_page_counter'>(3)</span> ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ 1 HỌC KÌ 1 TOÁN 9 Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2. 2. 2. 3 2 2 =. 2. 2 2.1 12 1. 2. Chứng minh rằng. 2. =. . . 21. =. 2. 21. =. . 2 2 3 4. =. Vậy Bài 2.(2điểm) 1) Rút gọn biểu thức P. a4 a 4 a 2. P =. . a 2. . 4 a 2. a ( Với a 0 ; a 4 ). 2. 2 a2 a. a 2 2 a = = a 22 a = 2 a 4 2) Tính P tại a thoả mãn điều kiện a2 – 7a + 12 = 0 2 Ta có: a2 – 7a + 12 = 0 a 3a 4a 12 0. a a 3 4 a 3 0 a 3 a 4 0. a 3 (thỏa mãn đk) ; a = 4( loại) P 2 3 4 . . . . 3 1. Với a = 3 3) Tìm giá trị của a sao cho P = a + 1 P = a + 1 2 a 4 = a + 1. 2. = 3 1. a 2 a 3 0 . . a 3. . . 42 3 4 =. 3 3 1 2 2. 1. 2. =. 21. 2. 2 1 1. 3 3 1 2 2. 3 2 3 1 2 2 =. Biến đổi vế trái ta có:. 2. . a 1 0. . Vì a 0 a 1 0 . Do đó: a 3 0 a 9 (thỏa mãn đk) Vậy : P = a + 1 a 9 Bài 3. (2điểm) 1 x2 (d1): y = 2 và (d2): y = x 2. 1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.. 4;0 2; 0 (d2) là đường thẳng đi qua hai điểm (0; 2) và (d1) là đường thẳng đi qua hai điểm (0; 2) và. . . 3 1 2. 2. 3 1 = 2.
<span class='text_page_counter'>(4)</span> y d2. d1 2. C. A. B O. -4. x. 2. 2. Tính chu vi và diện tích của tam giác ABC (d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2 Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được: AC 42 22 20 2 5 ; BC 22 22 8 2 2 Chu vi tam giác ABC : AC + BC + AB = 2 5 2 2 6 13, 30 (cm) 1 1 .OC. AB .2.6 6cm 2 2 Diện tích tam giác ABC : 2 M. A =. E. = K. N. _. _H. Bài 4. (4,5 điểm) B O 1) Chứng minh AH BC . ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC Suy ra BMC = BNC = 900. Do đó: BN AC , CM AB , Tam giác ABC có hai đường cao BN , CM cắt nhau tại H Do đó H là trực tâm tam giác. Vậy AH BC. 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) OB = OM (bk đường tròn (O)) ΔBOM cân ở M. Do đó: OMB = OBM (1). C. 1 AH ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = 2 . Vậy ΔAME cân ở E.. Do đó: AME = MAE (2) Từ (1) và (2) suy ra: OMB + AME = MBO + MAH. Mà MBO + MAH = 900 (vì AH BC ) Nên OMB + AME = 900. Do đó EMO = 900. Vậy ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO OM = ON và EM = EN nên OE là đường trung trực MN. MN Do đó OE MN tại K và MK = 2 . MN ΔEMO vuông ở M , MK OE nên ME. MO = MK . OE = 2 .OE.. ra: MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ΔBNC và ΔANH vuông ở N có BC = AH và NBC = NAH (cùng phụ góc ACB) ΔBNC = ΔANH (cạnh huyền, góc nhọn) BN = AN.. Suy.
<span class='text_page_counter'>(5)</span> BN. ΔANB vuông ở N ⇒ tanNAB = AN =1 . Do đó: tanBAC = 1..
<span class='text_page_counter'>(6)</span>