Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
------------ ------------
ĐỐ ÁN TỐT NGHIỆP
ThiÕt kÕ bé ®iÒu khiÓn Learning FeedForward cho c¸c hÖ thèng chuyÓn ®éng ®iÖn
c¬
Học viên: Lâm Hoàng Bình
Giáo viên hướng dẫn: Ts. Nguyễn Duy Cương
Chuyên ngành: Tự Động Hoá
Khoá:K10
Thái Nguyên, tháng 10 năm 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
MỤC LỤC
Chương 1: Giới thiệu
1.1. Tổng quan về Learning Control (LC) ……………………………..………………1
1.2. Learning Control (LC) là gì………………………………………………..………2
1.3. Phản hồi sai số tự học………………………………………………… …. ……… 7
1.3.1. Một số ví dụ về ma sát độc lập......................................................................8
1.4. Điều khiển truyền thẳng tự học…………………………………………... .…......13
1.4.1. Đầu vào của mạng BSN………………….......…………………...………14
1.4.2. Sự phân bố B-Spline trên đầu vào của mạng BSN..............................................14
1.4.3. Sự lựa chọn các cơ cấu học. ................................................................................15
1.4.4. Sự lựa chọn tốc độ học. ......................................................................................15
1.5. Ứng dụng minh hoạ: Hệ thống động cơ chyển động tuyến tính………….…..…..18
1.6. Bố cục luận văn…………………………………………….…………………..…21
Chương 2: Các chuyển động lặp……………....……………………......….……..…22
2.1. Giới thiệu ...………………………………………………………….....…………22
2.2. Các giả định …………………………………………………..…………....…….22
2..3. Độ rộng của nội suy B-Spline …………………………….…….……….……....27
Thuật toán 2.2.1. (Tính toán giá trị ổn định nhỏ nhất của d dựa trên mô hình chi tiết của
hệ thống điều khiển).......................................................................................................27
Chương 3: Thiết kế ứng dụng……………...………………..………………...…….34
3.1. Giới thiệu ...………………………………………………………….....…………34
3.1.1. Bộ điều khiển phản hồi .......................................................................................34
3.1.2.Các đầu vào của khâu truyền thẳng......................................................................34
3.1.3.Cấu trúc của khâu truyền thẳng.............................................................................35
3.1.4. Phân bố B-Spline …………………………………………………..….....……..35
3.1.5. Tỷ lệ học...............................................................................................................35
3.1.6. Luyện các chuyển động………………………………..………….….….….…..36
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3.2. LiMMS ……………………..……………………………………….…......….….36
3.2.1. Thiết lập…………………………………………………………….………..…36
3.2.2. Thủ tụ thiết kế một hệ thống Time-indexed LFFC ………………….……..…..37
3.2.3. Các thí nghiệm kiểm chứng cho hệ thống Time-indexed LFFC……..…….…...40
3.2.4. Thiết kế một LFFC tối giản……………………………………………….….....48
3.2.5. Kết luận……………………………………………………………......………..62
3.3. Kết quả mô phỏng bằng phần mềm 20-sim………………………………………63
3.3.1. Mạng FeedBack………………………………………………………………...64
3.3.2. LFFC khi có ViscouNeural………………………………………………….…65
3.3.3. LFFC khi có CoulombNeural và ViscouNeural……………………………….66
3.3.4. LFFC khi có CoulombNeural, ViscouNeural, CoggingNeural………………..68
3.3.5. LFFC khi có CoulombNeural, ViscouNeural, CoggingNeural, InertialNeural..69
Chương 4: Kết luận……………………………………………………….………….71
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Tài liệu tham khảo
[1] Learning feed – Forward Control Theory, Design and Applications Wubbe Jan
Roelf Velthuis - 1970
[2] Function Approximation for Learning Control, a key sample based approach
B.J. de Kruif - 1976
[3] Intelligent Control part 1 – MRAS Author prof. Dr.ir Job van Amerongen –
March 2004
[4] Advanced Controllers for Electromechanical Motion Systems Dr. Nguyen Duy
Cuong. University of Twente, March, 2008
S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn
Li núi u
Điều khiển chuyển động (motion control) liên quan việc sử dụng lực để điều khiển sự
di chuyển của đối t-ợng điều khiển trong một hệ thống cơ và đ-ợc sử dụng rộng rãi trong
các ứng dụng công nghiệp nh- đóng gói, in, dệt, hàn, cũng nh- nhiều ứng dụng khác.
Hiện nay, phần lớn các loại hình điều khiển chuyển động đ-ợc thực hiện bằng cách sử
dụng các động cơ điện, và đây chính là điều quan tâm chính của chúng tôi trong thiết kế.
Các hệ điều khiển chuyển động có thể là phức tạp vì có nhiều vấn đề khác nhau cần đ-ợc
xem xét, ví dụ nh-:
- Giảm thiểu ảnh h-ởng của nhiễu hệ thống.
- Suy yếu tác động xấu của nhiễu đo
- Sự thay đổi thông số và cấu trúc không rõ của đối t-ợng điều khiển.
Rất khó để tìm ra các ph-ơng pháp thiết kế mà có thể giải quyết đồng thời tất cả các vấn
đề nêu trên, đặc biệt đối với các ph-ơng pháp điều khiển truyền thống mà ở đó các thiết
kế điều khiển liên quan tới sự th-ơng thảo giữa các mục tiêu mang tính đối ng-ợc. Để
khắc phục khó khăn đã nêu, bộ điều khiển Learning FeedForward (LFF) sẽ đ-ợc giới
thiệu trong nghiên cứu này.
Thc hin lun vn tt nghip trong khuụn kh chng trỡnh o to Thc s ngnh t
ng húa ca trng i hc K thut Cụng nghip Thỏi Nguyờn, Tụi c giao ti:
Thiết kế bộ điều khiển Learning FeedForward cho các hệ thống chuyển động điện
cơ
Lun vn phõn tớch cỏc quỏ trỡnh ng hc i tng thụng qua mụ hỡnh toỏn hc
t ú a ra v chng minh tớnh phự hp ca cỏc phng ỏn iu khin, cui cựng l tin
kim chng trờn phn mm mụ phng 20-sim.
Lun vn c trỡnh by trong 4 chng:
Chng 1: GII THIU
Tng quan v Learning control
Chng 2: PHN TCH N NH CA H THNG LFFC PH THUC
THI GIAN
Trong chng ny cp n b iu khin LFFC ph thuc thi gian v phõn tớch tớnh
n nh ca h thng ph thuc vo thi gian. T ú tỡm ra cụng thc tớnh giỏ tr nh nht
ca rng mng B-Spline
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2
Chương 3: THIẾT KẾ ỨNG DỤNG
Trong các chương trước, một số vấn đề về LFFC đã được đề cập đến. Ở chương
này sẽ sử dụng các kiến thức có được nhằm thực hiện thiết kế một bộ LFFC thực tế.
Chương 4: KẾT LUẬN
Sau thời gian thực hiện, đến nay bản luận văn của tôi đã hoàn thành. Trước thành công
này tôi xin gửi lời cảm ơn chân thành tới thầy TS. Nguyễn Duy Cương, người đã trực tiếp
hướng dẫn, giúp đỡ tôi hoàn thành đề tài này, tôi cũng xin được bày tỏ lòng biết ơn tới
các anh các chị trong trường đại học Kỹ Thuật Công Nghiệp cũng như gia đình, bạn bè đã
tạo điều kiện giúp đỡ tôi trong quá trình làm luận văn.
Ngày 30 .tháng 10 năm 2009
Học viên
Lâm Hoàng Bình
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
22
Chương 2: PHÂN TÍCH ĐỘ ỔN ĐỊNH CỦA HỆ THỐNG LFFC PHỤ THUỘC
THỜI GIAN
2.1. Giới thiệu
Trong chương này đề cập đến bộ điều khiển LFFC phụ thuộc thời gian và phân tích
tính ổn định của hệ thống phụ thuộc vào thời gian. Xác định giá trị nhỏ nhất của độ
rộng mạng B-Spline.
2.2. Các giả định
Để có thể phân tích tính ổn định của các thông số trong LFFC chúng ta giả thiết như
sau:
1. Đối tượng cần điều khiển là đối tượng (single input - single output ) SISO LTI.
2. Bộ điều khiển phản hồi, C, là tuyến tính, các hằng số thời gian và các thông số
được chọn cho vòng phản hồi là ổn định.
3. Luật học rời rạc.
h
T
k
i
h
T
k
Ci
i
p
p
kh
khukh
0
0
(2.1)
(với h là thời gian mẫu) được thay thế bởi 1 công thức tương đương dưới dạng liên
tục :
p
T
i
p
T
Ci
dtt
dttut
Ci
0
0
(2.2)
4. Phân bố B-spline giả thiết là đồng dạng.
Giả thiết có N B-pline có phân bố đồng bộ trên phạm vi đầu vào, [0, T
p
] (s), như trên
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
23
hình. băng thông (độ rộng) d(s) của các công thức cơ sở cho các tín hiệu từ 2 tới N–1
được cho bởi quan hệ sau:
s
N
T
d
p
1
2
(2.3)
thành phần B-spline thứ i được định nghĩa như sau:
0
2
1
2
2
)1(
2
2
2
22
i
d
ti
d
for
d
tdi
i
d
ti
d
for
d
idt
t
i
(2.4)
Thành phần thay thế (2.4) trong luật học (2.2) được cho bởi trọng số thích nghi sau:
)1(
2
2
2
2
1
2
)1(
2
2
2
2
1
2
222
222
i
d
i
d
i
d
i
d
i
d
i
d
i
d
i
d
CC
dt
d
tdi
dt
d
idt
dttu
d
tdi
dttu
d
idt
Ci
(2.5)
Mẫu số của (2.5):
)1(
2
2
2
2
1
2
222
i
d
i
d
i
d
i
d
dt
d
tdi
dt
d
idt
(2.6)
Sử dụng (2.6), khi đó có thể đơn giản hoá công thức của trọng số trong (2.5) :
)1(
2
2
2
2
1
2
22
42424
i
d
i
d
i
d
i
d
CCC
dttu
d
tdi
dttu
d
idt
Ci
(2.7)
điều này ngụ ý rằng việc học là tuyến tính trong u
C
(t) và kể từ đây ta sẽ coi vòng lặp
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
24
thích nghi feed-forward là tuyến tính. khi vòng phản hồi cũng là tuyến tính, phần tín
hiệu chủ đạo có thể đạt tới giá trị bằng 0 trong khi phân tích tính ổn định (xem hình
2.1). giá trị mong đợi khi đó là u
F
= 0.
Hệ thống này là ổn định nếu một tín hiệu feed-forward ban đầu được lựa
chọn là duy nhất thì sẽ không có kết quả ở đầu ra không giới hạn của đối tượng. tín
hiệu feed-forward (ban đầu) được xác định bởi các giá trị (đầu) của trọng số trong
Hình 2-1: Chỉ số thời gian của LFFC khi r = 0
mạng B-spline. Khi hệ thống được điều khiển phản hồi ổn định đầu ra chỉ có thể
vượt quá giới hạn khi tín hiệu feed-forward u
F
(t) trở nên quá giới hạn. điều này
muốn nói rằng ít nhất 1 trọng số đã đạt tới giá trị vô cùng lớn. Do đó, nếu các trọng
số đã được thích nghi theo cách giữ nguyên giá trị chặn, hệ thống là ổn định, nếu
không hệ thống là không ổn định. Giá trị của các trọng số còn lại bị chặn nếu:
1. Mỗi trọng số thích nghi theo 1 hướng đúng (về phía u
F
(t) = 0), có nghĩa là:
0
i
for
0
i
0
i
for
0
i
(2.8)
2. Các trọng số không thích nghi quá mạnh:
ii
2
for
0
i
ii
2
for
0
i
(2.9)
-
BSN
C
+
+
U
F
P
y
t
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
25
Kết hợp (2.8) và (2.9) ta thu được:
ii
20
for
0
i
02
ii
for
0
i
(2.10)
Lưu ý rằng (2.10) là điều kiện đủ chứ không phải là điều kiện cần. Vấn đề là chọn
băng thông (độ rộng) d và tốc độ học
C
phù hợp với (2.10). Để giải quyết vấn đề
này, ta giả thiết rằng hình dạng của tín hiệu feed-forward u
F
(t) là dạng tam giác. Sự
lựa chọn này được thúc đẩy bởi thực tế là các kinh nghiệm đã chỉ ra rằng khi xảy ra
hoạt động không ổn định đầu ra của BSN sẽ có dạng tam giác. Ánh xạ vào/ra này có
thể thực hiện bằng cách chọn trọng số như w
i
= g với i = 1, 3, 5… và w
i
= -g với i =
2,4 6 với g R
+
. xem hình 2.2
Hình 2.2: Tín hiệu phản hồi đầu vào
Tín hiệu u
F
(t) có thể được viết dưới dạng chuỗi Furiê:
.....5,3,1
22
cos
8
n
n
F
n
t
g
tu
(2.11)
với
1
2
rads
d
n
n
(2.12)
d
1
2 3 4
5
t
g
-g
u
F
1
0
μ
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
26
Trong miền tần số quan hệ giữa đầu ra của bộ điều khiển feed-forward U
F
và tín
hiệu học U
C
được cho bởi:
U
C
= -T U
F
(2.13)
Với T là hàm bù nhạy :
CP
CP
T
1
(2.14)
T khuếch đại biên độ của mỗi thành phần tần số (2.11) bởi 1 hệ số
nn
jTa
và
góc chuyển pha
nn
jT
arg
, do đó u
C
(t) có thể được viết như sau:
...5.3.1
22
cos
8
n
nnn
C
n
ta
g
tu
(2.15)
Thay (2.15) vào (2.5) và viết lại công thức:
...5,3,1
cos32
...6,4,2
cos32
...5,3,1
44
...5,3,1
44
ifor
n
a
g
ifor
n
a
g
n
n
n
c
n
n
n
c
i
(2.16)
Có thể thấy là tất cả các trọng số có cùng giá trị đầu (w
i
= g với i = 1,3,5.. và
w
i
= -g với i = 2,4,6…) là có tính thích nghi như nhau. Do đó việc học không làm
thay đổi về hình dáng của tín hiệu feed-forward. Kể từ đây, với mỗi bước lặp của tín
hiệu feed-forward có thể khuếch đại như trong công thức (2.11) và trọng số thích
nghi trong (2.16). Trong công thức dưới đây, ta sẽ xét sự thích nghi của các trọng số
có giá trị đầu dương w
i
= a: Với mỗi trường hợp, ta sẽ phân tích dạng tương tự của
nó. Thay vào công thức (2.16) với điều kiện ổn định (2.10) được kết quả:
0
cos32
2
...5,3,1
44
n
n
n
c
n
a
g
g
(2.17)
0
cos
16
...5,3,1
4
4
n
n
n
C
n
a
(2.18)
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
27
bất đẳng thức vế trái của (2.18):
...5,3,1
4
4
cos
16
n
n
n
C
n
a
(2.19)
chứa đựng
C
, a
n
,
n
. Các giá trị của a
n
và
n
phụ thuộc vào giá trị của w
n
, với w
n
được xác định bởi cách chọn lựa băng thông B-spline, d xem (2.12). Dù (2.19) có
thoả mãn hay không thì nó vẫn phụ thuộc vào sự chọn lựa tỉ lệ học và độ rộng B-
spline. Bất đẳng thức vế phải của (2.18):
0
cos
...5,3,1
4
n
n
n
n
a
(2.20)
chỉ chứa a
n
và
n
. Điều này có nghĩa là chỉ vâng chọn d xác định thì (2.20) là thỏa
mãn. Tiếp theo, sử dụng d vừa thu được (và w
n
) ta có thể tính được
C
từ (2.19).
Theo đó ta sẽ cố gắng tìm ra giá trị nhỏ nhất của d mà vẫn thoả mãn yêu cầu của
công thức (2.20)
2.3. Độ rộng của B-Spline.
Với một mô hình chính xác của hệ thống P và bộ điều khiển C là sẵn có, giá trị
của a
n
và
n
có thể được tính toán cho tất cả các tần số. Điều này sẽ cho phép lựa
chọn giá tri tối thiểu d sao cho (2.20) thỏa mãn nhờ quá trình tìm kiếm lặp lại đơn
giản như sau:
Thuật toán 2.3.1. (Tính toán giá trị ổn định nhỏ nhất của d dựa trên mô hình
chi tiết của hệ thống điều khiển)
1. Chọn một khuôn dạng phân bố B-Spline bao gồm 3 B-Spline: N=3 trong hình
1.13. Bởi vì theo (2.3) trong trường hợp này d=T
p
[s], đây là số B-Spline tối
thiểu có thể lựa chọn .
2. Xác định a
n
và
n
. Điều này được thực hiện theo cách thức sau:
Chọn n=1
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
28
Tính toán
n
theo (2.12). Sử dụng mô hình của hệ thống và
n
để xác định a
n
và
n
Nếu
0
n
a
tiến hành bước 3. Nếu không, tăng n thêm 1 đơn vị và chuyển sang
bước 2.2
3. Kiểm ta xem a
n
và
n
đã tìm được trong bước trước có thảo mãn (2.20)
không.Nếu thỏa mãn,chuyển sang bước 4, nếu không chuyển sang bước 6
4. Tăng số lương B-Spline trong phân bố lên 1 đơn vị N =N+1.
5. Chuyển tới bước 2
6. Giá trị N hiện tại là giá trị nhỏ nhất của B-Spline mà cho kết quả hoạt động
không ổn định. Do đó, số lương lớn nhất B-Spline là N-1 và theo (2.3) ta có:
2
2
N
T
d
p
(2.21)
Tuy nhiên, nhìn chung chỉ phần động lực học của hệ thống ở tần số thấp thỏa
mãn. Do đó, thuật toán 2.1 có thể không tin cậy. Để giải quyết vấn đề này chúng ta
sẽ tiếp cận theo hướng truyền thống. Đầu tiên, chúng ta viết lại (2.20) dưới dạng:
0
cos
)cos(
....5,3
4
11
m
n
n
n
aa
(2.22)
Tiếp theo, chúng ta xác định giá trị nhỏ nhất của d ( đồng nghĩa với giá trị lớn
nhất của
1
) thỏa mãn phương trình (2.22). Với giả thiết là a
n
và
n
có các giá trị
xấu nhất. Để xem xét trong trường hợp các giá trị xấu nhất này, chúng ta sử dụng
một phần giản đồ pha tiêu biểu của -T (hình 2.3)
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
29
Hình 2.3: Đồ thị pha của –T tiêu biểu
Với các giá trị
là pha của –T. Đồ thị tương ứng của
os( )c
được chỉ ra trong hình
2.4
Hình 2.4: Đồ thị của
os( )c
Khi chúng ta chọn một giá trị d lớn
1
0
sẽ cho kết quả
1
180[deg]
và do đó
11
os( ) 1ac
. Khi chúng ta tăng
1
(tăng d) chúng ta sẽ tiến đến một giá trị mà tại đó
1
90[deg]
hoặc
1
270[deg]
và làm cho
11
os( ) 0ac
do đó a
1
>0. Phương trình
(2.22) có thể không đúng tại điểm này tùy thuộc vào giá trị của
....5,3
4
cos
m
n
n
n
a
Khi
0
cos
....5,3
4
m
n
n
n
a
chúng ta có thể tăng thêm giá trị của
1
mà không vi phạm
Freuency (rad/sec)
-20
-180
0
0.1
Freuency (rad/sec)
-80
-140
-100
-60
phase (deg)
Cos[φ]
1
0
-1
10
-1
10
-2
10
-3
ω[rad s
-1
]
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
30
(2.22). Nói cách khác khi
0
cos
)cos(
....5,3
4
11
m
n
n
n
aa
chúng ta
phải giảm giá trị của
1
. Vì thế tình huống xấu nhất (xem xét theo độ ổn định) xảy
ra khi:
....5,3
4
cos
m
n
n
n
a
max
....5,3
4
cos
m
n
n
n
a
(2.23)
Theo đó giới hạn trên được cho bởi:
max
....5,3
4
cos
m
n
n
n
a
....5,3
4
cosmax
)max(
m
n
n
n
a
....5,3
4
max
m
n
n
a
....5,3
4
max
m
n
n
jT
(2.24)
....5,3
4
m
n
n
jT
Do vậy, 2.22 được thỏa mãn nếu:
11
cos
a
....5,3
4
m
n
n
jT
(2.25)
Bây giờ, giá trị lớn nhất của
1
mà theo đó (2.25) thỏa mãn có thể tìm được nhờ quá
trình tìm kiếm lặp lại sử dụng mô hình hệ thống động học với tần số thấp:
Thuật toán 2.2. (Tính toán giá trị ổn định nhỏ nhất của d với các giả thiết trên mô
hình động học của hệ thống điều khiển)
1. Sử dụng mô hình tần số thấp của hệ thống để tính toán
....5,3
4
m
n
n
jT
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
31
2. Chọn một khuôn dạng phân bố B-Spline bao gồm 3 B-Spline: N=3 trong hình
2.13
3. Tính toán
1
theo (2.12) với N=1
4. Sử dụng mô hình để xác định a
1
và
1
5. Kiểm tra xem a
n
và
n
có thảo mãn phương trình (2.25) sử dụng kết quả của bước
1. Nếu thỏa mãn chuyển tới bước 6, ngược lại chuyển tới bước 8.
6. Tạo một khuôn dạng phân bố B-Spline bao gồm N+1 B-Spline (hay N:=N+1)
7. Chuyển tới bước 3
8. Giá trị nhỏ nhất d được cho bởi:
2
2
N
T
d
p
Để đạt được mục đích xây dựng một chương trình tìm kiếm lặp lại, chúng ta có thể
thêm một số giả thiết với a
1
. Đầu tiên ta viết lại (2.25) dưới dạng:
1
cos
....5,3
4
1
m
n
na
jT
0
(2.26)
Như đã trình bày trong phần trước, tình huống xấu nhất đạt được khi phần thứ 2 bên
trái của phương trình 2.26 đạt giá trị lớn nhất :
....5,3
4
1
m
n
na
jT
= max
....5,3
4
1
m
n
na
jT
=
....5,3
4
1
min
m
n
na
jT
(2.27)
Sử dụng(2.27) ta có thể diễn tả (2.26) dưới dạng:
1
cos
....5,3
4
1
min
m
n
na
jT
0
(2.28)
Bây giờ chúng ta phải xác định giá trị của min(a
1
). Điều này được thực hiện bằng
cách tính toán
n
jT
cho tất cả các gái trị có thể của
1
mà thảo mãn (2.26). Giới
hạn trên của các giá trị của
1
có thể được xác định dưới đây sử dụng kết quả:
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
32
....5,3
4
1
m
n
na
jT
0
(2.29)
1
sẽ phải thỏa mãn phương trình (sử dụng (2.26)):
0cos
1
(2.30)
Giới hạn trên của các giá trị của
1
là các giá trị tần số
tại đó
os( ) 0c
. Các kết
quả này được thể hiện trong:
min(a
1
)
0cos
min
Rl
n
jT
(2.31)
Trong hình 2.5 giới thiệu một ví dụ về đồ thị Bode của –T. Trong đó tất cả các giá
trị
mà theo đó
os( ) 0c
được đánh bóng.
Hình 2.5: Ví dụ về đồ thị Bode của –T
Thay thế (2.31) trong (2.28) đạt được:
....5,3
0cos
min
0147.0
m
n
R
n
jT
jT
....5,3
4
0cos
1
min
cos
m
n
R
n
njT
jT
(2.32)
Chương 2: Phân tích độ ổn định của hệ thống LFFC phụ thuộc thời gian
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
33
Phương trình trên có thể được sử dụng để hình thành nên một thuật toán theo đó có
thể tìm được giá trị tối thiểu của d:
Thuật toán 2.3 ( Tính toán giá trị ổn định của d với các giả thiết nghiêm ngặt hơn về
mô hình động học của hệ thống)
1. Xác định
n
jT
từ mô hình vòng lặp kín
2. Sử dụng đồ thị Bode của mô hình xác định
n
R
jT
0cos
min
3. Tìm giá trị nhỏ nhất của
1
mà tại đó
1arg
1
jT
thỏa mãn
....5,3
0cos
1
min
0147.0arccos
m
n
R
n
jT
jT
(2.33)
4. Giá trị nhỏ nhất của độ rộng của mạng B-Spline, d
min
được cho bởi:
1
1
min
2
radsd
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
34
Chương 3: THIẾT KẾ ỨNG DỤNG
3.1.Giới thiệu
Trong các chương trước, một số vấn đề về LFFC đã được đề cập đến. Ở
chương này sẽ sử dụng các kiến thức có được nhằm thực hiện thiết kế một bộ LFFC
thực tế.
3.1.1. Bộ điều khiển phản hồi.
Bộ điều khiển có phản hồi bù nhiễu ngẫu nhiên và tạo ra một tín hiệu học
cho khâu phản hồi. Trong chương 2 đã chỉ ra rằng độ rộng tối thiểu của B-Spline và
do đó độ chính xác cực đại đạt được phụ thuộc vào đáp ứng tần số của vòng phản
hồi kín. Do đáp ứng tần số của vòng phản hồi kín này phụ thuộc vào bộ điều khiển
phản hồi nên nó quyết định trực tiếp đến khả năng hoạt động tối đa có thể đạt được.
Khi độ rộng tối thiểu của B-Spline quá lớn để đạt được một tỷ lệ lỗi hoạt động chấp
nhận được thì thiết kế lại bộ điều khiển phản hồi là một giải pháp. Tuy nhiên, điều
này yêu cầu bộ điều khiển phản hồi phải được thiết kế sao cho băng thông của vòng
phản hồi kín tăng và điều này có nghĩa là độ ổn định bền vững đối với các thay đổi
của các thiết bị giảm. Chúng ta sẽ giải quyết vấn đề này theo cách khác. Bộ điều
khiển phản hồi sẽ được thiết kế sao cho ổn định và bền vững. Nếu độ rộng tối thiểu
đạt được của B-Spline không phù hợp với hoạt động bám điều khiển mong muốn,
một bộ lọc được thêm vào LFFC. Khi bộ lọc này được thiết kế theo Chương 2, độ
rộng tối thiểu cho phép của B-Spline sẽ giảm.
3.1.2.Các đầu vào của khâu truyền thẳng.
Các đầu vào của khâu truyền thẳng phụ thuộc vào loại chuyển động cần phải
thực hiện. Trong trường hợp các chuyển động lặp lại thì cho kỳ chuyển động được
ưu tiên hơn đầu vào. Khi thực hiện các chuyển động ngãu nhiên, các đầu vào sẽ bao
gồm các vị trí liên quan và thậm chí cả đạo hàm, tích phân của nó. Qua phân tích
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
35
cho thấy các đầu vào được lựa chọn thế nào dựa trên cơ sở mô tả không gian trạng
thái của thiết bị.
3.1.3.Cấu trúc của khâu truyền thẳng.
Nhìn chung, kết quả của các lựa chọn thiết kế trước đây chỉ ra rằng khâu
truyền thẳng sẽ có nhiều đầu vào. Khi thực hiện khâu truyền thẳng nhờ một mạng
BSN đa chiều, chúng ta phải đương đầu với vấn đề liên quan đến bậc của hệ thống.
Vấn đề này có thể được giải quyết bằng cách thay thế mạng BSN bằng một cấu trúc
mạng tinh giảm bao gồm một vài mạng BSN có số chiều thấp hơn. Chương 2 chỉ ra
rằng việc này có thể thực hiện được hoặc là dựa trên các hiểu biết cơ bản về động
học của hệ thống và nhiễu hay theo cách thức tự động bằng cách sử dụng kỹ thuật
mô hình theo kinh nghiệm.
3.1.4. Phân bố B-Spline .
Qua phân tích cho thấy rằng độ rộng của B-Spline quá nhỏ sẽ làm cho quá
trình học không hội tụ. Đối với một hệ thống LFFC phụ thuộc thời gian, độ rộng tối
thiểu của B-Spline sao cho quá trình học hội tụ có thể được xác định dựa trên cơ sở
của đáp ứng tần số của vòng phản hồi kín. Qua phân tích cho thấy rằng trong trường
hợp một LFFC, độ rộng của B-Spline , khi xem xét theo thời gian nên ở mức phù
hợp để bảo đảm rằng quá trình học là hội tụ. Trong trường hợp một mạng BSN
nhiều chiều có thể khó khăn khi thiết kế sự phân bố B-Spline thỏa mãn được điều
này. Qua phân tích cho thấy rằng làm theo quy tắc có thể giải quyết được vấn đề .
3.1.5. Tỷ lệ học.
Tỷ lệ học sẽ xác định các trọng số của mạng BSN thích nghi mạnh đến mức
độ nào. Trong Chương 2, giá trị lớn nhất của tỷ lệ học mà làm cho quá trình học hội
tụ được xác định nhờ đáp ứng tần số của khâu phản hồi kín. Tỷ lệ học nên được lựa
chọn nhỏ (gần 0) khi hệ thống có nhiễu đáng kể. Trường hợp khác có thể lựa chọn tỷ
lệ học lớn.
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
36
3.1.6. Luyện các chuyển động.
Quá trình luyện một hệ thống LFFC phụ thuộc thời gian và một hệ thống LFFC
chỉ bao gồm một mạng BSN có thể được thực hiện theo cách truyền thẳng. Sự quan
tâm đặc biệt được thực hiện khi luyện một mạng LFFC tinh giảm. Qua phân tích chỉ
ra quá trình luyện đồng thời tất cả các mạng BSN nhìn chung sẽ ảnh hưởng đến tín
hiệu học truyền thẳng của tất cả các mạng thay vì chỉ ảnh hưởng đến một mạng BSN
mong muốn. Để giải quyết vấn đề này, Các mạng BSN chỉ được luyện một lần vào
thời điểm phù hợp. các chuyển động liên quan sẽ được lựa chọn sao cho tín hiệu
truyền thẳng mong muốn của một mạng BSN chưa luyện trở nên nổi bật. Chỉ mạng
BSN tương ứng được luyện, trọng số của các mạng BSN khác được giữ nguyên.
Trong các phần sau đây, các thủ tục thiết kế cho cả hệ thống LFFC phụ thuộc
thời gian và LFFC sẽ được trình bày một cách chi tiết hơn. Điều này sẽ được thực
hiện trong mô hình LiMMS.
3.2. LiMMS
3.2.1. Thiết lập.
LiMMS đã được mô tả trong chương 1. Một mô hình xấp xỉ sử dụng cho mô
phỏng được chỉ ra trong hình 3.1.
Hình 3.1 Mô hình mô phỏng của LiMMS
u
y
+
-
y
..
y
.
.
F
V
F
C
d
L
coogging
+
+
mL
1
s
1
s
1
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
37
Khối cogging được mô hình hóa theo phương trình:
xxF
C
2
10.6.1sin10
(3.1)
Các thí nghiệm cho thấy rằng (3.1) chỉ là một hàm xấp xỉ đơn giản của đặc tính khối
cogging thực tế. Điều này là do các nam châm giá rẻ liên quan đã được sử dụng có
độ từ tính đáng kể và các nam châm này không được lắp đặt với độ chính xác cao
nhất có thể. Đặc tính của khối cogging có dạng hình sin mà cả chu kì và biên độ đều
phụ thuộc vào vị trí của bộ chuyển đổi LiMMS. Thêm vào đó, đặc tính của khối
cogging cho thấy nó phụ thuộc vào chiều chuyển động. Trong mô hình mô phỏng
chỉ quan tâm đến ma sát nhớt. Giả thiết rằng đặc tính của ma sát trong qua trình thiết
lập thực tế có thể được mô tả theo đường cong Stribeck. Chúng ta đi tới kết luận
rằng LFFC phải thể hiện được:
- Quán tính của LiMMS
- Ma sát phi tuyến
- Các lực cogging (Lực ăn khớp)
3.2.2. Thủ tụ thiết kế một hệ thống Time-indexed LFFC
Trong một số ứng dụng LiMMS phải thực hiện các chuyển động lặp lại. Do đó,
đầu tiên chúng ta quan tâm đến một hệ thống Time-indexed LFFC. Thủ tục thiết kế
cho một Time-indexed LFFC được đưa ra dưới đây.
Bước 1: Thiết kế khâu điều khiển phản hồi
Trong các thí nghiệm này, khâu điều khiển phản hồi được thiết kế nhờ một cơ
chế tự động điều chỉnh giới thiệu trong phần thiết lập LiMMS. Khâu điều khiển
phản hồi là một khâu PD được đặt nối tiếp với một bộ lọc thông thấp:
2
2
2
400100
400
2752805538
ss
ssC
(3.2)
Bước 2: Xác định độ rộng tối thiểu của miền xác định của các B-Spline và tỷ lệ học
lớn nhất.
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
38
Để xác định độ rộng tối thiểu của các B-Spline sao cho quá trình học hội tụ. cần
phải có một đồ thị Bode cho hàm độ nhạy bổ xung âm. Đồ thị Bode này thể hiện
trong hình 3.2 nhờ một số phân tích tần số thực nghiệm.
Nếu bỏ qua lỗi đo lường có thể xác đinh được biên độ đỉnh đạt được tại tần số
xấp xỉ 20 Hz. Để tính toán được độ rộng tối thiểu của B-Spline chúng ta cần xác
định.
....5,3
0cos
1
min
0147.0arccos
m
n
R
n
jT
jT
(3.3)
Từ hình 3.2 ta có:
dBjT
n
5.35.1
(3.4)
dBjT
n
R
5.184.0min
0cos
(3.5)
Sử dụng (3.4) và (3.5),(3.3) thu được:
49.10263.0arccos
1
(3.6)
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
39
Hình 3.2: Đồ thị Bode của –T
Tần số mà tại đó độ dịch pha bằng -1,49
là:
11
1042.52
radsrads
(3.7)
Điều này cho phép xác định được độ rộng tối thiểu của miền xác định của các
B-Spline :
ssd 0192.0
104
2
min
(3.8)
Tiếp theo, tỷ lệ học lớn nhất được xác định. Để cho quá trình học hội tụ, tỷ lệ học
phải thỏa mãn:
iT
2
(3.9)
Sử dụng (3.10) cho ta kết quả:
55.1
5.1
22
iT
(3.10)
Bước 4: Lựa chọn phân bố B-Spline
-п
10
1
10
2
52(Hz)
-40
10
2
0
-20
10
T
-10
-30
10
1
Frequency log (Hz)
Frequency log (Hz)
-1.5п
-2п
-2.5п
-3п
-3.5п
Phase
[rad]
mag[dB]
Chương 3: Thiết kế ứng dụng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
40
Phân bố B-Spline phải được lựa chọn sao cho độ rộng của miền xác định của
các B-Spline lớn hơn d
min
Bước 5: Lựa chọn một tỷ lệ học
Như đã thảo luận trong các phần trước, tỷ lệ học
sẽ được chọn nhỏ (gần bằng
0) nếu hệ thống chịu ảnh hưởng lớn của nhiễu. Nếu không một tỷ lệ học
lớn
hơn sẽ được lựa chọn. Khi
iT
1
0
sai số bám sẽ giảm từ từ.
Khi
iTiT
21
Sẽ làm cho sai số bám giảm theo cách thức dao
động. Do chúng ta xem như tỷ lệ học vừa rồi là không mong muốn , chúng tôi
khuyến nghị sử dụng
67.0
1
iT
Bước 6: Huấn luyện hệ thống Time-indexed LFFC
Luyện hệ thống Time-indexed LFFC theo phương thức luyện mạng truyền
thẳng.
3.2.3. Các thí nghiệm kiểm chứng cho hệ thống Time-indexed LFFC
Trong phần sau đây, hai chuỗi thí nghiệm sẽ được thực hiện. Mục đích của một
số thí nghiệm đầu tiên là kiểm chứng độ rộng tối thiểu của miền xác định của các
B-Spline và tỷ lệ học lớn nhất. sau đó, khả năng của kỹ thuật phân cụm mờ xác
định một phân bố B-Spline sẽ được kiểm tra.
Để khiểm chứng độ rộng tối thiểu của miền xác định của các B-Spline và tỷ lệ
học lớn nhất, các giá trị này sẽ được xác định nhờ các thí nghiệm. Vị trí tham
chiếu mà LiMMS phải bám được đưa ra trong hình 3.3.