Tải bản đầy đủ (.pdf) (9 trang)

Tài liệu Hard Disk Drive Servo Systems- P8 docx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (53.68 KB, 9 trang )

302 References
110. Chen BM. Theory of loop transfer recovery for multivarible linear systems [PhD diss].
Pullman (WA): Washington State University; 1991.
111. Chen BM, Saberi A, Sannuti P. A new stable compensator design for exact and approx-
imate loop transfer recovery. Automatica 1991; 27:257–80.
112. Doyle JC, Stein G. Multivariable feedback design: concepts for a classical/modern syn-
thesis. IEEE Trans Automat Contr 1981; 26:4–16.
113. Goodman GC. The LQG/LTR method and discrete-time control systems. Technical re-
port. MIT (MA): Report No.: LIDS-TH-1392; 1984.
114. Kwakernaak H. Optimal low sensitivity linear feedback systems. Automatica 1969;
5:279–85.
115. Matson CL, Maybeck PS. On an assumed convergence result in the LQG/LTR tech-
nique. Proc 26th IEEE Conf Dec Contr; Los Angeles, CA; 1987. p. 951–2.
116. Niemann HH, Sogaard-Andersen P, Stoustrup J. Loop Transfer Recovery: Analysis and
Design for General Observer Architecture. Int J Contr 1991; 53:1177–203.
117. Saberi A, Chen BM, Sannuti P. Loop transfer recovery: analysis and design. London:
Springer; 1993.
118. Stein G, Athans M. The LQG/LTR procedure for multivariable feedback control design.
IEEE Tran Automat Contr 1987; 32:105–14.
119. Zhang Z, Freudenberg JS. Loop transfer recovery for nonminimum phase plants. IEEE
Trans Automat Contr 1990; 35:547–53.
120. Chen BM, Saberi A, Ly U. Closed loop transfer recovery with observer based con-
trollers: analysis. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic
Press; 1992; 51:247–93.
121. Chen BM, Saberi A, Ly U. Closed loop transfer recovery with observer based con-
trollers: design. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic
Press; 1992; 56:295–348.
122. Chen BM, Saberi A, Berg MC, Ly U. Closed loop transfer recovery for discrete time
systems. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic Press;
1993; 56:443–81.
123. Hu T, Lin Z. Control systems with actuator saturation: analysis and design. Boston:


Birkh¨auser; 2001.
124. Kirk DE. Optimal control theory. Englewood Cliffs (NJ): Prentice Hall; 1970.
125. Venkataramanan V, Chen BM, Lee TH, Guo G. A new approach to the design of mode
switching control in hard disk drive servo systems. Contr Eng Prac 2002; 10:925–39.
126. Itkis U. Control systems of variable structure. New York (NY): Wiley; 1976.
127. Yamaguchi T, Numasato H, Hirai H. A mode-switching control for motion con-
trol and its application to disk drives: Design of optimal mode-switching conditions.
IEEE/ASME Trans Mechatron 1998; 3:202–9.
128. Salle JL, Lefschetz S. Stability by Liapunov’s direct method. New York (NY): Aca-
demic Press; 1961.
129. LaSalle J. Stability by Liapunov’s direct method with applications. New York (NY):
Academic Press; 1961.
130. Lin Z, Pachter M, Banda S. Toward improvement of tracking performance – nonlinear
feedback for linear systems. Int J Contr 1998; 70:1–11.
131. Turner MC, Postlethwaite I, Walker DJ. Nonlinear tracking control for multivariable
constrained input linear systems. Int J Contr 2000; 73:1160–72.
132. Chen BM, Lee TH, Peng K, Venkataramanan V. Composite nonlinear feedback control:
theory and an application. IEEE Trans Automat Contr 2003; 48:427–39.
References 303
133. Venkataramanan V, Peng K, Chen BM, Lee TH. Discrete-time composite nonlinear
feedback control with an application in design of a hard disk drive servo system. IEEE
Trans Contr Syst Technol 2003; 11:16–23.
134. He Y, Chen BM, Wu C. Composite nonlinear control with state and measurement feed-
back for general multivariable systems with input saturation. Syst Contr Lett 2005;
54:455–69.
135. He Y, Chen BM, Wu C. Composite nonlinear feedback control for general discrete-
time multivariable systems with actuator nonlinearities. Proc 5th Asian Contr Conf;
Melbourne, Australia; 2004. p. 539–44.
136. Lan W, Chen BM, He Y. Improving transient performance in tracking control for a class
of nonlinear systems with input saturation. Syst Contr Lett 2006; 55:132–8.

137. He Y, Chen BM, Lan W. Improving transient performance in tracking control for a
class of nonlinear discrete-time systems with input saturation. Proc 44th IEEE Conf
Dec Contr; Seville, Spain; 2005. p. 8094–9.
138. Peng K, Chen BM, Cheng G, Lee TH. Modeling and compensation of nonlinearities
and friction in a micro hard disk drive servo system with nonlinear feedback control.
IEEE Trans Contr Syst Technol 2005; 13:708–21.
139. Chen BM, Zheng D. Simultaneous finite and infinite zero assignments of linear systems.
Automatica 1995; 31:643–8.
140. Cheng G, Peng K, Chen BM, Lee TH. A microdrive track following controller de-
sign using robust and perfect tracking control with nonlinear compensation. Mechatron
2005; 15:933–48.
141. Iannou PA, Kosmatopoulos EB, Despain AM. Position error signal estimation at high
sampling rates using data and servo sector measurements. IEEE Trans Contr Syst Tech-
nol 2003; 11:325–34.
142. Weerasooriya S, Low TS, Huang YH. Adaptive time optimal control of a disk drive
actuator. IEEE Trans Magn 1994; 30:4224–6.
143. Xiong Y, Weerasooriya S, Low TS. Improved discrete proximate time optimal controller
of a disk drive actuator. IEEE Trans Magn 1996; 32:4010–2.
144. Mizoshita Y, Hasegawa S, Takaishi K. Vibration minimized access control for disk
drives. IEEE Trans Magn 1996; 32:1793–8.
145. Yamaguchi T, Nakagawa S. Recent control technologies for fast and precise servo sys-
tem of hard disk drives. Proc 6th Int Workshop Adv Motion Contr; Nagoya, Japan;
2000. p. 69–73.
146. Tsuchiura KM, Tsukuba HH, Toride HO, Takahashi T. Disk system with sub-actuators
for fine head displacement. US Patent No: 5189578; 1993.
147. Miu DK, Tai YC. Silicon micromachined SCALED technology. IEEE Trans Ind Elec-
tron 1995; 42:234–9.
148. Fan LS, Ottesen HH, Reiley TC, Wood RW. Magnetic recording head positioning at
very high track densities using a microactuator based, two stage servo system. IEEE
Trans Ind Electron 1995; 42:222–33.

149. Aggarwal SK, Horsley DA, Horowitz R, Pisano AP. Microactuators for high density
disk drives. Proc American Contr Conf; Albuquerque, NM; 1997. p. 3979–84.
150. Ding, J, Tomizuka M, Numasato H. Design and robustness analysis of dual stage servo
system. Proc American Contr Conf; Chicago, IL; 2000. p. 2605–09.
151. Evans RB, Griesbach JS, Messner WC. Piezoelectric microactuator for dual stage con-
trol. IEEE Trans Magn 1999; 35:977–82.
152. Fan LS, Hirano T, Hong J, Webb PR, Juan WH, Lee WY, et al. Electrostatic microactua-
tor and design considerations for HDD application. IEEE Trans Magn 1999; 35:1000–5.
304 References
153. Guo L, Chang JK, Hu X. Track-following and seek/settle control schemes for high
density disk drives with dual-stage actuators. Proc 2001 IEEE/ASME Int Conf Adv
Intell Mechatron; Como, Italy; 2001. p. 1136–41.
154. Guo L, Martin D, Brunnett D. Dual-stage actuator servo control for high density disk
drives. Proc 1999 IEEE/ASME Int Conf Adv Intell Mechatron; Atlanta, GA; 1999.
p. 132–7.
155. Guo W, Weerasooriya S, Goh TB, Li QH, Bi C, Chang KT, et al. Dual stage actuators
for high density rotating memory devices. IEEE Trans Magn 1998; 34:450–5.
156. Guo W, Yuan L, Wang L, Guo G, Huang T, Chen BM, et al. Linear quadratic optimal
dual-stage servo control systems for hard disk drives. Proc 24th IEEE Ind Electron Soc
Ann Conf; Aachen, Germany; 1998. p. 1405–10.
157. Hernandez D, Park SS, Horowitz R, Packard A. Dual-stage track-following design for
hard disk drives. Proc American Contr Conf; San Diego, CA; 1999. p. 4116–21.
158. Horsley DA, Hernandez D, Horowitz R, Packard AK, Pisano AP. Closed-loop control of
a microfabricated actuator for dual-stage hard disk drive servo systems. Proc American
Contr Conf; Philadelphia, PA; 1998. p. 3028–32.
159. Hu X, Guo W, Huang T, Chen BM, Discrete time LQG/LTR dual-stage controller de-
sign and implementation for high track density HDDs. Proc American Contr Conf; San
Diego, CA; 1999. p. 4111–5.
160. Kobayashi M, Horowitz R. Track seek control for hard disk dual-stage servo systems.
IEEE Trans Magn 2001; 37:949–54.

161. Li Y, Horowitz R. Track-following controller design of MEMS based dual-stage servos
in magnetic hard disk drives. Proc 2000 IEEE Int Conf Robot Automat; San Francisco,
CA; 2000. p. 953–8.
162. Mori K, Munemoto T, Otsuki H, Yamaguchi Y, Akagi K. A dual-stage magnetic disk
drive actuator using a piezoelectric device for a high track density. IEEE Trans Magn
1991; 27:5298–300.
163. Schroeck SJ, Messner WC. On controller design for linear time-invariant dual-input
single-output systems. Proc American Contr Conf; San Diego, CA; 1999. p. 4122–6.
164. Semba T, Hirano T, Hong J, Fan LS. Dual-stage servo controller for HDD using MEMS
microactuator. IEEE Trans Magn 1999; 35:2271–3.
165. Suthasun T, Mareels I, Mamun AA. System identification and control design for dual
actuated disk drive. Contr Eng Prac 2002; 12:665–76.
166. Takaishi K, Imamura T, Mizasgita Y, Hasegawa S, Ueno T, Yamada T. Microactuator
control for disk drive. IEEE Trans Magn 1996; 32:1863–6.
167. Du CL, Guo GX. Lowering the hump of sensitivity functions for discrete-time dual-
stage systems. IEEE Trans Contr Syst Technol 2005; 13:791–7.
168. Canudas de Wit C, Lischinsky P. Adaptive friction compensation with partially known
dynamic friction model. Int J Adapt Contr Signal Proc 1997; 11:65–80.
169. Canudas de Wit C, Olsson H, Astr¨om KJ, Lischinsky P. A new model for control of
systems with friction. IEEE Trans Automat Contr 1995; 40:419–25.
170. Canudas de Wit C, Olsson H, Astr¨om KJ, Lischinsky P. Dynamic friction models and
control design. Proc American Contr Conf; San Francisco, CA; 1993. p. 1920–6.
171. Olsson H, Astr¨om KJ. Observer-based friction compensation. Proc 35th IEEE Conf Dec
Contr; Kobe, Japan; 1996. p. 4345–50.
172. Dahl PR. Solid friction damping of mechanical vibrations. AIAA J 1976; 14:1675–82.
173. Ge SS, Lee TH, Ren SX. Adaptive friction compensation of servomechanisms. Int J Sys
Sci 2001; 32:523–32.
174. Maria HA, Abrahams ID. Active control of friction-driven oscillations. J Sound Vibra
1996; 193:417–26.
References 305

175. Abramovitch D, Wang F, Franklin G. Disk drive pivot nonlinearity modeling – Part I:
frequency domain. Proc American Contr Conf; Baltimore, MD; 2004. p. 2600–3.
176. Ishikawa J, Tomizuka M. Pivot friction compensation using an accelerometer and a
disturbance observer for hard disk drives. IEEE/ASME Trans Mechatron 1998; 3:194–
201.
177. Wang F, Abramovitch D, Franklin G. A method for verifying measurements and models
of linear and nonlinear systems. Proc American Contr Conf; San Francisco, CA; 1993.
p. 93–7.
178. Wang F, Hurst T, Abramovitch D, Franklin G. Disk drive pivot nonlinearity modeling –
Part II: time domain. Proc American Contr Conf; Baltimore, MD; 1994. p. 2604–7.
179. Chang HS, Baek SE, Park JH, Byun YK. Modeling of pivot friction using relay function
and estimation of its functional parameters. Proc American Contr Conf; San Francisco,
CA; 1999. p. 3784–9.
180. Liu X, Liu JC. Analysis and measurement of torque hysteresis of pivot bearing in hard
disk drive applications. Tribology Int 1999; 32:125–30.
181. Low TS, Guo W. Modeling of a three-layer piezoelectric bimorph beam with hysteresis.
J Microelectromech Syst 1995; 4:230–7.
182. Chang TP. Seismic response analysis of nonlinear structures using the stochastic equiv-
alent linearization technique [PhD diss]. New York (NY): Columbia University; 1985.
183. Peng K, Venkataramanan V, Chen BM, Lee TH. Design and implementation of a dual-
stage actuator HDD servo system via composite nonlinear feedback approach. Mecha-
tron 2004; 14:965–88.
184. Hwang CL, Lin CH. A discrete-time multivariable neuro-adaptive control for nonlinear
unknown dynamic systems. IEEE Trans Syst Man Cyb B 2000; 30:865–77.
185. Adriaens HJMTA, de Koning WL, Banning R. Modeling piezoelectric actuators. IEEE/
ASME Trans Mechatron 2000; 5:331–41.
186. Cruz-Hernandez JM, Hayward V. Phase control approach to hysteresis reduction. IEEE
Trans Contr Syst Technol 2001; 9:17–26.
187. Cheng HM, Ewe MTS, Chiu GTC, Bashir R. Modeling and control of piezoelectric
cantilever beam micro-mirror and micro-laser arrays to reduce image banding in elec-

trophotographic processes. J Micromech Microeng 2001; 11:487–98.
188. Guo G, Chen R, Low TS, Wang Y. Optimal control design for hard disk drive servosys-
tems. IEE Proc–Contr Theor Appl 2002; 149:237–42.
189. Ewe MTS, Grice JM, Chiu GTC, Allebach JP, Chan CS, Foote W. Banding reduction
in electrophotographic processes using a piezoelectric actuated laser beam deflection
device. J Imaging Sci Technol 2002; 46:433–42.
190. Lin CL, Jan HY, Shieh NC. GA-based multiobjective PID control for a linear brushless
DC motor. IEEE/ASME Trans Mechatron 2003; 8:56–65.
191. Hwang CL, Jan C. Optimal and reinforced robustness designs of fuzzy variable struc-
ture tracking control for a piezoelectric actuator system. IEEE Trans Fuzzy Syst 2003;
11:507–17.
192. Jan C, Hwang CL. A nonlinear observer-based sliding-mode control for piezoelectric
actuator systems: Theory and experiments. J Chinese Inst Engr 2004; 27:9–22.
193. Huang YC, Lin DY. Ultra-fine tracking control on piezoelectric actuated motion stage
using piezoelectric hysteretic model. Asian J Contr 2004; 6:208–16.
194. Hwang CL, Jan C. Nano trajectory control of multilayer low-voltage PZT render actu-
ator systems. Asian J Contr 2004; 6:187–98.
195. Hwang CL, Chen YM. Discrete sliding-mode tracking control of high-displacement
piezoelectric actuator systems. J Dynam Syst–Trans ASME 2004; 126:721–31.
306 References
196. Hwang CL, Chen YM, Jan C. Trajectory tracking of large-displacement piezoelectric
actuators using a nonlinear observer-based variable structure control. IEEE Trans Contr
Syst Technol 2005; 13:56–66.
197. Ikhouane F, Manosa V, Rodellar J. Adaptive control of a hysteretic structural system.
Automatica 2005; 41:225–31.
198. Cruz-Hernandez JM, Hayward V. Position stability for phase control of the Preisach
hysteresis model. Trans Canadian Soc Mech Eng 2005; 29:129–42.
199. Hwang CL, Jan C. State-estimator-based feedback control for a class of piezoelectric
systems with hysteretic nonlinearity. IEEE Trans Syst Man Cyb A 2005; 35:654–64.
200. Ikhouane F, Rodellar J. On the hysteretic Bouc–Wen model. Nonlinear Dynam 2005;

421:63–78.
201. Moheimani SOR, Vautier BJG. Resonant control of structural vibration using charge-
driven piezoelectric actuators. IEEE Trans Contr Syst Technol 2005; 13:1021–35.
202. Caughey TK. Derivation and application of the Fokker–Planck equation to discrete non-
linear dynamic systems subjected to white random excitation. J Acoust Soc Am 1963;
35:1683–92.
203. Crandall ST. Perturbation techniques for random vibration of nonlinear systems. J
Acoust Soc Am 1963; 35:1700–05.
204. Lyon RH. Response of a nonlinear string to random excitation. J Acoust Soc Am 1960;
32:953–60.
205. Booton, Jr., RC. Nonlinear control systems with random inputs. IRE Trans Circuit The-
ory 1954; CT–1:9–18.

×