Tải bản đầy đủ (.docx) (6 trang)

De va DA thi thu DH lan 2 Bac Ninh Cuc hot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (270.41 KB, 6 trang )

<span class='text_page_counter'>(1)</span>SỞ GD&ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM HỌC 2012-2013 TRƯỜNG THPT LƯƠNG TÀI 2 Môn thi: TOÁN - Khối A,B Thời gian làm bài 180 phút, không kể thời gian phát đề ============== PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1. (2,0 điểm) 4. 2. 2. Cho hàm số y  x  2mx  m  m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = -2 2.Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành một tam giác có một góc bằng 120 0 Câu 2. (1,0 điểm) Tìm nghiệm x thuộc khoảng (0;  ) của phương trình 4sin 2 ( . x ) 2.  3 3 sin(  2 x) 1  2cos 2 ( x  ) 2 4 . ( x  y )( x 2  xy  y 2  3) 3( x 2  y 2 )  2  2 4 x  2  16  3 y  x  8. Câu 3. (1,0 điểm) Giải hệ phương trình.  x, y   . x3  3x I  4 dx x  5x2  6 Câu 4. (1,0 điểm)Tính:. Câu 5. (1,0 điểm) Cho hình chóp S.ABCD đáy là hình thoi cạnh 2a,SA = a, SAB  ABCD.    ,gọi M,N lần lượt là trung điểm AB và BC. Tính SB = a 3 ,gócBAD bằng 600,  thể tích khối chóp S.ABCD và cosin giữa hai đường thẳng SM và DN. Câu 6. (1,0 điểm) Cho các số dương a, b, c thỏa mãn a  b  c 3 a b c   3 b c a Chứng minh rằng: . PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần( A hoặc B) A. Theo chương trình Chuẩn Câu 7.a (2,0 điểm) 1.Trong mặt phẳng Oxy, cho tam giác ABC có AB= 5 , C(-1;-1), phương trình cạnh AB là: x-2y-3=0, trọng tâm G thuộc đường thẳng: x+y-2=0. Tìm tọa độ các đỉnh A, B. 2.Trong mặt phẳng Oxy, cho đường tròn (C 1): x  y 13 ,đường tròn (C2): ( x  6)  y 25 . Gọi giao điểm có tung độ dương của (C 1) và (C2) là A,viết phương trình đường thẳng đi qua A,cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau Câu 8.a (1,0 điểm) Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11, 5 học sinh khối 10.Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh B. Theo chương trình Nâng cao Câu 7.b (2,0 điểm) 1.Trong mặt phẳng Oxy cho hinh chữ nhật ABCD có diện tích bằng 12,tâm I là giao điểm của hai đường thẳng d1,d2 lần lượt có phương trình:x-y-3=0 và x+y-6+0.Trung điểm M của cạnh AD là giao điểm của d1 với trục Ox.Tìm toạ độ các đỉnh của hình chữ nhật 2. 2. 2. 2. x2 y 2  1 2.Cho elip (E): 16 4 và A(0;2).Tìm B,C thuộc (E) đối xứng với nhau qua Oy sao cho tam. giác ABC đều.

<span class='text_page_counter'>(2)</span> Câu8.b (1,0điểm) Tìm m để phương trình: có hai nghiệm x1,x2 sao cho x12 + x22 >1. 3log 27 (2 x 2  x  2m  4m 2 )  log 1. x 2  mx  2m 2 0. 3. ---------------- Hết ----------------. CÂU 1 (2điểm). ĐÁP ÁN TOÁN A,B ĐÁP ÁN. ĐIỂM. 1.(1 điểm) Khi m=-2,ta có y=x4-2x2+2 *TXĐ *SBT -Chiều biến thiên:Tính y’,GPT y’=0 Nêu khoảng đb,nb -Cực trị -Giới hạn BBT Đồ thị 2.(1 điểm) Ta có: y’=4x3+4mx=4x(x2+m) Đồ thị có 3 điểm cực trị khi và chỉ khi m<0. . 0.25 0.25 0.25 0.25 0.25. B(  m ; m), C (  m ; m)  AB (  m ;  m 2 ), AC (  m ;  m 2 ). 4 4 Các điểm cực trị A(0;m2+m), AB  m  m , AC  m  m Tam giác ABC cân tại A nên A=1200. 0.25.  m4  m  1  cos( AB, AC )  4  m m 2 1 3 3 ,KL PT  sin 2 x . 0.25. m  2 (1 điểm). 3 cos 2 x 2cosx.  sin(2 x  ) sin ( 2  x)  3. 5  x   k 2  6   x  5  k 2  18 3. Vì x  (0;  ) nên 3 (1 điểm). 0.75. x. 5 5 17 ,x  ,x  6 18 18. 2 2 2 2 ( x  y )( x  xy  y  3) 3( x  y )  2(1)  4 x  2  16  3 y  x 2  8(2)   Giải hệ phương trình. 0.25.  x, y    0.25.

<span class='text_page_counter'>(3)</span> 16 x  2, y  3 ĐK: (1)  ( x  1)3 ( y  1)3  y x  2 Thay y=x-2 vao (2) được 4 x  2  22  3 x  x 2  8 4( x  2) 3( x  2)  ( x  2)( x  2)  x2 2 22  3 x  4.  x 2  4 3   ( x  2)  0(*) 22  3 x  4  x  2  2 Xét f(x)=VT(*) trên [-2;21/3],có f’(x)>0 nên hàm số đồng biến suy ra x=-1 là nghiệm duy nhất của (*) KL: HPT có 2 nghiệm (2;0),(-1;-3) 4 Ta có: (1 điểm) 1 x2  3 1 x2  2  5 2 I  2 dx  dx 2 2 2 2  2 ( x  2)( x  3) 2 ( x  2)( x  3) 1 dx 2 5 1 1  ( 2  2 )dx 2 2  2 x 3 2 x 3 x 2 1 5 x2  3  ln x 2  3  ln 2 C 2 2 x 2. 0.25. 1. . 5 (1 điểm). 0.5. BD 2a, AC 2a 3 1  S ABCD  BD. AC 2a 2 3 2 Tính được. 0,25. Tam giác SAB vuông tại S,suy ra SM=a,từ đó tam giác SAM đều.Gọi H là trung điểm của AM,suy ra SH  AB ( SAB )  ( ABCD)  SH  ( ABCD) SH a. 0,25. 3  V a 3 2. 1 AQ  AD  4 Gọi Q là điểm thoả mãn MQ//DN Gọi K là trung điểm của MQ,suy ra HK//AD,HK  MQ,MQ  (SHK). 0,25. ^. Góc  giữa SM và DN là góc BAD 1 1 MQ DN MK 2 3 cos   4  SM a a 4. 0,25.

<span class='text_page_counter'>(4)</span> 6 (1 điểm). a2 b c b a2 b  c  2a 2a  2a 4a   2a 4a  c c b c b c Ta có: b (1) b2 c c2 a  2b 4b  a(2),  2c 4c  b(3) a a b Tương tự: c Cộng (1),(2),(3) được. 0,25. 0,25. 2. b c   a     3( a  b  c) 9 c a  b a b c   3 b c a Dấu “=” xảy ra khi a=b=c=1 7a 1(1 điểm) (2 điểm) Gọi A(x1;y1),B(x2;y2).Vì A,B thuộc đường thẳng x-2y-3=0 nên ta được:. x1  2 y1  3 0(1); x2  2 y2  3 0(2) x  y1  1 3 xG ; x2  y2  1 3 yG G là trọng tâm tam giác ABC nên: 1 G thuộc đường thẳng x+y-2=0. 0,25. 0,25. 0,5.  x1  y1  1  x2  y2  1 6  x1  x2  y1  y2 8(3) AB=5.  ( x1  x2 ) 2  ( y1  y2 ) 2 5(4). 22   x1  x2  3    y  y 2  1 2 3 Từ (1),(2),(3) x  x 2( y1  y2 ) thay vào (4) được y1  y2 1 Từ (1),(2) 1 2. 0,5. 14 5 8 1 A( ; ), B ( ;  ) y  y2 1 .Tìm được 3 6 3 6 TH1: 1 8 1 14 5 A ( ;  ), B ( ; ) y  y  1 1 2 3 6 3 6 TH2: .Tìm được 2(1 điểm) (C1) có tâm O(0;0),bán kính. R1  13. R 5. (C2) có tâm I(6;0),bán kính 2 . Giao điểm của (C1) và (C2) là (2;3) và (2;-3).Vì A có tung độ dương nên A(2;3). 0,25. Đường thẳng d qua A có pt:a(x-2)+b(y-3)=0 hay ax+by-2a-3b=0 Gọi. d1 d (O, d ); d 2 d ( I , d ). 2 2 2 2 2 2 R  d  R  d  d  d 12 2 2 1 1 2 1 Yêu cầu bài toán trở thành:. 0,5.

<span class='text_page_counter'>(5)</span> (4a  3b) 2 (2a  3b) 2  12  b 2  3ab 0  2 2 2 2 a b a b.  b 0  b  3a . *b=0 ,chọ a=1,suy ra pt d là:x-2=0 *b=-3a ,chọ a=1,b=-3,suy ra pt d là:x-3y+7=0. 0,25. 8a C126 Tổng số cách chọn 6 học sinh trong 12 học sinh là (1 điểm). 0,25. Số học sinh được chọn phải thuộc ít nhất 2 khối -Số cách chọn chỉ có học sinh khối 12 và khối 11 là:. C76. -Số cách chọn chỉ có học sinh khối 11 và khối 10 là:. C96. -Số cách chọn chỉ có học sinh khối 12 và khối 10 là:. C86. 0,5. 6 6 6 6 C  C  C  C 805 (cách) 12 7 9 8 Số cách chọn thoả mãn đề bài là:. 0,25. 7b 1(1 điểm) (2 điểm). 9 3 I ( ; ), M (3;0) Tìm được 2 2. 0,25 0,25. Lập đươc pt AD:x+y-3=0,Tính được AD= 2 2.  x  y  3 0  ( x  3) 2  y 2 2 Toạ độ A,D là nghiệm hpt . 0,5. TÌm được:A(2;1),D(4;-1),C(7;2),B(5;4) hoặc A(2;1),D(4;-1),C(7;2),B(5;4) 2(1 điểm) Giả sử B(m;n),C(-m;n).Do B,C thuộc (E) và tam giác ABC đều nên ta được hệ :.  17 3  m2 n2 m    1  3   16 4 m 2  (n  2) 2 4m 2 m  17 3   3 17 3  22 17 3  22 B( ; ), C ( ; ) 3 13 3 13 hoặc Vậy. 1. B(. 17 3  22 17 3  22 ; ), C ( ; ) 3 13 3 13. 8b BPT đã cho tương đương với (1 điểm) log (2 x 2  x  2m  4m 2 ) log ( x 2  mx  2m 2 ) 3 3  x 2  mx  2m 2  0  x 2  mx  2m 2  0   2    x 1  m 2  x  ( m  1) x  2m  2m  0   x 2m . YCBT. 0,5.

<span class='text_page_counter'>(6)</span> (2m) 2  m(2m)  2m 2  0   (1  m)2  m(1  m)  2m 2  0  (2m) 2  (1  m) 2  1 .  4m 2  0  2  2m  m  1  0  5m 2  2m  0 .  1 m  0 2  m 1 2 5. 0,5.

<span class='text_page_counter'>(7)</span>

×