Tải bản đầy đủ (.docx) (16 trang)

De cuong on vao lop 10 hinh hocnam 2013 co DA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (395.43 KB, 16 trang )

<span class='text_page_counter'>(1)</span>C¸c d¹ng to¸n «n thi vµo líp 10 D¹ng V Bµi tËp H×nh tæng hîp. Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O). Các đờng cao AD, BE, CF cắt nhau tại H và cắt đờng tròn (O) lần lợt tại M,N,P. Chøng minh r»ng: 1. Tø gi¸c CEHD, néi tiÕp . 2. Bốn điểm B,C,E,F cùng nằm trên một đờng tròn. 3. AE.AC = AH.AD; AD.BC = BE.AC. 4. H và M đối xứng nhau qua BC. 5. Xác định tâm đờng tròn nội tiếp tam giác DEF. Lêi gi¶i: XÐt tø gi¸c CEHD ta cã:  CEH = 900 ( Vì BE là đờng cao)  CDH = 900 ( Vì AD là đờng cao) =>  CEH +  CDH = 1800 Mà  CEH và  CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp Theo giả thiết: BE là đờng cao => BE  AC => BEC = 900. CF là đờng cao => CF  AB => BFC = 900. Nh vậy E và F cùng nhìn BC dới một góc 900 => E và F cùng nằm trên đờng tròn đờng kính BC. Vậy bốn điểm B,C,E,F cùng nằm trên một đờng tròn. XÐt hai tam gi¸c AEH vµ ADC ta cã:  AEH =  ADC = 900 ; ¢ lµ gãc chung AE AH =>  AEH  ADC => => AE.AC = AH.AD. = AD AC * XÐt hai tam gi¸c BEC vµ ADC ta cã:  BEC =  ADC = 900 ; C lµ gãc chung BE BC =>  BEC  ADC => => AD.BC = BE.AC. = AD AC 4. Ta cã C1 = A1 ( v× cïng phô víi gãc ABC) C2 = A1 ( v× lµ hai gãc néi tiÕp cïng ch¾n cung BM) => C1 =  C2 => CB lµ tia ph©n gi¸c cña gãc HCM; l¹i cã CB  HM =>  CHM c©n t¹i C => CB cũng là đơng trung trực của HM vậy H và M đối xứng nhau qua BC. 5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đờng tròn => C1 = E1 ( v× lµ hai gãc néi tiÕp cïng ch¾n cung BF) Còng theo chøng minh trªn CEHD lµ tø gi¸c néi tiÕp C1 = E2 ( v× lµ hai gãc néi tiÕp cïng ch¾n cung HD) E1 = E2 => EB lµ tia ph©n gi¸c cña gãc FED. Chứng minh tơng tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đờng tròn nội tiếp tam giác DEF. Bài 2. Cho tam giác cân ABC (AB = AC), các đờng cao AD, BE, cắt nhau tại H. Gọi O là tâm đờng tròn ngo¹i tiÕp tam gi¸c AHE. 1. Chøng minh tø gi¸c CEHD néi tiÕp . 2. Bốn điểm A, E, D, B cùng nằm trên một đờng tròn. 1 3. Chøng minh ED = BC. 2 4. Chứng minh DE là tiếp tuyến của đờng tròn (O). 5. Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Lêi gi¶i: XÐt tø gi¸c CEHD ta cã:  CEH = 900 ( Vì BE là đờng cao)  CDH = 900 ( Vì AD là đờng cao) =>  CEH +  CDH = 1800 Mà  CEH và  CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo gi¶ thiÕt: BE là đờng cao => BE  AC => BEA = 900. AD là đờng cao => AD  BC => BDA = 900. Nh vậy E và D cùng nhìn AB dới một góc 900 => E và D cùng nằm trên đờng tròn đờng kính AB. Vậy bốn điểm A, E, D, B cùng nằm trên một đờng tròn. 3. Theo giả thiết tam giác ABC cân tại A có AD là đờng cao nên cũng là đờng trung tuyến. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(2)</span> C¸c d¹ng to¸n «n thi vµo líp 10 => D lµ trung ®iÓm cña BC. Theo trªn ta cã BEC = 900 .. 1 BC. 2 Vì O là tâm đờng tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE c©n t¹i O => E1 = A1 (1). 1 Theo trªn DE = BC => tam gi¸c DBE c©n t¹i D => E3 = B1 (2) 2 Mµ B1 = A1 ( v× cïng phô víi gãc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mµ E1 + E2 = BEA = 900 => E2 + E3 = 900 = OED => DE  OE t¹i E. Vậy DE là tiếp tuyến của đờng tròn (O) tại E. 5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. áp dụng định lí Pitago cho tam gi¸c OED vu«ng t¹i E ta cã ED2 = OD2 – OE2  ED2 = 52 – 32  ED = 4cm VËy tam gi¸c BEC vu«ng t¹i E cã ED lµ trung tuyÕn => DE =. Bài 3 Cho nửa đờng tròn đờng kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đờng tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lợt ở C và D. Các đờng thẳng AD và BC cắt nhau t¹i N. 1. Chøng minh AC + BD = CD. 2. Chøng minh COD = 900. 2 3. Chøng minh AC. BD = AB . 4 4. Chøng minh OC // BM 5. Chứng minh AB là tiếp tuyến của đờng tròn đờng kính CD. 6. Chøng minh MN  AB. 7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Lêi gi¶i: Theo tÝnh chÊt hai tiÕp tuyÕn c¾t nhau ta cã: CA = CM; DB = DM => AC + BD = CM + DM. Mµ CM + DM = CD => AC + BD = CD Theo tÝnh chÊt hai tiÕp tuyÕn c¾t nhau ta cã: OC lµ tia ph©n gi¸c cña gãc AOM; OD lµ tia ph©n gi¸c cña gãc BOM, mµ AOM vµ BOM lµ hai gãc kÒ bï => COD = 900. Theo trªn COD = 900 nªn tam gi¸c COD vu«ng t¹i O cã OM  CD ( OM lµ tiÕp tuyÕn ). áp dụng hệ thức giữa cạnh và đờng cao trong tam giác vuông ta có OM2 = CM. DM, 2 Mµ OM = R; CA = CM; DB = DM => AC. BD =R2 => AC. BD = AB . 4 Theo trªn COD = 900 nªn OC  OD .(1) Theo tÝnh chÊt hai tiÕp tuyÕn c¾t nhau ta cã: DB = DM; l¹i cã OM = OB =R => OD lµ trung trùc cña BM => BM  OD .(2). Tõ (1) Vµ (2) => OC // BM ( V× cïng vu«ng gãc víi OD). Gọi I là trung điểm của CD ta có I là tâm đờng tròn ngoại tiếp tam giác COD đờng kính CD có IO là b¸n kÝnh. Theo tÝnh chÊt tiÕp tuyÕn ta cã AC  AB; BD  AB => AC // BD => tø gi¸c ACDB lµ h×nh thang. L¹i có I là trung điểm của CD; O là trung điểm của AB => IO là đờng trung bình của hình thang ACDB => IO // AC , mà AC  AB => IO  AB tại O => AB là tiếp tuyến tại O của đờng tròn đờng kính CD CN AC CN CM 6. Theo trªn AC // BD => , mµ CA = CM; DB = DM nªn suy ra = = BN BD BN DM => MN // BD mµ BD  AB => MN  AB. 7. ( HD): Ta cã chu vi tø gi¸c ACDB = AB + AC + CD + BD mµ AC + BD = CD nªn suy ra chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ nhất khi CD nhỏ nhất , mà CD nhỏ nhất khi CD là khoảng cách giữ Ax và By tức là CD vuông góc với Ax và By. Khi đó CD // AB => M ph¶i lµ trung ®iÓm cña cung AB. Bài 4 Cho tam giác cân ABC (AB = AC), I là tâm đờng tròn nội tiếp, K là tâm đờng tròn bàng tiếp góc A , O lµ trung ®iÓm cña IK. T¬ng tù ta còng cã 1. Chứng minh B, C, I, K cùng nằm trên một đờng tròn. ICK = 900 nh vËy B vµ C 2. Chứng minh AC là tiếp tuyến của đờng tròn (O). cùng nằm trên đờng tròn đ3. Tính bán kính đờng tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm. ờng kính IK do đó B, C, I, K Lêi gi¶i: (HD) cùng nằm trên một đờng 1. Vì I là tâm đờng tròn nội tiếp, K là tâm đờng tròn bàng tiếp góc tròn. A nên BI và BK là hai tia phân giác của hai góc kề bù đỉnh B Do đó BI  BK hayIBK = 900 .. GV: Cao V¨n ThÕ. 2. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(3)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Ta cã C1 = C2 (1) ( v× CI lµ ph©n gi¸c cña gãc ACH. C2 + I1 = 900 (2) ( v× IHC = 900 ).. I1 =  ICO (3) ( v× tam gi¸c OIC c©n t¹i O) Từ (1), (2) , (3) => C1 + ICO = 900 hay AC  OC. Vậy AC là tiếp tuyến của đờng tròn (O). Tõ gi¶ thiÕt AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm. AH2 = AC2 – HC2 => AH = √ 202 − 122 = 16 ( cm) 2 2 CH2 = AH.OH => OH = CH =12 = 9 (cm) AH 16 OC = √ OH2 +HC2 =√ 92+ 122=√ 225 = 15 (cm) Bài 5 Cho đờng tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đờng thẳng d lấy điểm M bÊt k× ( M kh¸c A) kÎ c¸t tuyÕn MNP vµ gäi K lµ trung ®iÓm cña NP, kÎ tiÕp tuyÕn MB (B lµ tiÕp ®iÓm). KÎ AC  MB, BD  MA, gäi H lµ giao ®iÓm cña AC vµ BD, I lµ giao ®iÓm cña OM vµ AB. 1. Chøng minh tø gi¸c AMBO néi tiÕp. 2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đờng trßn . 3. Chøng minh OI.OM = R2; OI. IM = IA2. 4. Chøng minh OAHB lµ h×nh thoi. 5. Chøng minh ba ®iÓm O, H, M th¼ng hµng. 6. Tìm quỹ tích của điểm H khi M di chuyển trên đờng thẳng d Lêi gi¶i: (HS tù lµm). Vì K là trung điểm NP nên OK  NP ( quan hệ đờng kính. Vµ d©y cung) => OKM = 900. Theo tÝnh chÊt tiÕp tuyÕn ta cã OAM = 900; OBM = 900. nh vËy K, A, B cùng nhìn OM dới một góc 900 nên cùng nằm trên đờng tròn đờng kính OM. Vậy năm điểm O, K, A, M, B cùng nằm trên một đờng tròn. 3. Ta cã MA = MB ( t/c hai tiÕp tuyÕn c¾t nhau); OA = OB = R => OM lµ trung trùc cña AB => OM  AB t¹i I . Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vuông tại A có AI là đờng cao. áp dụng hệ thức giữa cạnh và đờng cao => OI.OM = OA2 hay OI.OM = R2; và OI. IM = IA2. 4. Ta cã OB  MB (tÝnh chÊt tiÕp tuyÕn) ; AC  MB (gt) => OB // AC hay OB // AH. OA  MA (tÝnh chÊt tiÕp tuyÕn) ; BD  MA (gt) => OA // BD hay OA // BH. => Tø gi¸c OAHB lµ h×nh b×nh hµnh; l¹i cã OA = OB (=R) => OAHB lµ h×nh thoi. 5. Theo trªn OAHB lµ h×nh thoi. => OH  AB; còng theo trªn OM  AB => O, H, M th¼ng hµng( V× qua O chỉ có một đờng thẳng vuông góc với AB). 6. (HD) Theo trên OAHB là hình thoi. => AH = AO = R. Vậy khi M di động trên d thì H cũng di động nhng luôn cách A cố định một khoảng bằng R. Do đó quỹ tích của điểm H khi M di chuyển trên đờng thẳng d là nửa đờng tròn tâm A bán kính AH = R Bài 6 Cho tam giác ABC vuông ở A, đờng cao AH. Vẽ đờng tròn tâm A bán kính AH. Gọi HD là đờng kính của đờng tròn (A; AH). Tiếp tuyến của đờng tròn tại D cắt CA ở E. 1. Chøng minh tam gi¸c BEC c©n. Lêi gi¶i: (HD) 2. Gäi I lµ h×nh chiÕu cña A trªn BE, Chøng minh r»ng AI = AH.  AHC = ADE (g.c.g) 3. Chứng minh rằng BE là tiếp tuyến của đờng tròn (A; AH). => ED = HC (1) vµ 4. Chøng minh BE = BH + DE. AE = AC (2).. GV: Cao V¨n ThÕ. 3. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(4)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Vì AB CE (gt), do đó AB vừa là đờng cao vừa là đờng trung tuyến cña BEC => BEC lµ tam gi¸c c©n. => B1 = B2. 2. Hai tam gi¸c vu«ng ABI vµ ABH cã c¹nh huyÒn AB chung, B1 = B2 =>  AHB = AIB => AI = AH. 3. AI = AH vµ BE  AI t¹i I => BE lµ tiÕp tuyÕn cña (A; AH) t¹i I. 4. DE = IE vµ BI = BH => BE = BI+IE = BH + ED Bài 7 Cho đờng tròn (O; R) đờng kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, tõ P kÎ tiÕp tuyÕn tiÕp xóc víi (O) t¹i M. 1. Chứng minh rằng tứ giác APMO nội tiếp đợc một đờng tròn. 2. Chøng minh BM // OP. 3. §êng th¼ng vu«ng gãc víi AB ë O c¾t tia BM t¹i N. Chøng minh tø gi¸c OBNP lµ h×nh b×nh hµnh. 4. BiÕt AN c¾t OP t¹i K, PM c¾t ON t¹i I; PN vµ OM kÐo dµi c¾t nhau t¹i J. Chøng minh I, J, K th¼ng hµng. Lêi gi¶i: (HS tù lµm). Ta cã  ABM néi tiÕp ch¾n cung AM;  AOM lµ gãc ë t©m AOM 2 ch¾n cung AM =>  ABM = (1) OP lµ tia ph©n gi¸c  AOM AOM 2 ( t/c hai tiÕp tuyÕn c¾t nhau ) =>  AOP = (2) Tõ (1) vµ (2) =>  ABM =  AOP (3) Mà  ABM và  AOP là hai góc đồng vị nên suy ra BM // OP. (4) XÐt hai tam gi¸c AOP vµ OBN ta cã : PAO=900 (v× PA lµ tiÕp tuyÕn ); NOB = 900 (gt NOAB). => PAO = NOB = 900; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) và (5) => OBNP là hình bình hành ( vì có hai cạnh đối song song và bằng nhau). Tø gi¸c OBNP lµ h×nh b×nh hµnh => PN // OB hay PJ // AB, mµ ON  AB => ON  PJ Ta còng cã PM  OJ ( PM lµ tiÕp tuyÕn ), mµ ON vµ PM c¾t nhau t¹i I nªn I lµ trùc t©m tam gi¸c POJ. (6) DÔ thÊy tø gi¸c AONP lµ h×nh ch÷ nhËt v× cã PAO = AON = ONP = 900 => K lµ trung ®iÓm của PO ( t/c đờng chéo hình chữ nhật). (6) AONP lµ h×nh ch÷ nhËt => APO =  NOP ( so le) (7) Theo t/c hai tiÕp tuyÕn c¾t nhau Ta cã PO lµ tia ph©n gi¸c APM => APO = MPO (8). Từ (7) và (8) => IPO cân tại I có IK là trung tuyến đông thời là đờng cao => IK  PO. (9) Tõ (6) vµ (9) => I, J, K th¼ng hµng. Bài 8 Cho nửa đờng tròn tâm O đờng kính AB và điểm M bất kì trên nửa đờng tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đờng tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K. 1) Chøng minh r»ng: EFMK lµ tø gi¸c néi tiÕp. 2) Chøng minh r»ng: AI2 = IM . IB. 3) Chøng minh BAF lµ tam gi¸c c©n. 4) Chøng minh r»ng : Tø gi¸c AKFH lµ h×nh thoi. 5) Xác định vị trí M để tứ giác AKFI nội tiếp đợc một đờng tròn. Lêi gi¶i: 1. Ta có : AMB = 900 ( nội tiếp chắn nửa đờng tròn ) => KMF = 900 (v× lµ hai gãc kÒ bï). AEB = 900 ( nội tiếp chắn nửa đờng tròn ) => KEF = 900 (v× lµ hai gãc kÒ bï). => KMF + KEF = 1800 . Mà KMF và KEF là hai góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp.. GV: Cao V¨n ThÕ. 4. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(5)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Ta cã IAB = 900 ( v× AI lµ tiÕp tuyÕn ) => AIB vu«ng t¹i A cã AM  IB ( theo trªn). áp dụng hệ thức giữa cạnh và đờng cao => AI2 = IM . IB. Theo gi¶ thiÕt AE lµ tia ph©n gi¸c gãc IAM => IAE = MAE => AE = ME (lÝ do ……) => ABE =MBE ( hai gãc néi tiÕp ch¾n hai cung b»ng nhau) => BE lµ tia ph©n gi¸c gãc ABF. (1) Theo trên ta có AEB = 900 => BE  AF hay BE là đờng cao của tam giác ABF (2). Tõ (1) vµ (2) => BAF lµ tam gi¸c c©n. t¹i B . BAF là tam giác cân. tại B có BE là đờng cao nên đồng thời là đơng trung tuyến => E là trung điểm cña AF. (3) Tõ BE  AF => AF  HK (4), theo trªn AE lµ tia ph©n gi¸c gãc IAM hay AE lµ tia ph©n gi¸c HAK (5) Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đờng cao nên đồng thời là đơng trung tuyến => E là trung ®iÓm cña HK. (6). Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đờng chéo vuông góc với nhau tại trung điểm của mỗi đờng). (HD). Theo trªn AKFH lµ h×nh thoi => HA // FH hay IA // FK => tø gi¸c AKFI lµ h×nh thang. Để tứ giác AKFI nội tiếp đợc một đờng tròn thì AKFI phải là hình thang cân. AKFI lµ h×nh thang c©n khi M lµ trung ®iÓm cña cung AB. ThËt vËy: M lµ trung ®iÓm cña cung AB => ABM = MAI = 450 (t/c gãc néi tiÕp ). (7) Tam gi¸c ABI vu«ng t¹i A cã ABI = 450 => AIB = 450 .(8) Từ (7) và (8) => IAK = AIF = 450 => AKFI là hình thang cân (hình thang có hai góc đáy bằng nhau). Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp đợc một đờng tròn. Bài 9 Cho nửa đờng tròn (O; R) đờng kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đờng trßn. C¸c tia AC vµ AD c¾t Bx lÇn lît ë E, F (F ë gi÷a B vµ E). 1. Chứng minh AC. AE không đổi. 2. Chøng minh  ABD =  DFB. 3. Chøng minh r»ng CEFD lµ tø gi¸c néi tiÕp. Lêi gi¶i: C thuộc nửa đờng tròn nên ACB = 900 ( nội tiếp chắn nửa đờng tròn ) => BC  AE. ABE = 900 ( Bx là tiếp tuyến ) => tam giác ABE vuông tại B có BC là đờng cao => AC. AE = AB2 (hệ thức giữa cạnh và đờng cao ), mà AB là đờng kính nên AB = 2R không đổi do đó AC. AE không đổi.  ADB có ADB = 900 ( nội tiếp chắn nửa đờng tròn ). => ABD + BAD = 900 (v× tæng ba gãc cña mét tam gi¸c b»ng 1800)(1)  ABF cã ABF = 900 ( BF lµ tiÕp tuyÕn ). => AFB + BAF = 900 (v× tæng ba gãc cña mét tam gi¸c b»ng 1800) (2) Tõ (1) vµ (2) => ABD = DFB ( cïng phô víi BAD). Tø gi¸c ACDB néi tiÕp (O) => ABD + ACD = 1800 . ECD + ACD = 1800 ( V× lµ hai gãc kÒ bï) => ECD = ABD ( cïng bï víi ACD). Theo trªn ABD = DFB => ECD = DFB. Mµ EFD + DFB = 1800 ( V× lµ hai gãc kÒ bï) nªn suy ra ECD + EFD = 1800, mặt khác ECD và EFD là hai góc đối của tứ giác CDFE do đó tứ giác CEFD lµ tø gi¸c néi tiÕp. Bài 10 Cho đờng tròn tâm O đờng kính AB và điểm M bất kì trên nửa đờng tròn sao cho AM < MB. Gọi M’ là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M’A. Gọi P là chân đơng vuông góc từ S đến AB. 1. Chứng minh bốn điểm A, M, S, P cùng nằm trên một đờng tròn 2. Gäi S’ lµ giao ®iÓm cña MA vµ SP. Chøng minh r»ng tam gi¸c PS’M c©n. 3. Chứng minh PM là tiếp tuyến của đờng tròn . Lêi gi¶i: 1. Ta cã SP  AB (gt) => SPA = 900 ; AMB = 900 ( néi tiÕp ch¾n nửa đờng tròn ) => AMS = 900 . Nh vậy P và M cùng nhìn AS dới một góc bằng 900 nên cùng nằm trên đờng tròn đờng kính AS. Vậy bốn điểm A, M, S, P cùng nằm trên một đờng tròn. 2. Vì M’đối xứng M qua AB mà M nằm trên đờng tròn nên M’ cũng nằm trên đờng tròn => hai cung AM và AM’ có số đo bằng nhau. GV: Cao V¨n ThÕ. 5. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(6)</span> C¸c d¹ng to¸n «n thi vµo líp 10 => AMM’ = AM’M ( Hai gãc néi tiÕp ch¾n hai cung b»ng nhau) (1) Cũng vì M’đối xứng M qua AB nên MM’  AB tại H => MM’// SS’ ( cùng vuông góc với AB) => AMM’ = AS’S; AM’M = ASS’ (v× so le trong) (2). => Tõ (1) vµ (2) => AS’S = ASS’. Theo trên bốn điểm A, M, S, P cùng nằm trên một đờng tròn => ASP=AMP (nội tiếp cùng chắn AP ) => AS’P = AMP => tam gi¸c PMS’ c©n t¹i P. 3. Tam gi¸c SPB vu«ng t¹i P; tam gi¸c SMS’ vu«ng t¹i M => B1 = S’1 (cïng phô víi S). (3) Tam gi¸c PMS’ c©n t¹i P => S’1 = M1 (4) Tam gi¸c OBM c©n t¹i O ( v× cã OM = OB =R) => B1 = M3 (5). Tõ (3), (4) vµ (5) => M1 = M3 => M1 + M2 = M3 + M2 mµ M3 + M2 = AMB = 900 nªn suy ra M1 + M2 = PMO = 900 => PM  OM tại M => PM là tiếp tuyến của đờng tròn tại M Bài 11. Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) tại các điểm D, E, F . BF c¾t (O) t¹i I , DI c¾t BC t¹i M. Chøng minh : 1. Tam gi¸c DEF cã ba gãc nhän. BD BM 2. DF // BC. 3. Tø gi¸c BDFC néi tiÕp. 4. = CB CF Lêi gi¶i: 1. (HD) Theo t/c hai tiÕp tuyÕn c¾t nhau ta cã AD = AF => tam gi¸c ADF c©n t¹i A => ADF = AFD < 900 => s® cung DF < 1800 => DEF < 900 ( v× gãc DEF néi tiÕp ch¾n cung DE). Chøng minh t¬ng tù ta cã DFE < 900; EDF < 900. Nh vËy tam gi¸c DEF cã ba gãc nhän. AD AF  2. Ta cã AB = AC (gt); AD = AF (theo trªn) => AB AC => DF // BC. 3. DF // BC => BDFC lµ h×nh thang l¹i cã  B = C (v× tam gi¸c ABC c©n) => BDFC là hình thang cân do đó BDFC nội tiếp đợc một đờng tròn . 4. Xét hai tam giác BDM và CBF Ta có  DBM = BCF ( hai góc đáy của tam giác cân). BDM = BFD (néi tiÕp cïng ch¾n cung DI);  CBF = BFD (v× so le) => BDM = CBF . BD BM => BDM CBF => = CB CF Bài 12 Cho đờng tròn (O) bán kính R có hai đờng kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lÊy ®iÓm M (M kh¸c O). CM c¾t (O) t¹i N. §êng th¼ng vu«ng gãc víi AB t¹i M c¾t tiÕp tuyÕn tại N của đờng tròn ở P. Chứng minh : 1. Tø gi¸c OMNP néi tiÕp. 2. Tø gi¸c CMPO lµ h×nh b×nh hµnh. 3. CM. CN kh«ng phô thuéc vµo vÞ trÝ cña ®iÓm M. 4. Khi M di chuyÓn trªn ®o¹n th¼ng AB th× P ch¹y trªn ®o¹n th¼ng cố định nào. Lêi gi¶i: 1. Ta cã OMP = 900 ( v× PM  AB ); ONP = 900 (v× NP lµ tiÕp tuyÕn ). Nh vËy M vµ N cïng nh×n OP díi mét gãc b»ng 900 => M vµ N cïng n»m trên đờng tròn đờng kính OP => Tứ giác OMNP nội tiếp. 2. Tø gi¸c OMNP néi tiÕp => OPM =  ONM (néi tiÕp ch¾n cung OM) Tam gi¸c ONC c©n t¹i O v× cã ON = OC = R => ONC = OCN. => OPM = OCM. XÐt hai tam gi¸c OMC vµ MOP ta cã MOC = OMP = 900; OPM = OCM => CMO = POM l¹i cã MO lµ c¹nh chung => OMC = MOP => OC = MP. (1) Theo gi¶ thiÕt Ta cã CD  AB; PM  AB => CO//PM (2). Tõ (1) vµ (2) => Tø gi¸c CMPO lµ h×nh b×nh hµnh. 3. Xét hai tam giác OMC và NDC ta có MOC = 900 ( gt CD  AB); DNC = 900 (nội tiếp chắn nửa đờng tròn ) => MOC =DNC = 900 lại có C là góc chung => OMC NDC CM CO  => CD CN => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2 không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.. GV: Cao V¨n ThÕ. 6. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(7)</span> C¸c d¹ng to¸n «n thi vµo líp 10 4. ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy trên đờng thẳng cố định vuông góc víi CD t¹i D. V× M chØ ch¹y trªn ®o¹n th¼ng AB nªn P chØ ch¹y trªn do¹n th¼ng A’ B’ song song vµ b»ng AB. Bài 13 Cho tam giác ABC vuông ở A (AB > AC), đờng cao AH. Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đờng tròn đờng kính BH cắt AB tại E, Nửa đờng tròn đờng kính HC cắt AC tại F. 1. Chøng minh AFHE lµ h×nh ch÷ nhËt. 2. BEFC lµ tø gi¸c néi tiÕp. 3. AE. AB = AF. AC. 4. Chứng minh EF là tiếp tuyến chung của hai nửa đờng tròn . Lêi gi¶i: 1. Ta có : BEH = 900 ( nội tiếp chắn nửc đờng tròn ) => AEH = 900 (v× lµ hai gãc kÒ bï). (1) CFH = 900 ( nội tiếp chắn nửc đờng tròn ) => AFH = 900 (v× lµ hai gãc kÒ bï).(2) EAF = 900 ( V× tam gi¸c ABC vu«ng t¹i A) (3) Tõ (1), (2), (3) => tø gi¸c AFHE lµ h×nh ch÷ nhËt ( v× cã ba gãc vu«ng). 2. Tứ giác AFHE là hình chữ nhật nên nội tiếp đợc một đờng tròn =>F1=H1 (nội tiếp chắn cung AE) . Theo giả thiết AH BC nên AH là tiếp tuyến chung của hai nửa đờng tròn (O1) và (O2) => B1 = H1 (hai gãc néi tiÕp cïng ch¾n cung HE) => B1= F1 => EBC+EFC = AFE + EFC mµ AFE + EFC = 1800 (vì là hai góc kề bù) => EBC+EFC = 1800 mặt khác EBC và EFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp. 3. XÐt hai tam gi¸c AEF vµ ACB ta cã A = 900 lµ gãc chung; AFE = ABC ( theo Chøng AE AF  minh trªn) => AEF ACB => AC AB => AE. AB = AF. AC. * HD c¸ch 2: Tam gi¸c AHB vu«ng t¹i H cã HE  AB => AH2 = AE.AB (*) Tam gi¸c AHC vu«ng t¹i H cã HF  AC => AH2 = AF.AC (**) Tõ (*) vµ (**) => AE. AB = AF. AC 4. Tø gi¸c AFHE lµ h×nh ch÷ nhËt => IE = EH => IEH c©n t¹i I => E1 = H1 . O1EH c©n t¹i O1 (v× cã O1E vµO1H cïng lµ b¸n kÝnh) => E2 = H2. => E1 + E2 = H1 + H2 mµ H1 + H2 = AHB = 900 => E1 + E2 = O1EF = 900 => O1E EF . Chứng minh tơng tự ta cũng có O2F  EF. Vậy EF là tiếp tuyến chung của hai nửa đờng tròn . Bµi 14 Cho ®iÓm C thuéc ®o¹n th¼ng AB sao cho AC = 10 Cm, CB = 40 Cm. VÏ vÒ mét phÝa cña AB c¸c nửa đờng tròn có đờng kính theo thứ tự là AB, AC, CB và có tâm theo thứ tự là O, I, K. Đờng vuông góc với AB tại C cắt nửa đờng tròn (O) tại E. Gọi M. N theo thứ tự là giao điểm của EA, EB với các nửa đờng tròn (I), (K). 1. Chøng minh EC = MN. 2. Chứng minh MN là tiếp tuyến chung của các nửa đờng trßn (I), (K). 3. TÝnh MN. 4. Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn Lêi gi¶i: 1. Ta có: BNC= 900( nội tiếp chắn nửa đờng tròn tâm K) => ENC = 900 (v× lµ hai gãc kÒ bï). (1) AMC = 900 ( nội tiếp chắn nửc đờng tròn tâm I) => EMC = 900 (vì là hai góc kề bù).(2) AEB = 900 (nội tiếp chắn nửa đờng tròn tâm O) hay MEN = 900 (3) Từ (1), (2), (3) => tứ giác CMEN là hình chữ nhật => EC = MN (tính chất đờng chéo hình chữ nhật ) 2. Theo giả thiết EC AB tại C nên EC là tiếp tuyến chung của hai nửa đờng tròn (I) và (K) => B1 = C1 (hai gãc néi tiÕp cïng ch¾n cung CN). Tø gi¸c CMEN lµ h×nh ch÷ nhËt nªn => C1= N3 => B1 = N3.(4) L¹i cã KB = KN (cïng lµ b¸n kÝnh) => tam gi¸c KBN c©n t¹i K => B1 = N1 (5) Tõ (4) vµ (5) => N1 = N3 mµ N1 + N2 = CNB = 900 => N3 + N2 = MNK = 900 hay MN  KN t¹i N => MN lµ tiÕp tuyÕn cña (K) t¹i N. Chøng minh t¬ng tù ta còng cã MN lµ tiÕp tuyÕn cña (I) t¹i M, Vậy MN là tiếp tuyến chung của các nửa đờng tròn (I), (K). 3. Ta có AEB = 900 (nội tiếp chắn nửc đờng tròn tâm O) => AEB vuông tại A có EC  AB (gt) 2 => EC = AC. BC  EC2 = 10.40 = 400 => EC = 20 cm. Theo trªn EC = MN => MN = 20 cm.. GV: Cao V¨n ThÕ. 7. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(8)</span> C¸c d¹ng to¸n «n thi vµo líp 10 4. Theo gi¶ thiÕt AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta cã S(o) =  .OA2 =  252 = 625  ; S(I) =  . IA2 =  .52 = 25  ; S(k) =  .KB2 =  . 202 = 400  . 1 Ta có diện tích phần hình đợc giới hạn bởi ba nửa đờng tròn là S = 2 ( S(o) - S(I) - S(k)) 1 1 S = 2 ( 625  - 25  - 400  ) = 2 .200  = 100  314 (cm2) Bài 15 Cho tam giác ABC vuông ở A. Trên cạnh AC lấy điểm M, dựng đờng tròn (O) có đờng kính MC. đờng thẳng BM cắt đờng tròn (O) tại D. đờng thẳng AD cắt đờng tròn (O) tại S. 1. Chøng minh ABCD lµ tø gi¸c néi tiÕp . 2. Chøng minh CA lµ tia ph©n gi¸c cña gãc SCB. 3. Gọi E là giao điểm của BC với đờng tròn (O). Chứng minh rằng các đờng thẳng BA, EM, CD đồng quy. 4. Chøng minh DM lµ tia ph©n gi¸c cña gãc ADE. 5. Chứng minh điểm M là tâm đờng tròn nội tiếp tam giác ADE. Lêi gi¶i:. 1. Ta có CAB = 900 ( vì tam giác ABC vuông tại A); MDC = 900 ( góc nội tiếp chắn nửa đờng tròn ) => CDB = 900 nh vậy D và A cùng nhìn BC dới một góc bằng 900 nên A và D cùng nằm trên đờng tròn đờng kính BC => ABCD là tứ giác nội tiếp. 2. ABCD lµ tø gi¸c néi tiÕp => D1= C3( néi tiÕp cïng ch¾n cung AB).   D1= C3 => SM EM => C2 = C3 (hai góc nội tiếp đờng tròn (O) chắn hai cung bằng nhau) => CA lµ tia ph©n gi¸c cña gãc SCB. 3. Xét CMB Ta có BACM; CD  BM; ME  BC nh vậy BA, EM, CD là ba đờng cao của tam giác CMB nên BA, EM, CD đồng quy.   4. Theo trªn Ta cã SM EM => D1= D2 => DM lµ tia ph©n gi¸c cña gãc ADE.(1) 5. Ta có MEC = 900 (nội tiếp chắn nửa đờng tròn (O)) => MEB = 900. Tứ giác AMEB có MAB = 900 ; MEB = 900 => MAB + MEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đờng tròn => A2 = B2 . Tø gi¸c ABCD lµ tø gi¸c néi tiÕp => A1= B2( néi tiÕp cïng ch¾n cung CD) => A1= A2 => AM lµ tia ph©n gi¸c cña gãc DAE (2) Từ (1) và (2) Ta có M là tâm đờng tròn nội tiếp tam giác ADE TH2 (H×nh b) C©u 2 : ABC = CME (cïng phô ACB); ABC = CDS (cïng bï ADC) => CME = CDS     => CE CS  SM EM => SCM = ECM => CA lµ tia ph©n gi¸c cña gãc SCB. Bài 16 Cho tam giác ABC vuông ở A.và một điểm D nằm giữa A và B. Đờng tròn đờng kính BD cắt BC tại E. Các đờng thẳng CD, AE lần lợt cắt đờng tròn tại F, G. Chøng minh : 4. Các đờng thẳng AC, 1. Tam giác ABC đồng dạng với tam giác EBD. DE, FB đồng quy. 2. Tø gi¸c ADEC vµ AFBC néi tiÕp . Lêi gi¶i: 3. AC // FG.. GV: Cao V¨n ThÕ. 8. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(9)</span> C¸c d¹ng to¸n «n thi vµo líp 10 1. XÐt hai tam gi¸c ABC vµ EDB Ta cã BAC = 900 ( v× tam gi¸c ABC vuông tại A); DEB = 900 ( góc nội tiếp chắn nửa đờng tròn ) => DEB = BAC = 900 ; l¹i cã ABC lµ gãc chung => DEB   CAB . 2. Theo trªn DEB = 900 => DEC = 900 (v× hai gãc kÒ bï); BAC = 900 ( v× ABC vu«ng t¹i A) hay DAC = 900 => DEC + DAC = 1800 mµ đây là hai góc đối nên ADEC là tứ giác nội tiếp .. * BAC = 900 ( vì tam giác ABC vuông tại A); DFB = 900 ( góc nội tiếp chắn nửa đờng tròn ) hay BFC = 900 nh vậy F và A cùng nhìn BC dới một góc bằng 900 nên A và F cùng nằm trên đờng tròn đờng kÝnh BC => AFBC lµ tø gi¸c néi tiÕp. 3. Theo trªn ADEC lµ tø gi¸c néi tiÕp => E1 = C1 l¹i cã E1 = F1 => F1 = C1 mµ ®©y lµ hai gãc so le trong nªn suy ra AC // FG. 4. (HD) Dễ thấy CA, DE, BF là ba đờng cao của tam giác DBC nên CA, DE, BF đồng quy tại S. Bài 17. Cho tam giác đều ABC có đờng cao là AH. Trên cạnh BC lấy điểm M bất kì ( M không trùng B. C, H ) ; tõ M kÎ MP, MQ vu«ng gãc víi c¸c c¹nh AB. AC. 1. Chứng minh APMQ là tứ giác nội tiếp và hãy xác định tâm O của đờng tròn ngoại tiếp tứ giác đó. 2. Chøng minh r»ng MP + MQ = AH. 3. Chøng minh OH  PQ. Lêi gi¶i: 1. Ta cã MP  AB (gt) => APM = 900; MQ  AC (gt) => AQM = 900 nh vËy P vµ Q cïng nh×n BC díi mét gãc bằng 900 nên P và Q cùng nằm trên đờng tròn đờng kính AM => APMQ lµ tø gi¸c néi tiÕp. * Vì AM là đờng kính của đờng tròn ngoại tiếp tứ giác APMQ tâm O của đờng tròn ngoại tiếp tứ giác APMQ là trung ®iÓm cña AM. 1 2. Tam giác ABC có AH là đờng cao => SABC = 2 BC.AH. 1 Tam giác ABM có MP là đờng cao => SABM = 2 AB.MP 1 Tam giác ACM có MQ là đờng cao => SACM = 2 AC.MQ 1 1 1 Ta cã SABM + SACM = SABC => 2 AB.MP + 2 AC.MQ = 2 BC.AH => AB.MP + AC.MQ = BC.AH Mà AB = BC = CA (vì tam giác ABC đều) => MP + MQ = AH.   3. Tam giác ABC có AH là đờng cao nên cũng là đờng phân giác => HAP = HAQ => HP HQ ( tính chÊt gãc néi tiÕp ) => HOP = HOQ (t/c gãc ë t©m) => OH lµ tia ph©n gi¸c gãc POQ. Mµ tam gi¸c POQ cân tại O ( vì OP và OQ cùng là bán kính) nên suy ra OH cũng là đờng cao => OH  PQ Bài 18 Cho đờng tròn (O) đờng kính AB. Trên đoạn thẳng OB lấy điểm H bất kì ( H không trùng O, B) ; trên đờng thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đờng tròn ; MA và MB thứ tự cắt đờng trßn (O) t¹i C vµ D. Gäi I lµ giao ®iÓm cña AD vµ BC. 1. Chøng minh MCID lµ tø gi¸c néi tiÕp . 2. Chứng minh các đờng thẳng AD, BC, MH đồng quy tại I. 3. Gọi K là tâm đờng tròn ngoại tiếp tứ giác MCID, Chứng minh KCOH là tứ giác nội tiếp . Lêi gi¶i: => MCI = 900 (v× lµ hai gãc kÒ 0 bï). 1. Ta có : ACB = 90 ( nội tiếp chắn nửc đờng tròn ). GV: Cao V¨n ThÕ. 9. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(10)</span> C¸c d¹ng to¸n «n thi vµo líp 10 ADB = 900 ( nội tiếp chắn nửc đờng tròn ) => MDI = 900 (v× lµ hai gãc kÒ bï). => MCI + MDI = 1800 mà đây là hai góc đối của tứ giác MCID nên MCID lµ tø gi¸c néi tiÕp. 2. Theo trên Ta có BC  MA; AD  MB nên BC và AD là hai đờng cao của tam giác MAB mà BC và AD cắt nhau tại I nên I là trực tâm của tam giác MAB. Theo giả thiết thì MH  AB nên MH cũng là đờng cao của tam giác MAB => AD, BC, MH đồng quy tại I. 3. OAC c©n t¹i O ( v× OA vµ OC lµ b¸n kÝnh) => A1 = C4 KCM c©n t¹i K ( v× KC vµ KM lµ b¸n kÝnh) => M1 = C1 .. Mµ A1 + M1 = 900 ( do tam gi¸c AHM vu«ng t¹i H) => C1 + C4 = 900 => C3 + C2 = 900 ( v× gãc ACM lµ gãc bÑt) hay OCK = 900 . XÐt tø gi¸c KCOH Ta cã OHK = 900; OCK = 900 => OHK + OCK = 1800 mµ OHK vµ OCK lµ hai góc đối nên KCOH là tứ giác nội tiếp. Bài 19. Cho đờng tròn (O) đờng kính AC. Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ). Gọi M là trung ®iÓm cña ®o¹n AB. Qua M kÎ d©y cung DE vu«ng gãc víi AB. Nèi CD, KÎ BI vu«ng gãc víi CD. 1. Chøng minh tø gi¸c BMDI néi tiÕp . 2. Chøng minh tø gi¸c ADBE lµ h×nh thoi. 3. Chøng minh BI // AD. 4. Chøng minh I, B, E th¼ng hµng. 5. Chøng minh MI lµ tiÕp tuyÕn cña (O’). Lêi gi¶i: 1. BIC = 900 ( nội tiếp chắn nửa đờng tròn ) => BID = 900 (vì lµ hai gãc kÒ bï); DE  AB t¹i M => BMD = 900 => BID + BMD = 1800 mà đây là hai góc đối của tứ giác MBID nªn MBID lµ tø gi¸c néi tiÕp. 2. Theo gi¶ thiÕt M lµ trung ®iÓm cña AB; DE  AB t¹i M nªn M cũng là trung điểm của DE (quan hệ đờng kính và dây cung). => Tứ giác ADBE là hình thoi vì có hai đờng chéo vuông góc với nhau tại trung điểm của mỗi đờng . 3. ADC = 900 ( nội tiếp chắn nửa đờng tròn ) => AD  DC; theo trên BI  DC => BI // AD. (1) 4. Theo gi¶ thiÕt ADBE lµ h×nh thoi => EB // AD (2). Từ (1) và (2) => I, B, E thẳng hàng (vì qua B chỉ có một đờng thẳng song song với AD mà thôi.) 5. I, B, E th¼ng hµng nªn tam gi¸c IDE vu«ng t¹i I => IM lµ trung tuyÕn ( v× M lµ trung ®iÓm cña DE) =>MI = ME => MIE c©n t¹i M => I1 = E1 ; O’IC c©n t¹i O’ ( v× O’C vµ O’I cïng lµ b¸n kÝnh ) => I3 = C1 mµ C1 = E1 ( Cïng phô víi gãc EDC ) => I1 = I3 => I1 + I2 = I3 + I2 . Mµ I3 + I2 = BIC = 900 => I1 + I2 = 900 = MIO’ hay MI  O’I t¹i I => MI lµ tiÕp tuyÕn cña (O’). Bài 20. Cho đờng tròn (O; R) và (O’; R’) có R > R’ tiếp xúc ngoài nhau tại C. Gọi AC và BC là hai đờng kÝnh ®i qua ®iÓm C cña (O) vµ (O’). DE lµ d©y cung cña (O) vu«ng gãc víi AB t¹i trung ®iÓm M cña AB. Gäi giao ®iÓm thø hai cña DC víi (O’) lµ F, BD c¾t (O’) t¹i G. Chøng minh r»ng: 1. Tø gi¸c MDGC néi tiÕp . 2. Bốn điểm M, D, B, F cùng nằm trên một đờng tròn 3. Tø gi¸c ADBE lµ h×nh thoi. 4. B, E, F th¼ng hµng 5. DF, EG, AB đồng quy. 6. MF = 1/2 DE. 7. MF lµ tiÕp tuyÕn cña (O’). Lêi gi¶i: 1. BGC = 900 ( nội tiếp chắn nửa đờng tròn ) => CGD = 900 (v× lµ hai gãc kÒ bï). GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(11)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Theo gi¶ thiÕt DE  AB t¹i M => CMD = 900 => CGD + CMD = 1800 mà đây là hai góc đối của tứ giác MCGD nên MCGD là tứ giác nội tiếp 2. BFC = 900 ( nội tiếp chắn nửa đờng tròn ) => BFD = 900; BMD = 900 (vì DE  AB tại M) nh vậy F và M cùng nhìn BD dới một góc bằng 900 nên F và M cùng nằm trên đờng tròn đờng kính BD => M, D, B, F cùng nằm trên một đờng tròn . 3. Theo gi¶ thiÕt M lµ trung ®iÓm cña AB; DE  AB t¹i M nªn M còng lµ trung ®iÓm cña DE (quan hệ đờng kính và dây cung) => Tứ giác ADBE là hình thoi vì có hai đờng chéo vuông góc với nhau tại trung điểm của mỗi đờng . 4. ADC = 900 ( nội tiếp chắn nửa đờng tròn ) => AD  DF ; theo trên tứ giác ADBE là hình tho => BE // AD mµ AD  DF nªn suy ra BE  DF . Theo trên BFC = 900 ( nội tiếp chắn nửa đờng tròn ) => BF  DF mà qua B chỉ có một đờng thẳng vu«ng gãc víi DF do ®o B, E, F th¼ng hµng. 5. Theo trªn DF  BE; BM  DE mµ DF vµ BM c¾t nhau t¹i C nªn C lµ trùc t©m cña tam gi¸c BDE => EC cũng là đờng cao => ECBD; theo trên CGBD => E,C,G thẳng hàng. Vậy DF, EG, AB đồng quy 6. Theo trªn DF  BE => DEF vu«ng t¹i F cã FM lµ trung tuyÕn (v× M lµ trung ®iÓm cña DE) suy ra MF = 1/2 DE ( v× trong tam gi¸c vu«ng trung tuyÕn thuéc c¹nh huyÒn b»ng nöa c¹nh huyÒn). 7. (HD) theo trªn MF = 1/2 DE => MD = MF => MDF c©n t¹i M => D1 = F1 O’BF c©n t¹i O’ ( v× O’B vµ O’F cïng lµ b¸n kÝnh ) => F3 = B1 mµ B1 = D1 (Cïng phô víi DEB ) => F1 = F3 => F1 + F2 = F3 + F2 . Mµ F3 + F2 = BFC = 900 => F1 + F2 = 900 = MFO’ hay MF  O’F t¹i F => MF lµ tiÕp tuyÕn cña (O’). Bài 21. Cho đờng tròn (O) đờng kính AB. Gọi I là trung điểm của OA . Vẽ đờng tron tâm I đi qua A, trên (I) lÊy P bÊt k×, AP c¾t (O) t¹i Q. 1. Chứng minh rằng các đờng tròn (I) và (O) tiếp xúc nhau tại A. 2. Chøng minh IP // OQ. 3. Chøng minh r»ng AP = PQ. 4. Xác định vị trí của P để tam giác AQB có diện tích lớn nhất. Lêi gi¶i: 1. Ta có OI = OA – IA mà OA và IA lần lợt là các bán kính của đờng tròn (O) và đờng tròn (I) . Vậy đờng tròn (O) và đờng tròn (I) tiếp xúc nhau t¹i A . 2. OAQ c©n t¹i O ( v× OA vµ OQ cïng lµ b¸n kÝnh ) => A1 = Q1 IAP c©n t¹i I ( v× IA vµ IP cïng lµ b¸n kÝnh ) => A1 = P1 => P1 = Q1 mà đây là hai góc đồng vị nên suy ra IP // OQ.. 3. APO = 900 (nội tiếp chắn nửa đờng tròn ) => OP  AQ => OP là đờng cao của OAQ mà OAQ cân tại O nên OP là đờng trung tuyến => AP = PQ. 1 4. (HD) Kẻ QH  AB ta có SAQB = 2 AB.QH. mà AB là đờng kính không đổi nên SAQB lớn nhất khi QH lớn nhÊt. QH lín nhÊt khi Q trïng víi trung ®iÓm cña cung AB. §Ó Q trïng víi trung ®iÓm cña cung AB th× P ph¶i lµ trung ®iÓm cña cung AO. ThËt vËy P lµ trung ®iÓm cña cung AO => PI  AO mµ theo trªn PI // QO => QO  AB t¹i O => Q lµ trung điểm của cung AB và khi đó H trung với O; OQ lớn nhất nên QH lớn nhất. Bài 22. Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đờng thẳng vuông góc với DE, đờng thẳng này cắt các đờng thẳng DE và DC theo thứ tự ở H và K. 1. Chøng minh BHCD lµ tø gi¸c néi tiÕp . 2. TÝnh gãc CHK. 3. Chøng minh KC. KD = KH.KB 4. Khi E di chuyển trên cạnh BC thì H di chuyển trên đờng nào? Lêi gi¶i: 1. Theo gi¶ thiÕt ABCD lµ h×nh vu«ng nªn BCD = 900; BH  DE t¹i H nªn BHD = 900 => nh vËy H vµ C cïng nh×n BD díi mét gãc bằng 900 nên H và C cùng nằm trên đờng tròn đờng kính BD => BHCD lµ tø gi¸c néi tiÕp. 2. BHCD lµ tø gi¸c néi tiÕp => BDC + BHC = 1800. (1) BHK lµ gãc bÑt nªn KHC + BHC = 1800 (2).. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(12)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Tõ (1) vµ (2) => CHK = BDC mµ BDC = 450 (v× ABCD lµ h×nh vu«ng) => CHK = 450 . 3. XÐt KHC vµ KDB ta cã CHK = BDC = 450 ; K lµ gãc chung KC KH  => KHC  KDB => KB KD => KC. KD = KH.KB. 4. (HD) Ta luôn có BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E  B thì H  B; E  C thì H  C). Bµi 23. Cho tam gi¸c ABC vu«ng ë A. Dùng ë miÒn ngoµi tam gi¸c ABC c¸c h×nh vu«ng ABHK, ACDE. 1. Chøng minh ba ®iÓm H, A, D th¼ng hµng. 2. Đờng thẳng HD cắt đờng tròn ngoại tiếp tam giác ABC t¹i F, chøng minh FBC lµ tam gi¸c vu«ng c©n. 3. Cho biÕt ABC > 450 ; gäi M lµ giao ®iÓm cña BF vµ ED, Chøng minh 5 ®iÓm b, k, e, m, c cïng n»m trªn mét đờng tròn. 4. Chứng minh MC là tiếp tuyến của đờng tròn ngoại tiếp tam gi¸c ABC. Lêi gi¶i: 1. Theo gi¶ thiÕt ABHK lµ h×nh vu«ng => BAH = 450 Tø gi¸c AEDC lµ h×nh vu«ng => CAD = 450; tam gi¸c ABC vu«ng ë A => BAC = 900 => BAH + BAC + CAD = 450 + 900 + 450 = 1800 => ba ®iÓm H, A, D th¼ng hµng. 2. Ta có BFC = 900 (nội tiếp chắn nửa đờng tròn ) nên tam giác BFC vuông tại F. (1). FBC = FAC ( néi tiÕp cïng ch¾n cung FC) mµ theo trªn CAD = 450 hay FAC = 450 (2). Tõ (1) vµ (2) suy ra FBC lµ tam gi¸c vu«ng c©n t¹i F. 3. Theo trªn BFC = 900 => CFM = 900 ( v× lµ hai gãc kÒ bï); CDM = 900 (t/c h×nh vu«ng). => CFM + CDM = 1800 mà đây là hai góc đối nên tứ giác CDMF nội tiếp một đờng tròn suy ra CDF = CMF , mµ CDF = 450 (v× AEDC lµ h×nh vu«ng) => CMF = 450 hay CMB = 450. Ta còng cã CEB = 450 (v× AEDC lµ h×nh vu«ng); BKC = 450 (v× ABHK lµ h×nh vu«ng). Nh vËy K, E, M cïng nh×n BC díi mét gãc b»ng 450 nªn cïng n»m trªn cung chøa gãc 450 dùng trªn BC => 5 điểm b, k, e, m, c cùng nằm trên một đờng tròn. 4. CBM có B = 450 ; M = 450 => BCM =450 hay MC  BC tại C => MC là tiếp tuyến của đờng tròn ngoại tiếp tam giác ABC. Bài 24. Cho tam giác nhọn ABC có B = 450 . Vẽ đờng tròn đờng kính AC có tâm O, đờng tròn này cắt BA vµ BC t¹i D vµ E. 1. Chøng minh AE = EB. A 2. Gọi H là giao điểm của CD và AE, Chứng minh rằng đờng trung trùc cña ®o¹n HE ®i qua trung ®iÓm I cña BH. D 3. Chứng minh OD là tiếp tuyến của đờng tròn ngoại tiếp tam giác F 1 2 BDE. O H Lêi gi¶i: / _ 0 1. AEC = 90 (nội tiếp chắn nửa đờng tròn ) _K 1 => AEB = 900 ( v× lµ hai gãc kÒ bï); Theo gi¶ thiÕt ABE = 450 1 / I => AEB lµ tam gi¸c vu«ng c©n t¹i E => EA = EB. B. E. C. 2. Gọi K là trung điểm của HE (1) ; I là trung điểm của HB => IK là đờng trung bình của tam giác HBE => IK // BE mµ AEC = 900 nªn BE  HE t¹i E => IK  HE t¹i K (2). Tõ (1) vµ (2) => IK lµ trung trùc cña HE . VËy trung trùc cña ®o¹n HE ®i qua trung ®iÓm I cña BH. 3. theo trªn I thuéc trung trùc cña HE => IE = IH mµ I lµ trung ®iÓm cña BH => IE = IB.  ADC = 900 (nội tiếp chắn nửa đờng tròn ) => BDH = 900 (kề bù ADC) => tam giác BDH vuông tại D cã DI lµ trung tuyÕn (do I lµ trung ®iÓm cña BH) => ID = 1/2 BH hay ID = IB => IE = IB = ID => I lµ tâm đờng tròn ngoại tiếp tam giác BDE bán kính ID. Ta cã ODC c©n t¹i O (v× OD vµ OC lµ b¸n kÝnh ) => D1 = C1. (3) IBD c©n t¹i I (v× ID vµ IB lµ b¸n kÝnh ) => D2 = B1 . (4) Theo trên ta có CD và AE là hai đờng cao của tam giác ABC => H là trực tâm của tam giác ABC => BH cũng là đờng cao của tam giác ABC => BH  AC tại F => AEB có AFB = 900 . Theo trªn ADC cã ADC = 900 => B1 = C1 ( cïng phô BAC) (5). Tõ (3), (4), (5) =>D1 = D2 mµ D2 +IDH =BDC = 900=> D1 +IDH = 900 = IDO => OD  ID tại D => OD là tiếp tuyến của đờng tròn ngoại tiếp tam giác BDE.. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(13)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Bài 25. Cho đờng tròn (O), BC là dây bất kì (BC< 2R). Kẻ các tiếp tuyến với đờng tròn (O) tại B và C chúng cắt nhau tại A. Trên cung nhỏ BC lấy một điểm M rồi kẻ các đờng vuông góc MI, MH, MK xuống c¸c c¹nh t¬ng øng BC, AC, AB. Gäi giao ®iÓm cña BM, IK lµ P; giao ®iÓm cña CM, IH lµ Q. 1. Chøng minh tam gi¸c ABC c©n. 2. C¸c tø gi¸c BIMK, CIMH néi tiÕp . 3. Chøng minh MI2 = MH.MK. 4. Chøng minh PQ  MI. Lêi gi¶i: 1. Theo tÝnh chÊt hai tiÕp tuyÕn c¾t nhau ta cã AB = AC => ABC c©n t¹i A. 2. Theo gi¶ thiÕt MI  BC => MIB = 900; MK  AB => MKB = 900. => MIB + MKB = 1800 mà đây là hai góc đối => tứ giác BIMK nội tiếp * ( Chøng minh tø gi¸c CIMH néi tiÕp t¬ng tù tø gi¸c BIMK ) 3. Theo trªn tø gi¸c BIMK néi tiÕp => KMI + KBI = 1800; tø gi¸c CHMI néi tiÕp => HMI + HCI = 1800. mµ KBI = HCI ( v× tam gi¸c ABC c©n t¹i A) => KMI = HMI (1). Theo trªn tø gi¸c BIMK néi tiÕp => B1 = I1 ( néi tiÕp cïng ch¾n cung KM); tø gi¸c CHMI néi tiÕp => H1 = C1 ( néi tiÕp cïng ch¾n cung IM).  Mµ B1 = C1 ( = 1/2 s® BM ) => I1 = H1 (2). MI MK  Tõ (1) vµ (2) => MKI MIH => MH MI => MI2 = MH.MK. 4. Theo trªn ta cã I1 = C1; còng chøng minh t¬ng tù ta cã I2 = B2 mµ C1 + B2 + BMC = 1800 => I1 + I2 + BMC = 1800 hay PIQ + PMQ = 1800 mà đây là hai góc đối => tứ giác PMQI nội tiếp => Q1 = I1 mà I1 = C1 => Q1 = C1 => PQ // BC ( vì có hai góc đồng vị bằng nhau) . Theo giả thiÕt MI BC nªn suy ra IM  PQ. Bài 26. Cho đờng tròn (O), đờng kính AB = 2R. Vẽ dây cung CD  AB ở H. Gọi M là điểm chính giữa cña cung CB, I lµ giao ®iÓm cña CB vµ OM. K lµ giao ®iÓm cña AM vµ CB. Chøng minh : KC AC 1. 2. AM lµ tia ph©n gi¸c cña CMD. 3. Tø gi¸c OHCI néi = KB AB tiÕp 4. Chứng minh đờng vuông góc kẻ từ M đến AC cũng là tiếp tuyến của đờng tròn t¹i M.    Lêi gi¶i: 1. Theo gi¶ thiÕt M lµ trung ®iÓm cña BC => MB MC => CAM = BAM (hai gãc néi tiÕp ch¾n hai cung b»ng nhau) => AK lµ tia KC AC = ph©n gi¸c cña gãc CAB => ( t/c tia ph©n gi¸c cña tam gi¸c ) KB AB  2. (HD) Theo gi¶ thiÕt CD  AB => A lµ trung ®iÓm cña CD => CMA = DMA => MA lµ tia ph©n gi¸c cña gãc CMD.  3. (HD) Theo gi¶ thiÕt M lµ trung ®iÓm cña BC => OM  BC t¹i I => OIC = 900 ; CD  AB t¹i H => OHC = 900 => OIC + OHC = 1800 mà đây là hai góc đối => tứ giác OHCI nội tiếp 4. KÎ MJ  AC ta cã MJ // BC ( v× cïng vu«ng gãc víi AC). Theo trªn OM  BC => OM  MJ t¹i J suy ra MJ là tiếp tuyến của đờng tròn tại M. Bài 27 Cho đờng tròn (O) và một điểm A ở ngoài đờng tròn . Các tiếp tuyến với đờng tròn (O) kẻ từ A tiếp xúc với đờng tròn (O) tại B và C. Gọi M là điểm tuỳ ý trên đờng tròn ( M khác B, C), từ M kẻ MH  BC, MK  CA, MI  AB. Chøng minh : Tø gi¸c ABOC néi tiÕp. 2. BAO =  BCO. 3. MIH  MHK. 4. MI.MK = MH2. Lêi gi¶i:. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(14)</span> C¸c d¹ng to¸n «n thi vµo líp 10. (HS tù gi¶i) Tø gi¸c ABOC néi tiÕp => BAO =  BCO (néi tiÕp cïng ch¾n cung BO). Theo gi¶ thiÕt MH  BC => MHC = 900; MK  CA => MKC = 900 => MHC + MKC = 1800 mà đây là hai góc đối => tứ giác MHCK nội tiếp => HCM = HKM (nội tiÕp cïng ch¾n cung HM). Chøng minh t¬ng tù ta cã tø gi¸c MHBI néi tiÕp => MHI = MBI (néi tiÕp cïng ch¾n cung IM).  Mµ HCM = MBI ( = 1/2 s® BM ) => HKM = MHI (1). Chøng minh t¬ng tù ta còng cã KHM = HIM (2). Tõ (1) vµ (2) =>  HIM   KHM. MI MH  Theo trªn  HIM   KHM => MH MK => MI.MK = MH2 Bài 28 Cho tam giác ABC nội tiếp (O). Gọi H là trực tâm của tam giác ABC; E là điểm đối xứng của H qua BC; F là điểm đối xứng của H qua trung điểm I của BC. 1. Chøng minh tø gi¸c BHCF lµ h×nh b×nh hµnh. 2. E, F nằm trên đờng tròn (O). 3. Chøng minh tø gi¸c BCFE lµ h×nh thang c©n. 4. Gäi G lµ giao ®iÓm cña AI vµ OH. Chøng minh G lµ träng t©m cña tam gi¸c ABC. Lêi gi¶i: 1. Theo giả thiết F là điểm đối xứng của H qua trung điểm I của BC => I là trung điểm BC và HE => BHCF là hình bình hành vì có hai đờng chéo cắt nhau tại trung điểm của mỗi đờng . 2. (HD) Tø gi¸c AB’HC’ néi tiÕp => BAC + B’HC’ = 1800 mµ BHC = B’HC’ (đối đỉnh) => BAC + BHC = 1800. Theo trên BHCF lµ h×nh b×nh hµnh => BHC = BFC => BFC + BAC = 1800 => Tø gi¸c ABFC néi tiÕp => F thuéc (O). * H và E đối xứng nhau qua BC => BHC = BEC (c.c.c) => BHC = BEC =>  BEC + BAC = 1800 => ABEC néi tiÕp => E thuéc (O) . 3. Ta có H và E đối xứng nhau qua BC => BC  HE (1) và IH = IE mà I là trung điểm của của HF => EI = 1/2 HE => tam gi¸c HEF vu«ng t¹i E hay FE  HE (2) Tõ (1) vµ (2) => EF // BC => BEFC lµ h×nh thang. (3) Theo trªn E (O) => CBE = CAE ( néi tiÕp cïng ch¾n cung CE) (4). Theo trên F (O) và FEA =900 => AF là đờng kính của (O) => ACF = 900 => BCF = CAE ( vì cïng phô ACB) (5). Tõ (4) vµ (5) => BCF = CBE (6). Tõ (3) vµ (6) => tø gi¸c BEFC lµ h×nh thang c©n. 4. Theo trên AF là đờng kính của (O) => O là trung điểm của AF; BHCF là hình bình hành => I là trung điểm của HF => OI là đờng trung bình của tam giác AHF => OI = 1/ 2 AH. Theo giả thiết I là trung điểm của BC => OI  BC ( Quan hệ đờng kính và dây cung) => OIG = HAG GI OI 1  (vì so le trong); lại có OGI =  HGA (đối đỉnh) => OGI  HGA => GA HA mà OI = 2 AH GI 1  => GA 2 mµ AI lµ trung tuyÕn cña tam gi¸c ABC (do I lµ trung ®iÓm cña BC) => G lµ träng t©m cña tam gi¸c ABC.. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(15)</span> C¸c d¹ng to¸n «n thi vµo líp 10 Bài 29 BC là một dây cung của đờng tròn (O; R) (BC 2R). Điểm A di động trên cung lớn BC sao cho O luôn nằm trong tam giác ABC. Các đờng cao AD, BE, CF của tam giác ABC đồng quy tại H. 1. Chứng minh tam giác AEF đồng dạng với tam giác ABC. 2. Gäi A’ lµ trung ®iÓm cña BC, Chøng minh AH = 2OA’. 3. Gäi A1 lµ trung ®iÓm cña EF, Chøng minh R.AA1 = AA’. OA’. 4. Chứng minh R(EF + FD + DE) = 2SABC suy ra vị trí của A để tổng EF + FD + DE đạt giá trị lớn nhất. Lêi gi¶i: (HD) 1. Tø gi¸c BFEC néi tiÕp => AEF = ACB (cïng bï BFE) AEF = ABC (cïng bï CEF) =>  AEF   ABC. 2. Vẽ đờng kính AK => KB // CH ( cùng vuông góc AB); KC // BH (cïng vu«ng gãc AC) => BHKC lµ h×nh b×nh hµnh => A’ lµ trung ®iÓm của HK => OK là đờng trung bình của AHK => AH = 2OA’ 3. áp dụng tính chất : nếu hai tam giác đồng dạng thì tỉ số giữa hia trung tuyến, tỉ số giữa hai bán kính các đờng tròn ngoại tiếp bằng tỉ số đồng dạng. ta có : R AA '  R ' AA1 (1) trong đó R là bán kính đờng tròn ngoại tiếp ABC; R’ là bán kính đ AEF   ABC => êng trßn ngo¹i tiÕp  AEF; AA’ lµ trung tuyÕn cña ABC; AA1 lµ trung tuyÕn cña AEF. Tứ giác AEHF nội tiếp đờng tròn đờng kính AH nên đây cũng là đờng tròn ngoại tiếp AEF AH 2 A 'O Tõ (1) => R.AA1 = AA’. R’ = AA’ 2 = AA’ . 2 VËy R . AA1 = AA’ . A’O (2) 4. Gäi B’, C’lÇn lît lµ trung ®iÓm cña AC, AB, ta cã OB’AC ; OC’AB (b¸n kÝnh ®i qua trung ®iÓm cña một dây không qua tâm) => OA’, OB’, OC’ lần lợt là các đờng cao của các tam giác OBC, OCA, OAB. 1 SABC = SOBC+ SOCA + SOAB = 2 ( OA’ . BC’ + OB’ . AC + OC’ . AB ) 2SABC = OA’ . BC + OB’ . AC’ + OC’ . AB (3) AA1 AA1 Theo (2) => OA’ = R . AA ' mà AA ' là tỉ số giữa 2 trung tuyến của hai tam giác đồng dạng AEF và ABC AA1 EF FD ED nên AA ' = BC . Tơng tự ta có : OB’ = R . AC ; OC’ = R . AB Thay vào (3) ta đợc EF FD ED .BC  . AC  . AB AC AB 2SABC = R ( BC )  2SABC = R(EF + FD + DE) * R(EF + FD + DE) = 2SABC mà R không đổi nên (EF + FD + DE) đạt gí trị lớn nhất khi SABC. 1 Ta có SABC = 2 AD.BC do BC không đổi nên SABC lớn nhất khi AD lớn nhất, mà AD lớn nhất khi A là điểm chÝnh giìa cña cung lín BC. Bài 30 Cho tam giác ABC nội tiếp (O; R), tia phân giác của góc BAC cắt (O) tại M. Vẽ đờng cao AH và b¸n kÝnh OA. 1. Chøng minh AM lµ ph©n gi¸c cña gãc OAH. 2. Gi¶ sö B > C. Chøng minh OAH = B - C. 3. Cho BAC = 600 vµ OAH = 200. TÝnh: a) B vµ C cña tam gi¸c ABC. b) DiÖn tÝch h×nh viªn ph©n giíi h¹n bëi d©y BC vµ cung nhá BC theo R Lêi gi¶i: (HD)   1. AM lµ ph©n gi¸c cña BAC => BAM = CAM => BM CM => M lµ trung ®iÓm cña cung BC => OM  BC; Theo gi¶ thiÕt AH  BC => OM // AH => HAM = OMA ( so le). Mµ OMA = OAM ( v× tam gi¸c OAM c©n t¹i O do cã OM = OA = R) => HAM = OAM => AM lµ tia ph©n gi¸c cña gãc OAH.. GV: Cao V¨n ThÕ. 1. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(16)</span> C¸c d¹ng to¸n «n thi vµo líp 10 3. a) Theo gi¶ thiÕt BAC = 600 => B + C = 1200 ; theo trªn B C = OAH => B C = 200 . => B  C 1200 B 700   0 0 B  C 20 C 50 b) Svp = SqBOC - S BOC =.  .R 2 .1202 1 R  R. 3. 0 360 2 2=   2. VÏ d©y BD  OA => AB AD => ABD = ACB. Ta cã OAH =  DBC ( gãc cã c¹nh t¬ng øng vu«ng gãc cïng nhän) => OAH = ABC - ABD => OAH = ABC - ACB hay OAH = B - C.. GV: Cao V¨n ThÕ. 1.  .R 2 R 2 . 3 R 2 .(4  3 3)   3 4 12. Trêng THCS Qu¶ng TiÕn.

<span class='text_page_counter'>(17)</span>

×