Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (31.55 KB, 2 trang )
<span class='text_page_counter'>(1)</span>Bµi tËp H×nh tæng hîp. Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O). Các đờng cao AD, BE, CF cắt nhau tại H và cắt đờng tròn (O) lần lợt tại M,N,P. Chøng minh r»ng: 1. Tø gi¸c CEHD, néi tiÕp . 2. Bốn điểm B,C,E,F cùng nằm trên một đờng tròn. 3. AE.AC = AH.AD; AD.BC = BE.AC. 4. H và M đối xứng nhau qua BC. 5. Xác định tâm đờng tròn nội tiếp tam giác DEF. Bài 2. Cho tam giác cân ABC (AB = AC), các đờng cao AD, BE, cắt nhau tại H. Gọi O là tâm đờng tròn ngoại tiếp tam giác AHE. 1. Chøng minh tø gi¸c CEHD néi tiÕp . 2. Bốn điểm A, E, D, B cùng nằm trên một đờng tròn. 3. Chøng minh ED = 1 BC. 2 4. Chứng minh DE là tiếp tuyến của đờng tròn (O). 5. Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Bài 3 Cho đờng tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đờng th¼ng d lÊy ®iÓm M bÊt k× ( M kh¸c A) kÎ c¸t tuyÕn MNP vµ gäi K lµ trung ®iÓm cña NP, kÎ tiÕp tuyÕn MB (B lµ tiÕp ®iÓm). KÎ AC MB, BD MA, gäi H lµ giao ®iÓm cña AC vµ BD, I lµ giao ®iÓm cña OM vµ AB. 1. Chøng minh tø gi¸c AMBO néi tiÕp. 2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đờng tròn . 3. Chøng minh OI.OM = R2; OI. IM = IA2. 4. Chøng minh OAHB lµ h×nh thoi. 5. Chøng minh ba ®iÓm O, H, M th¼ng hµng.T×m quü tÝch cña ®iÓm H khi M di chuyÓn trên đờng thẳng Bài 4 Cho tam giác ABC vuông ở A, đờng cao AH. Vẽ đờng tròn tâm A bán kính AH. Gọi HD là đờng kính của đờng tròn (A; AH). Tiếp tuyến của đờng tròn tại D cắt CA ở E. 1. Chøng minh tam gi¸c BEC c©n. 2. Gäi I lµ h×nh chiÕu cña A trªn BE, Chøng minh r»ng AI = AH. 3. Chứng minh rằng BE là tiếp tuyến của đờng tròn (A; AH). Chøng minh BE = BH + DE. Bài 5 Cho nửa đờng tròn tâm O đờng kính AB và điểm M bất kì trên nửa đờng tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đờng tròn tại E; cắt tia BM tại F tia BE cắt Ax t¹i H, c¾t AM t¹i K. 1) Chøng minh r»ng: EFMK lµ tø gi¸c néi tiÕp. 2) Chøng minh r»ng: AI2 = IM . IB. 3) Chøng minh BAF lµ tam gi¸c c©n. 4) Chøng minh r»ng : Tø gi¸c AKFH lµ h×nh thoi. 5) Xác định vị trí M để tứ giác AKFI nội tiếp đợc một đờng tròn. Bài 6 Cho nửa đờng tròn (O; R) đờng kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đờng tròn. Các tia AC và AD cắt Bx lần lợt ở E, F (F ở giữa B và E). 1. Chứng minh AC. AE không đổi. 2. Chøng minh ABD = DFB. 3. Chøng minh r»ng CEFD lµ tø gi¸c néi tiÕp Bài 7 . Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) t¹i c¸c ®iÓm D, E, F . BF c¾t (O) t¹i I , DI c¾t BC t¹i M. Chøng minh : 1. Tam gi¸c DEF cã ba gãc nhän..
<span class='text_page_counter'>(2)</span> 2. DF // BC.. 3. Tø gi¸c BDFC néi tiÕp.. 4.. BD BM = CB CF.
<span class='text_page_counter'>(3)</span>