Tải bản đầy đủ (.pdf) (10 trang)

Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (218.9 KB, 10 trang )

Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

46

4.2.5. Ảnh hưởng của hệ số khí sót

Hình 4.10 trình bày ảnh hưởng của hệ số khí sót x
b
đến nồng độ CO trong khí xả
động cơ Toyota. Khi tăng hệ số khí sót, nhiệt độ cháy giảm làm giảm tốc độ phản ứng
phân giải CO
2
thành CO do đó nồng độ CO trong sản phẩm cháy giảm. Vì vậy, hệ thống
hồi lưu khí xả EGR lắp trên các động cơ hiện đại để khống chế nồng độ NO
x
đồng thời
cũng góp phần làm giảm nồng độ CO ở chế độ tải thấp.

4.3. Cơ chế hình thành hydrocarbure chưa cháy HC

4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong

Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình
thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận
hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của
hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết,
nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NO
x
diễn ra trong pha
đồng nhất ở những khu vực có nhiệt độ cao.



















Hình 4.11: Biến thiên nồng độ một số hydrocarbure
theo góc quay trục khuỷu


HC bao gồm các thành phần hydrocarbure rất khác biệt, có độc tính khác nhau đối
với sức khỏe con người cũng như có tính phản ứng khác nhau trong quá trình biến đổi hóa
học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó,
chúng còn có các thành phần chứa oxygène có tính phản ứng cao hơn như aldehyde,
cetone, phenol, alcool... Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC
của động cơ đánh lửa cưỡng bức thì aldehyde có thể đạt đến 10% trong HC động cơ
Diesel và trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa
carbon.
Đánh lửa

Mở soupape xả
Đóng soupape xả
C
3
H
8
C
2
H
4
CH
4
0

100
200 300
400
1
10
10
2
10
3
10
4
Độ góc quay trục khuỷu sau ĐCT
Nồng độ trong
khí xả

Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong


47

Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn
phát sinh HC chính đo được trên đường xả của động cơ đốt trong. Hình 4.11 biểu diễn sự
biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên
thành buồng cháy của động cơ một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi
qua, nồng độ HC đo được thấp hơn HC có mặt trong khí xả. Vào cuối chu trình, nồng độ
HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt và
chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng
nồng độ HC.


4.3.2. Cơ chế tôi màng lửa

Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng
cháy. Quá trình tôi màng lửa có thể xảy ra trong những điều kiện khác nhau: màng lửa bị
làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong
những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston và
thành cylindre (hình 4.12).












Hình 4.12: Sự hình thành HC do tôi màng lửa
trên thành buồng cháy


Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy
không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape...) hay ở
những không gian chết.

Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ và áp suất
của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề
mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy... Người ta có thể sử
dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để
màng lửa có thể đi qua mà không bị dập tắt.

Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị
tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa
tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại
khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra
trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt có thể bị oxy hóa trong quá trình
Sản phẩm
cháy

Hỗn hợp
chưa cháy
Vùng
màng lửa
bị kẹt

Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong


48
giãn nở hay thải.

Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre có thể hấp thụ hydrocarbure,
nhất là các hydrocarbure trước khi bén lửa và thải HC ra hỗn hợp cháy trong kì giãn nở.
Quá trình hấp thụ và thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong
khí xả động cơ đốt trong.


4.4. Sự phát sinh HC trong quá trình cháy của động cơ
đánh lửa cưỡng bức


Khí xả động cơ xăng thường có chứa từ 1000 đến 3000ppmC, tương ứng với
khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình
1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của
hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở
một số chu trình công tác. Sự hình thành HC trong động cơ đánh lửa cưỡng bức có thể
được giải thích theo các cơ chế sau đây (hình 4.13):

- Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa
trên mặt thành buồng cháy.

- Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập
tắt.

- Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai
đoạn nạp và nén và thải ra trong giai đoạn giãn nở và cháy.


- Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động cơ (cháy
cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí
xả, đặc biệt khi gia giảm tốc độ.

Mặt khác, muội than trong buồng cháy cũng có thể gây ra sự gia tăng mức độ phát
sinh ô nhiễm do sự thay đổi các cơ chế trên đây. Tấ
t cả những quá trình này (trừ trường
hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải
trong toàn bộ thể tích buồng cháy. Trong quá trình thải có thể xuất hiện hai đỉnh cực đại
của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy
chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm nh
ững bộ phận HC cuối cùng
thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm.








Lớp dầu bôi
trơn hấp thụ
HC

Lớp muội than
hấp thụ HC

Hỗn hợp chưa
cháy bị nén

vào không
gian chết

Màng lửa
H
ỗn hợp cháy
không hoàn
toàn là nguồn
phát sinh HC

HC trên thành
cylindre bị
kéo theo dòng
khí xả
Lớp muội than
giải phóng HC
NÉN
CHÁY
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

49















Hình 4.13: Sơ đồ các nguồn phát sinh HC



4.4.1. Tôi màng lửa trên thành buồng cháy

Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của
động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO
hay CH
3
CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy
hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC có mặt trong lớp tôi
khuếch tán vào khối khí nhiệt độ cao trong buồng cháy và đại bộ phận bị oxy hóa.

Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh
HC: nồng độ HC có thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng
so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến
nồng độ HC tương tự như trường hợp thành buồng cháy nhám.


4.4.2. Ảnh hưởng của các không gian chết

Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không
gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment và cylindre (hình
4.15). Những không gian chết khác bao gồm chân ren và không gian quanh cực trung tâm

của bougie, không gian quanh nấm và đế soupape, không gian giới hạn giữa nắp cylindre,
thân máy và đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên
liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt và thể tích
của các không gian chết lớn nên lượng khí dồn vào đ
ây được làm mát nhanh chóng. Trong
giai đoạn cháy, áp suất tiếp tục tăng và một bộ phận hỗn hợp mới lại được nén vào không
gian chết. Khi màng lửa lan đến các khu vực này, nó có thể lan tràn vào bên trong để đốt
cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng
màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của
hỗn hợp chưa cháy và trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng
lửa diễn ra khi khe hở giữa piston và cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến và
Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

50
bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất
trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các
không gian này quay trở ngược lại cylindre.

Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm
giữa piston, segment và thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi
những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp...
Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh
để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu có thể chứa
từ 5 đến 10% hỗn hợp trong cylindre và bộ phận hỗn hợp này không cháy được trong quá
trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC
chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả.
Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của
nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse
2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh
piston có thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều

kiện làm việc của động cơ.

Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh
lửa đặt gần các không gian chết thì trong không gian đó có chứa một bộ phận sản phẩm
cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí
chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC có thể đạt đến 20%.

Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén và cháy
do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được
thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động cơ ô tô, lượng khí này được dẫn vào
đường nạp để tăng tính kinh tế và giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa
cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số
trường hợp người ta có thể giảm độ kín khít của segment để lượng khí này lọt xuống carter
và bị đốt cháy khi quay vào lại cylindre theo đường nạp.















Hình 4.15: Nguồn phát sinh HC trong động cơ đánh lửa cưỡng bức



Không gian chết
giữa đế và nấm
soupape

Không gian chết
ở chân ren
bougie

Không gian chết
ở đệm culasse

Không gian chết
giữa segment và
rãnh segment

×