Tải bản đầy đủ (.pdf) (103 trang)

Slide điện tử tương tự chapter 2 bjt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.1 MB, 103 trang )

.c
om
ng
co
an
th

cu

u

du
o

ng

CHAPTER 2:
BIPOLAR JUNCION TRANSISTOR
DR. PHAM NGUYEN THANH LOAN

Hanoi, 9/24/2012
CuuDuongThanCong.com

/>

Contents

.c
om

2



Structure and operation of BJT
Different configurations of BJT
Characteristic curves
DC biasing method and analysis



ng



co



an






th

ng

du
o




AC signal analysis
Impact of other parameters (temperature, leakage
currents)

u



Base bias
Collector-feedback bias
Voltage divider bias

cu



The content of these slides are based on the book titled “Electronics Devices and Circuit theory of
Robert Boylestad”
CuuDuongThanCong.com

/>

Structure and operation of BJT
.c
om

3


BJT structure

th

an



ng



BJT :Bipolar Junction Transistor
2 kinds of BJT: NPN & PNP
3 terminals: E, B và C
E: Emitter; B: Base, C: Collector
Base located in the middle:
thinner than E & C; and lower
dope

co



cu

u

du
o


ng



CuuDuongThanCong.com



/>

Structure and operation of BJT
.c
om

4

 Bias condition for 2 junctions: JBE & JBC

Junction BE in forward bias:
electrons (e) move from E region
to B region to create the current IE
(diffusion current; flow of
majority carriers)
Junction BC in reverse bias: e
that moved from E to B then
move from B to C to create the
current IC (drift current, flow of
minority carriers)
The combination of some

electrons with holes in B region
creates the current IB
So: IE = IC + IB



cu

u

du
o

ng

th

an

co

ng







CuuDuongThanCong.com


/>

Structure and operation of BJT
BJT symbol



ng

co

IE



cu

u

du
o

IB



th

an


IC

3 terminals: B, E và C
Arrow instructs the current
direction between B & E
Conventional current is the
flow of positive charges
(holes)
NPN: B  E
PNP: E  B

ng



.c
om

5

CuuDuongThanCong.com

/>

Technical parameters
.c
om

6


IE = IC + IB



IC = βIB



β = 100 ÷ 200 (may be higher)



β is DC current gain

IC = αIE + ICBO

ng





IC ≈ αIE (neglect leakage ICBO)



α = 0.9 ÷0.998.




α is DC current transfer coefficient

cu

u

du
o

ng

th

an

co




CuuDuongThanCong.com


 1
/>

Technical parameters



IE = IC + IB



IC = β*IB



β = 100 ÷ 200 (may be higher)



β is DC current gain

IC = αIE + ICBO

cu

u

du
o

ng

th

an

co


ng



.c
om

7

CuuDuongThanCong.com





IC ≈ αIE (neglect leakage ICBO)



α = 0.9 ÷0.998.



α is DC current transfer coefficient


 1
/>


BJT as an amplifier
Different amplifier configurations



Look at the input and output to distinguish these
configurations

cu

u

Configuration
BC
EC
CC

du
o

ng

th



Common emitter (CB)
Common base (CB)
Common collector (CC)


co



ng

3 configurations

an



.c
om

8

CuuDuongThanCong.com

Input
E
B
B

Output
C
C
E
/>


CE configuration
E is used in common for
in and out

co

ng



.c
om

9

th

an



ng

re=26mV/IE


Output: Ic= βIb

cu


u

du
o

Input: re is considered as
AC resistor of diode BE

9
CuuDuongThanCong.com

/>

10

.c
om

CE configuration – small signal
Zi = Ube/Ib ≈ βIbre/Ib ≈ βre
(~ n100Ω – nKΩ)
 Z o = ro  ∞
(ignore in re model)
 Av = - RL/re (ro ∞)
 Ai = Ic/Ib = β
 Characteristics
+ Zi, Zo average
+ Av, Ai high

cu


u

du
o

ng

th

an

co

ng



10
CuuDuongThanCong.com

/>

Characteristic curves: CE

u

du
o


ng

th

an

co

ng

Input and output characteristic curves of CE configuration

cu



.c
om

11

11
CuuDuongThanCong.com

/>

Characteristic curves: CE
0starts moving to forward
bias IC increases gradually

VCE >0.7V: Junction BE is in
FB and Junction BC in reverse
 IC = β*IB



cu

u

du
o

ng

th

an

co

ng



.c
om

12


CuuDuongThanCong.com

/>

CB configuration
B is used in common for
in and out

co

ng



.c
om

14

Input: re is considered as
AC resistor of diode BE
re=26mV/IE



Isolation between in and
out




Output: Ic=αIe

cu

u

du
o

ng

th

an



14
CuuDuongThanCong.com

/>

CB configuration

du
o

ng

th


an

co

ng

.c
om

15

(nΩ-50 Ω)

Z i = re

2)

Zo = ro ≈ ∞ (nMΩ)

3)

Av = αRL/re ≈ RL/re quite big, Uo & Ui in phase

4)

Ai = -α ≈ 1

cu


u

1)

15
CuuDuongThanCong.com

/>

Characteristic curves: CB

u

du
o

ng

th

an

co

ng

Input and output characteristic curves of CB configuration

cu




.c
om

16

CuuDuongThanCong.com

/>

CC configuration
Similar to CE configuration

du
o

ng

th

an

co

ng

Refer to Electronic Devices – Thomas Floyd

u




cu



.c
om

17

17
CuuDuongThanCong.com

/>

Limits of operation
.c
om

18

Two limits:
 cut-off

region
 Saturation region

cu


u

du
o

ng

th

an

co

ng



CuuDuongThanCong.com

/>

Cutoff and saturation
Cutoff state

Saturation state

u

du

o

ng

th

an

co

ng



cu



.c
om

19

CuuDuongThanCong.com

/>

ng

.c

om

20

cu

u

du
o

ng

th

an

co

DC bias:
DC operating point & DC load line

CuuDuongThanCong.com

/>

DC bias
A transistor must be properly biased in order to operate as

ng




.c
om

21

an

th

DC bias can be considered as supply power to BJT so that
 NPN: VE < VB < VC (JE: in Forward; JC: in Reverse bias)
 PNP: VE > VB > VC
DC bias is characterized by Q-point (DC operating point)
and DC load line

u

cu



du
o

ng




co

an amplifier

CuuDuongThanCong.com

/>

DC bias
NOTES: REMEMBER some equations:
VBE ≈ 0,6 ÷ 0,7V (Si) ; 0,2 ÷ 0,3(Ge)
IE = IC + IB IC = βIB
IC ≈ αIE
There 3 types of bias circuits

an



co

ng



.c
om

22


Base bias
 Collector-feedback bias
 Voltage divider bias

u

Question: How many amplifier circuits can be
designed?

cu



du
o

ng

th



CuuDuongThanCong.com

/>

3 types of baising
.c
om


23

Base bias

cu

u

du
o

ng

th

an

co

ng

Voltage divider bias

Collector feedback bias
CuuDuongThanCong.com

/>

Example of DC bias

.c
om

24

Q1. What are the amplifier configuration of these circuits?



Q2. What kind of DC bias? And then draw DC equivalent circuit.

co

ng



(b)

(c)

cu

u

du
o

ng


th

an

(a)



Question 3: How many amplifier circuits can be designed?
CuuDuongThanCong.com

/>

Base bias

u

du
o

ng

th

an

co

ng


Consider the analysis for only EC configuration (similar
analysis can be obtained for BC and CC)

cu



.c
om

25

CuuDuongThanCong.com

/>

Base bias

.c
om

26

cu

u

du
o


ng

th

an

co

ng

BE loop:
Vcc – IBRB – UBE = 0
 IB= (Vcc - UBE)/RB
IC=β*IB
CE loop:
 UCE = Vcc - ICRC

CuuDuongThanCong.com

/>

×