Synthesis of Morphine Alkaloids
MeO
CO2H
HO
OH
HO
O OH
NH2
NMe
MeN
MeO
OH
D
N
B
C
OH
O
A
E
Introduction
Cultivation:
• Opium is harvested from the immature poppy seed capsule
OH
OMe
O OH
O OH
MeN
O
N
H
MeN
(-)-morphine
10 -15 %
MeO
(-)-codeine
3-4%
Me
MeO
(-)-thebaine
1-2 %
Fig 1: Lanced Poppy with
raw opium exturding
• Primary areas of cultivation are south east and west asia and latin america
• An average Indian acreage of P. somniferum yields 25-30 kg of opium
Introduction
History of Morphine as a Pharmaceutical
• Laudanum (16th Century):
-Developed by Swiss alchemist Paracelus
-alcoholic tincture of alcohol, opium, and other herbs
-Eased suffering from the plague
• Heroin (1898):
-Developed by Heinrich Dreser at Fredich Bayer and Company
-Diacetyl derivative of morphine
-Marketed to the German people as a cough remedy
• Morphine (Present day)
-One of the most widely used drugs for treatment of severe pain
Introduction
Structure
D
C
2
HO
1
3
OH
N
B
O
A
E
O
12
5
H
HO
Morphine
11
4
15
13
16
9
14
6
10
H
8
N Me
Key Features: 5 rings, 5
contiguous stereocenters,
compact array of functionality
7
Synthesis
•
Landmark synthesis was in 1952 by Gates
•
Since then at least 18 more total and formal synthesis
of Morphine have appeared
•
This overview will encompass 6 unique routes
Biosynthesis of Morphine
HO
CO2H
HO
NH2
dopamine
NH
H
HO
NH2
HO
MeO
HO
NMe
H
HO
HO
CHO
L-Tyrosine
MeO
HO
HO
(S)-norcoclaurine
(S)-reticuline
MeO
MeO
MeO
MeO
HO
O
O
HO
NMe
NMe
NMe
MeO
MeO
MeO
OH
MeO
O
O
salutaridinol
NMe
salutaridine
OH
(R)-reticuline
Phenolic coupling
SN2'
MeO
?
O
NMe
H
MeO
thebaine
MeO
MeO
O
O
H
O
neopinone
NMe
H
HO
?
NMe
H
O
O
H
NMe
H
HO
codeinone
morphine
Gates Synthesis
Retrosynthesis
MeO
MeO
[Ox]
O
H
MeO
Epimerization
HO
[Red]
N
H
HO
HO
N
14
O
H
N
O
Morphine
[Red]
MeO
MeO
NC
MeO
O
[4 + 2]
O
MeO
O
CN
OH
Reductive
Amidation
MeO
O
MeO
NH
H
O
Gates Synthesis
Forward Synthesis: Diene
1. BzCl
2. NaNO2
HO
OH
BzO
5. SO2
3. Pd/C
4. FeCl3
(56 %)
O
BzO
6. (MeO)2SO2
O
OMe
(78 %)
OMe
7. KOH
8. NaNO2
9. Pd/C
10. FeCl3
(69 %)
O
1. NC
O
OMe
NC
OMe
CO2Et
NEt3
2. K3FeCN6
3. KOH,EtOH
(82 %)
O
O
OMe
OMe
Gates Synthesis
Forward Synthesis: Morphine
MeO
MeO
O
MeO
O
AcOH/!
(50 %)
MeO
27 atm H2
CuO/Cr2O
O
MeO
CN
CN
OH
EtOH
150 °C
(50 %)
O
MeO
NH
H
O
1. N2H4/KOH
2. MeI/NaH
3. LAH
(76 %)
MeO
1. (a) Br2
(b) 2,4-DNP
HO
14
O
H
N
2. HCl
3. H2/ PtO2
(7 %)
MeO
1. H2SO4
HO
14
O
H
N
MeO
2. KOH,
MeO
(HOCH2CH2)2O
3. KOt-Bu/Ph2CO
(14 %)
H
N
Gates Synthesis
Forward Synthesis: Morphine
MeO
1. (a) Br2
(b) 2,4-DNP
HO
H
N
2. HCl
(8 %)
O
MeO
MeO
Br
1. LAH (44 %)
O
H
N
O
2. Pyr-HCl, 220 °C
(34%)
H
HO
O
Morphine
1-Bromo-Codeinone
Analysis: Gates Method
• 29 Steps
• Overall Yield: 0.0014%
MeO
O
N
H
HO
• Key Disconnections: Diels-Alder & Reductive Amidation
N
Rice Synthesis
Retrosynthesis
HO
MeO
O
O
MeO
HO
N
N
HO
NCHO
O
CO2H
O
MeO
H2N
HO
OH
OMe
Br
OMe
MeO
MeO
H
NH
HO
O
Br
H
NCHO
Rice Synthesis
Forward Synthesis: Grewe cyclization
CO2H
CHO
1. a) NaHSO3
b) KCN, H2SO4
OH
OMe
MeO
2. SnCl2, HCl
HOAc
(67 %)
Br
NH4F/HF
NCHO
O
1.
MeO
NH2
OH
OMe
MeO
HO
OMe
HO
TfOH
(60 %)
O
HO
200 °C
2. a) POCl3
b) NaCNBH4
(86 %)
H
NH
MeO
1. Li/NH3
2. PhOCHO,
EtOAc
(85 %)
MeO
Br
H
NCHO
1. a) MeSO3H
b) (CH2OH)2
c) NBS
d) HCO2H(aq)
(90 %)
HO
MeO
H
NH
Rice Synthesis
Forward Synthesis: End Game
MeO
MeO
Br
1. Br2, AcOH
2. CHCl3, NaOH
HO
NCHO
O
3. H2, Pd(C),
CH2O, NaOAc
(79 %)
1. ClCO2Et
2. PhSeCl
3. NaIO4
O
N
O
4. NaBH4
5. BBr3, CHCl3
(42 %)
HO
O
N
HO
Morphine
Dihydrocodeinone
Analysis: Rice Method
• 16 steps
HO
O
N
• Overall yield 12 %
HO
• Grewe cyclization was key disconnection
• Practical method for conversion of dihydrocodeinone to morphine
Evans Synthesis
Retrosynthesis
OMe
OH
O
OMe
MeO
MeO
O
HO
H2C
H
H
N
Me
N
Me
Gates Intermediate
H
N
Me
- [CH2]
OMe
OMe
N
Me
Br
Br
Br
OMe
OMe
OMe
OMe
N
N
Me
H
Me ClO4
Evans Synthesis
Forward Synthesis: Immonium Perchlorate
OMe
OMe
OMe
O
1.
N
Me
OMe
Li
2. TsOH, 110 °C
(43 %)
N
Me
1. n-BuLi
2.
Br
Br
OMe
OMe
OMe
OMe
N
Me
Br
N
Me
3. NaI
OMe
OMe
N
H
Me ClO4
Thermodynamic
Product
OMe
OMe
MeOH
HClO4
OMe
50 °C
60 % overall,
95:5 cis:trans
N
H
Me
Kinetic
Product
ClO4
OMe
N
Me
Evans Synthesis
Forward Synthesis:
OMe
OMe
OMe
N
H
Me ClO4
CH2N2
OMe
DCM
(95 %)
Stereochemical Analysis:
H
Me N
Ar
Nu
OMe
DMSO
(95 %)
?
OMe
N Me
H
N Me
H
CHO
BF3-Et2O
MeN
Nu
H
H
OMe
Ar
MeO
?
H
OH
N
Me
Evans Synthesis
Forward Synthesis:
OMe
OMe
OMe
N
H
Me ClO4
CH2N2
OMe
DCM
(95 %)
Stereochemical Analysis:
H
Me N
Ar
Nu
OMe
DMSO
OMe
(95 %)
N Me
H
N Me
H
CHO
BF3-Et2O
MeN
Nu
H
H
OMe
Ar
MeO
H
OH
N
Me
Evans Synthesis
Forward Synthesis: End Game
OMe
OMe
MeO
1. MsCl, TEA
H
OMe
MeO
OH
N
O
O
HO
2. LiEt3BH
3. OsO4, NaIO4
H
(80 %)
Me
N
Me
Gates Intermediate
Analysis: Evans Synthesis
• Short sequence to achieve the gates intermediate (10 steps)
• Cleaver and original disconnect
• Major limitation is having to go through gates intermediate
H
N
Me
Overman Synthesis
Retrosynthesis
OH
O OH
OMe
OMe
Epoxide
Opening
Rice
O
MeN
OBn
O
DBS N
MeN
(-)-morphine
Heck
Cyclization
OHC
I
HN
SiMe2Ph
DBS
OBn
OMe
Mannich
DBS
N
I
OBn
OMe
Overman Synthesis
Forward Synthesis: amine component
H
Ph
Ph
O,
N B
H
catechol borane
OCONHPh
PhN C P
O
2.
OCH3
1.a) NH3 (l)
CO2H b.) Li wire
Cl
c.)
d.) HCl aq
(27 %)
O
?
3.
O
5. n-BuLi,
CuI(Ph3P)2
PhMe2SiLi
(81 %)
4. OsO4/NMO,
Acetone
(90 % ee, 68 %)
O
O
SiMe2Ph
6. a) TsOH,
NaIO4
Stereochemical Analysis:
R2
Syn Facial
O
Oxidative
Addition
Cu
N
O
R1
Ph
H
R1 Cu (III)
N
Ph
R2
Reductive
Elimination
H
b) DBS-NH2,
NaCNBH3
(83 %)
R2
R1
HN
SiMe2Ph
DBS =
DBS
Overman Synthesis
Forward Synthesis: amine component
H
Ph
Ph
O,
N B
H
catechol borane
OCONHPh
PhN C P
O
2.
OCH3
1.a) NH3 (l)
CO2H b.) Li wire
O
Cl
c.)
d.) HCl aq
(27 %)
3.
O
5. n-BuLi,
CuI(Ph3P)2
PhMe2SiLi
(81 %)
4. OsO4/NMO,
Acetone
(90 % ee, 68 %)
O
O
SiMe2Ph
6. a) TsOH,
NaIO4
Stereochemical Analysis:
R2
Syn Facial
O
Oxidative
Addition
Cu
N
O
R1
Ph
H
R1 Cu (III)
N
Ph
R2
Reductive
Elimination
H
b) DBS-NH2,
NaCNBH3
(83 %)
R2
R1
HN
SiMe2Ph
DBS =
DBS
Overman Synthesis
Forward Synthesis: aldehyde component
MeO
CHO
OMe
HO
OMe
2. NaH, ClCH2OMe
(96 %)
I
n-BuLi; I2; HCl
1. HC(OMe)3, H
BnBr, K2CO3
MOMO
OMe
CHO
CHO
1. CH2SMe2
2. BF3 -THF
BnO
(78 %)
(84 %)
OMe
I
BnO
OMe
Forward Synthesis: mannich reaction
OHC
HN
Ar
I
ZnI2
OBn
EtOH
60 °C
DBS
SiMe2Ph
PhMe2Si
80 %
N
H
DBS
dr > 20:1
DBS
OMe
H
R2
Favored for large R1
I
OBn
OMe
Stereochemical Analysis:
R1
Me3Si
N
N
Me3Si
Vs.
N
R2
H
R1
Favored for small R1
Overman Synthesis
Forward Synthesis: Heck Cyclization and End Game
OMe
OMe
DBS
N
Pd(TFA)2(PPh3)2
I
OBn
OMe
1. BF3-OEt
OBn
PMP, 120 °C
(60 %)
2. ArCO3H, CSA
(60 %)
DBS N
O
DBS N
HO
(1)
1. TPAP/NMO
2. H2, Pd/C,
CH2O
(69 %)
OH
O OH
MeN
(-)-morphine
OMe
1. ClCO2Et
2. PhSeCl
3. NaIO4
4. LAH
5. BBr3
(36 %)
O
MeN
O
Overman Synthesis
Forward Synthesis: Bis-Heck Cyclizations
1
O
1. a) CH2O, !
b) ClCO2Me
2. a) EtSH, BF3
b) TMDSOTf
3. CrO3, 3-5-dimethyl
pyrazole
MeO2C
1. H2C PPh3
N
I
OTBDMS
2. TBAF, THF
(47 %)
OMe
OMe
MeO2C
NaIO4
(70 %)
OH
OMe
OsO4
O
I
OMe
OMe
O
N
MeO2C
OH
O
MeO2CN
MeO2CN
PdLn
Pd(TFA)2(PPh3)2
PMP, 120 °C
(58 %)
Overman Synthesis
Analysis: Overman Approach
• 1st enantioselective synthesis that did not contain a resolution
• Natural and unnatural morphine available
• 23 steps with an overall yield of 0.56 % (single heck)
• 26 steps with an overall yield of 0.184 % (bis-cyclization)
• Key disconnections were the Heck and Mannich
OH
O OH
MeN
White Synthesis
Retrosynthesis
MeO
MeO
Beckman
Rice
O
H
C-H
O
H
NMe
H
HO
O
NMe
H
O
H
O
MOMO
Insertion
O
1. Stobbe
2. Hydrogenation
O
MeO
CHO
MeO
MeO
O
H
MOMO
N2
Robinson
HO
HO
CO2Me
O
MeO
SEAr
HO
HO2C
H
O
H
H
MeO
MeO
HO
MeO
MeO
O
O
H
CO2H
O
O
OH