Myers
Chem 115
Stereoselective Olefination Reactions: The Wittig Reaction
Reviews:
Vedejs, E.; Peterson, M. J. In Topics in Stereochemistry; Eliel, E. L. and Wilen, S. H. Ed.; John
Wiley & Sons: New York, 1994, Vol. 21, pp. 1–158.
• Phosphonium ylides react with aldehydes to produce oxaphosphetane 1Z or 1E, which
decomposes by a syn-cycloreversion process to the alkene.
Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
Wittig Olefination, Background:
• Olefin synthesis employing phosphonium ylides was introduced in 1953 by Wittig and Geissler:
O
Ph
Ph3P CH3
Ph
Br
• The reaction of non-stabilized phosphonium ylides with aldehydes favors (Z)-alkene products.
CH2
PhLi
Ph
Et2O, 84%
• In the formation of Z-alkenes, an early, four-centered transition state is proposed. TSZ is believed to
be kinetically favored over TSE because it minimizes 1,2 interactions between R1 and R2 in the
forming C–C bond.
Ph
Wittig, G.; Geissler G. Liebigs Ann. 1953, 580, 44-57.
Non-stabilized Ylides:
Ar3P
• Terminology introduced by Professor E. J. Corey in Chem 115 to help students conduct
retrosynthetic analysis of trisubstituted olefins:
T-branch
(trans)
RT
O
C-branch
(cis)
O
Ar
Ar3P
+
Ar
P
H
O
H R2
H
H
H
R2
R1
1Z
R1
Ph3P
CCl3
THF, –40 ºC
59%
O
O
N
CCl3
CCl3
R2
(Z)-alkene
Karatholuvhu, M. S.; Sinclair, A.; Newton, A. F.; Alcaraz, M.-L.; Stockman, R. A.; Fuchs, P. L. J. Am.
Chem. Soc. 2006, 128, 12656–12657.
Ar3P O
O
+
Ar3P O
R1
TSZ
R1
NaHMDS
Cl–
N
H
Mechanism:
Ar
R = simple alkyl
H
L-branch
(lone)
RL
Rc
R
H
H
R2
R1
R2
2
Ar
Ar
Ar
P
H
O
H
TSE
R1 R2
R2
Ar3P O
H
R1
1E
H
R2
R1
Vedejs, E.; Peterson, M. J. Top. Stereochem. 1994, 21, 1–157.
Vedejs, E.; Peterson, M. J. Advances in Carbanion Chemistry 1996, 2, 1–85.
(E)-alkene
Fan Liu
1
Myers
Chem 115
Stereoselective Olefination Reactions: The Wittig Reaction
• Stabilized ylides are proposed to have a later and more product-like transition state with 1E
thermodynamically favored over 1Z.
Synthesis of Phosphonium Ylides
Ph3PCH2R
• The reaction of stabilized phosphonium ylides with aldehydes favors (E)-alkene products. These
reactions generally proceed at higher temperatures than reactions of non-stabilized ylides.
Stabilized Ylides: Ar3P
CHO
H3C
CH3
R
• Phosphonium ylides are generally prepared by deprotonation of
phosphonium salts, which come from the reaction of trialkyl or
triarylphosphines with alkyl halides.
R = aryl, alkenyl, -CO2R, or any anion-stabilizing groups.
Ph3P
CO2Et
CH3
CH2Cl2
CO2Et
H3C
23 ºC, 85%
E:Z = 92:8
CH3
R
pKa (DMSO)
H
22.5
Ph
17.4
CN
O
CPh
6.9
6.1
• Alkyl/aryl phosphonium halides are only weakly acidic. A strong base is required for deprotonation.
Precursors to stabilized ylides are more acidic than alkyl phosphonium salts and can be generated
using weaker bases.
CH3
Bordwell, F. G.; Zhang, X.-M. J. Am. Chem. Soc. 1994, 116, 968–972.
Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Org. Chem. 1996, 61, 1082–1100.
•
Lithium ions catalyze the reversible formation of betaine 2 (depicted previous page), which
contributes to erosion in stereoselectivity.
O
O
Br
O
1. NaI, NaHCO3
DMF, 100 ºC
2. PPh3, K2CO3
CH3CN, 85 ºC
O
O
Ph3P
O
I–
NaHMDS
THF;
88%
O
H
O
H
+
Ph3P
O
C6H6
Et
23 ºC, 88%
Z : E = 96 : 4
O
OO
Et
OTBS
O
OTBS
O
H
+
Ph3P
C6H6, LiI
Et
Et
23 ºC, 81%
Z : E = 83 : 17
Keinan, E.; Sinha, S. C.; Singh, S. P. Tetrahedron 1991, 47, 4631–4638.
Krüger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499–7504.
Schlosser, M. ; Christmann, K. F. Liebigs Ann. Chem., 1976, 708, 1–35.
Fan Liu
2
Myers
Chem 115
Stereoselective Olefination Reactions: The Wittig Reaction
Examples
• !,"-unsaturated carbonyl compounds can undergo phosphoniosilylation and Wittig olefination to give
substituted enones.
• Industrial synthesis of vitamin A (>1000 tons of vitamin A are produced per year using this
chemistry):
CH3
H3C CH3
CH3
PPh3
Br
CH3
O
+
OAc
NaOCH3
CH3OH
23 ºC, 98%
H
O
OTBS
TBSOTf, PPh3
THF, 23 ºC
CH3
H3C CH3
PPh3+OTf–
CH3
1. n-BuLi, THF, –78 ºC
OH
CH3
O
2.
H3C
vitamin A
H
CH3
Pommer, H. Angew. Chem. 1960, 72, 811–819.
Pommer, H.; Nürrenbach, A. Pure Appl. Chem. 1975, 43, 527–551.
Paust, J. Pure Appl. Chem. 1991, 63, 45–58.
O
OTBS
TBAF
86%, E:Z = 13:1
THF/Hexane
H
H
H3C
O
N
CH3 OTBDPS
Ph3P
N
CH2Cl2, 40 ºC
H
H3C OH
H3C
CH3
O
71%
H3C
H
80%
CH3
H3C
CH3
OTBDPS
H3C
CH3
O
H
H3C OH
Kozikowski, A. P.; Jung, S. H. J. Org. Chem. 1986, 51, 3400–3402.
• Methoxymethylene ylides lead to vinyl ethers, which can be hydrolyzed to aldehydes. An example of
this in synthesis:
Overman, L. E.; Bell, K. L.; Ito, F. J. Am. Chem. Soc. 1984, 106, 4192–4201.
H3C
O
BocHN
NH
OH
(2.00 kg)
O
1. SO3•pyr, DMSO
i-Pr2NEt, CH2Cl2, 23 ºC
2.
Et3P
CO2Et
–5 # 23 ºC, 86%
BocHN
NH
CO2Et
CH3
H
H
H3C H
H3C H
TBSO
O
H
O
I
1.
OCH3
Ph3P
THF, –30 ºC
2. TfOH, i-PrOH
CH2Cl2
77%
H3C
H3C H
H3C H
TBSO
CH3
H
H
O
I
H
O
(2.17 kg)
Chen, L.; Lee, S.; Renner, M.; Tian, Q.; Nayyar, N. Org. Process Res. Dev. 2006, 10, 163–164.
MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 1995, 117, 10391–10392.
Fan Liu
3
Myers
Schlosser's Modification:
• The ylide intermediate can be trapped with formaldehyde, providing a stereospecific synthesis of Ztrisubstituted alcohols (note the hydroxymethyl group is in the C-branch).
• Reaction of non-stabilized phosphonium ylides with aldehydes can be made to favor formation of
(E)-alkenes using a modified procedure.
H
O
PPh3+I–
CH3
O
1. n-BuLi, THF, 0 ºC
2.
Et
H3C
O
O
Chem 115
Stereoselective Olefination Reactions: The Wittig Reaction
1. PhLi, THF, 0 ºC
2.
CH3
H
CH2TMS
CH2OTHP
CH3
3. PhLi, Et2O,
–78 ! 0 ºC
O
Et
H3C
O
OH
–78 ºC
PPh3+I–
CH2OTHP
3. sec-BuLi, –25 ºC
4. (CH2O)n, 0 ºC
CH3
50%, single isomer
Corey, E. J.; Yamamoto, H. J. Am. Chem. Soc. 1970, 92, 6636–6637
O
• Haloalkenes can also be prepared:
O
CH3
CH3
O
CH2TMS
O
1. PhLi•LiBr
O
71%
E:Z = 96:4.
Ph3P
Br
CH3
THF, Et2O
–75 ! 25 ºC
H
2. Ph
THF, –75 ºC
3. BrCF2CF2Br
CH3
Ph
–75 ! 25 ºC
Br
3. PhLi•LiBr
47%, E : Z = 1 : 99
Schmidt, R.; Huesmann, P. L.; Johnson, W. S. J. Am. Chem. Soc. 1980, 102, 5122–5123.
• The presence of soluble lithium salts promotes the reversible formation of betaine 2. Addition of the
second equivalent of PhLi deprotonates the "-position. The resulting #-oxido ylide is hypothesized
to possess a cyclic geometry where steric interactions are minimized between the
triphenylphosphonium group and R2.
R1
+
Ar3P O
PPh3+I–
H
PhLi
R2
H
R1
R2
+
Ar3P OLi
Ar3P OLi
H
H
R2
R1
PhLi
Li
R1
H
R2
OCH3
2.
I–Ph3P+
1. PhLi•LiBr
O
H
• Interestingly, bromination is very sensitive to the size of the alkylidene: increasing the size of the ylide
led predominantly to E-alkenes:
n-Hexyl
THF, Et2O
–78 ! 25 ºC
H3CO
H
O , –78 ºC
3. PhLi•LiBr, –78 ! 25 ºC
4. BrCF2CF2Br, –78 ! 25 ºC
2
LiI
OCH3
H3CO
Br Li
R2
Li
R1
(E)-alkene
Br
Ar3P
R1
Corey, E. J.; Ulrich, P.; Venkateswarlu, A. Tetrahedron Lett. 1977, 18, 3231–3234.
O
82%, E : Z > 99 : 1
n-Hexyl
H
R2
Wang, Q.; Deredas, D.; Huynh, C.; Schlosser, M. Chem. Eur. J. 2003, 9, 570–574.
Hodgson, D. M.; Arif, T. J. Am. Chem. Soc. 2008, 130, 16500–16501.
Fan Liu
4
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Myers
Reviews:
Chem 115
Mechanism:
Wadsworth, W. S., Jr. Org. React. 1977, 25, 73–253.
Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
Kelly, S. E. In Comprehensive Organic Synthesis; Trost, B. M. and Fleming, I. Ed.;
Pergamon: Oxford, 1991, Vol. 1, pp. 729–817.
H O M
W
Applications in Natural Product Synthesis: Nicolaou, K. C.; Härter, M. W.; Gunzner, J. L.; Nadin, A.
Liebigs Ann./Recueil 1997, 1283–1301.
R'
H
R'
(RO)2(O)P R''
O P(OR)2
O M
2E
1E
R'CHO
R''
W
R'
R''
H
W
(E)-alkene
+
Asymmetric Wittig-Type Reactions: Rein, T.; Reiser, O. Acta. Chem. Scand. 1996, 50, 369–379.
O
(RO)2P
M
Development and General Aspects:
• Olefin synthesis employing phosphonium ylides was introduced in 1953 by Wittig and Geissler.
W
R''
R'
H O M
W
R''
Wittig, G.; Geissler G. Liebigs Ann. 1953, 580, 44-57.
P(O)(OR)2
1Z
• In 1958, Horner disclosed a modified Wittig reaction employing phosphonate-stabilized
R'
H
W
R'
R''
O P(OR)2
O M
2Z
H
W
R''
(Z)-alkene
carbanions; the scope of the reaction was further defined by Wadsworth and Emmons.
O
(EtO)2P
CO2Et
1. NaH, DME, 23 °C
O
OEt
W = CO2–, CO2R, CN, aryl, vinyl, SO2R, SR, OR, NR2
+
2. Cyclohexanone,
23 °C, 15 min.
(EtO)2PO2Na
70%
• Phosphonate anion addition to the carbonyl or breakdown of the oxaphosphetane intermediate can
• Phosphonate-stabilized carbanions are more nucleophilic (and more basic) than the
corresponding phosphonium ylides.
be rate-determining, depending on the identity of OR.
• The by-product dialkylphosphate salt is readily removed by aqueous extraction.
• Carbanion-stabilizing group (W) at the phosphonate-substituted carbon is necessary for elimination
• In contrast to phosphonium ylides, phosphonate-stabilized carbanions are readily alkylated:
O
(EtO)2P
1. NaH, DME
O
OEt
2. n-BuBr, 50 °C
O
(EtO)2P
1. NaH, DME
O
OEt 2. CH2O
to occur; nonstabilized phosphonates (W = R or H) afford stable !-hydroxyphosphonates.
Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654-5656.
O
H3C
OEt
CH2
60%, two steps
• The ratio of olefin isomers is dependent upon the stereochemical outcome of the initial addition and
upon the ability of the intermediates to equilibrate.
CH3
Horner, L.; Hoffmann, H. M. R.; Wippel, H. G. Chem. Ber. 1958, 91, 61–63.
Horner, L.; Hoffmann, H. M. R.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2499–2505.
Wadsworth, W. S.; Emmons, W. D. J. Org. Chem. 1961, 83, 1733–1738.
Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
Kent Barbay, Fan Liu
5
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Myers
Michaelis-Becker Reaction:
Acidity of Stabilized Phosphonates in DMSO:
O
(EtO)2P
W
Chem 115
Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463.;
O
EtO P H
EtO
Bordwell, F. G. Unpublished results.
W
pKa
CN
16.4
CO2Et
18.6
corresponding phosphonates:
Cl
26.2
(Ph3P+CH2CN)Cl–: pKa = 6.9
Ph
27.6
(Ph3P+CH2CO2Et)Cl–: pKa = 8.5
SiMe3
28.8
Bordwell, F. G.; Zhang, X.-M. J. Am. Chem. Soc. 1994, 116, 968–972.
( />
1. Na, hexane
2. ClCH2CO2Et
O
EtO P
EtO
O
OEt
58%
• Phosphonium salts are considerably more acidic than the
Kosolapoff, G. M. J. Am. Chem. Soc. 1946, 68, 1103–1105.
Acylation of Alkylphosphonate Anions:
• !-ketophosphonates are prepared by acylation of alkylphosphonate anions:
Preparation of phosphonates:
O
(EtO)2P CH3
Michaelis-Arbusov Reaction:
Review: Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430.
1. n-BuLi, THF,
–60 °C
2. CuI
3.
O
(EtO)2P
O
CH3
CH3
O
86%
H3C
Cl
CH3
O
Br
P(OEt)3
OEt
CH3
O
– EtBr
(EtO)3P
Br
reflux
OEt
CH3
O
EtO P
EtO
O
Mathey, F.; Savignac, P. Tetrahedron, 1978, 34, 649–654.
OEt
CH3
Phosphonate Ester Interchange:
59%
O
(EtO)2P
Arbusov, A. E.; Durin, A. A. J. Russ. Phys. Chem. Soc. 1914, 46, 295.
CH2
CH3
O
O
MeO P
MeO
O
PCl5
OMe
0 " 75 °C
O
O
Cl P
Cl
F3CCH2OH
OMe
DIPEA, PhH
O
F3CH2CO P
F3CH2CO
O
OMe
40%, two steps
• The synthesis of !-ketophosphonates from #-haloketones by the Michaelis-Arbusov reaction can
be impractical due to competing formation of dialkyl vinyl phosphates by the Perkow reaction:
Still, W.C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408.
Bodnarchuk, N. D.; Malovik, V. V.; Derkach, G. I. Zh. Obshch. Khim. 1970, 40, 1210.
Ester Interchange:
O
Br
CH3 100 °C
O P(OEt)3
O
(EtO)3P
(EtO)3P
Br
CH3
H2C
CH3 Br
O
O P(OEt)2
– EtBr
H2C
CH3
major product
(yield not provided)
• The use of isopropyl phosphonates minimizes alkoxy exchange at phosphorus.
CH3
O
(i-PrO)2P
O
(–)-menthol
OMe
cat. DMAP
toluene, reflux
94%
Machleidt, H.; Strehlke, G. U. Angew. Chem. Int. Ed. 1964, 3, 443–444.
Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430.
O
(i-PrO)2P
O
O
H3C
CH3
Hatakeyama, S.; Satoh, K.; Kuniya, S.; Seiichi, T. Tetrahedron Lett. 1987, 28, 2713–2716.
Kent Barbay
6
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Stereoselectivity of HWE Olefination:
Disubstituted Olefins:
TESO
• Reaction of phosphonates with aldehydes favors formation of (E)-alkenes.
H3C
OTBS
CHO
O
O
NaOEt, EtOH
OEt
RCHO
R
R
OEt
Aldehyde
PhCHO
TESO
OTBS
OEt
68% for R = i-Pr
Ratio of products
(E : Z)
R
4
CH3 CH3
O
OEt
O
H3C
+
E
CO2Et
5
LiTMP, THF, –30 °C
CH3 CH3
O
(EtO)2P
O
(RO)2P
Z
Me
Ratio of products
(E : Z)
98 : 2
n-PrCHO
95 : 5
i-PrCHO
84 : 16
1 : 1.2
Et
1.75 : 1
i-Pr
E only
CH(Et)2
E only
Boschelli, D.; Takemasa, T.; Nishitani, Y.; Masamune, S. Tetrahedron Lett. 1985, 26, 5239–5242.
Trisubstituted Olefins:
Larsen, R. O.; Aksnes, G. Phosphorus Sulfur, 1983, 16, 339–344.
Reaction of !-Branched Phosphonates with Aldehydes:
• In a systematic study of the synthesis of disubstituted olefins by HWE, E : Z ratio increases:
(1) in DME relative to THF,
(2) at higher reaction temperatures,
(3) M+ = Li > Na > K,
(4) with increasing !-substitution of the aldehyde.
In general, conditions which increase the reversibility of the reaction (i.e., increase the rate of
retroaddition relative to the rate of elimination) favor the formation of E-alkenes.
• The size of the phosphonate and ester substituents plays a critical role in determining the
stereochemical outcome in the synthesis of trisubstituted olefins – large substituents favor (E)alkenes.
O
(R1O)2P
CHO
CH3
Thompson, S. K.; Heathcock, C. H. J. Org. Chem. 1990, 55, 3386–3388.
O
OR2
CO2R
CH3
t-BuOK, THF
–78 °C
CH3
+
CH3 CH3
CH3 CO2R
(E)-alkene
(Z)-alkene
• Bulky phosphonate and ester substituents enhance (E)-selectivity in disubstituted olefin synthesis:
CH3
BnO
Reagent
CHO
t-BuOK, THF
–78 °C
O
O
(MeO)2P
O
CH3 CO2R
CO2R
+ BnO
Ratio of products
(E : Z)
Reagent
O
(i-PrO)2P
CH3
BnO
95 : 5
OEt
1:3
OMe
R2
Ratio of products
(E : Z)
Me
Me
5 : 95
Me
Et
10 : 90
Et
Et
40 : 60
i-Pr
Et
90 : 10
i-Pr
i-Pr
95 : 5
Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873–3888.
• (Z)-selective olefination with the trimethyl phosphonate (R1, R2 = CH3) is unsuccessful with aromatic
aldehydes. The Still modification of the HWE olefination (see below) can be applied for (Z)-selective
olefination of aromatic aldehydes.
Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873–3888.
R1
Kent Barbay
7
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Olefination of Ketones:
O
• (E)-selectivities are typically modest in condensations with ketones. In some cases, use of a bulky
ester increases the selectivity:
O
H3C
O
H H
O
H
O
H
O
O
O
(MeO)2P
O
OR
CH3
CH3
H3C
O
H3C
O
H
R2
t-BuOK, DMF
H3C CH3
Me
H
R1
O
O
O
O
O
CH3
OTIPS
t-Bu
9:1
76%
H3C CH3
O
MeO
MeOH
single olefin isomer
CH3
2.7 : 1
CH3
OTIPS
K2CO3
O
86%
A: R1 = CO2R, R2 = H
B: R1= H, R2 = CO2R
O
O
CH3CN
1 mM
O
CH3
O
LiCl, Et3N
H
Ratio of products
(A : B)
R
H H
O
H3C CH3
O
O
H3C
H
P(OEt)2
O
O
CH3
OTIPS
HO
• The failure of this hindered ketone to react with Ph3P=CHCO2Et (benzene, reflux) provides an
example of the increased reactivity of phosphonates in comparison to phosphonium ylides.
Evans, D. A.; Carreira, E. M. Tetrahedron Lett. 1990, 31, 4703–4706.
Mulzer, J.; Steffin, U.; Zorn, L.; Schneider, C.; Weinhold, E.; Münch, W.; Rudert, R.;
Luger, P.; Hartl, H. J. Am. Chem. Soc. 1988, 110, 4640–4646.
• Tetrasubstitued olefins can be prepared in some cases, but isomeric mixtures are obtained:
O
Tadano, K.; Idogaki, Y.; Yamada, H.; Suami, T. J. Org. Chem. 1987, 52, 1201–1210.
O
(MeO)2P
O
O
MeO
O
O
O
EtO2C
O
O
Ot-Bu
CH3
CH3O
O
MeO
NaH, LiBr, THF, 23 °C
O
O
P(OEt)2
CH3
H3CO
CH3
EtO2C
OCH3
83%
E
OCH3
+ EtO2C
CH3 OCH3
NaH, THF, 55 °C
CH3 O
O
CH3
CH3O
CH3
CH3
Z
E : Z = 28 : 72
Ot-Bu
77%, 7:1 E : Z
Bestmann, H. J.; Ermann, P.; Rüppel, H.; Sperling, W. Liebigs. Ann. Chem. 1986, 479–498.
White, J. D.; Theramongkol, P.; Kuroda, C.; Engelbrecht, J. R. J. Org. Chem. 1988, 53, 5909–5921.
Single-step two-carbon homologation of esters:
• Control of double-bond geometry in tri-substituted olefin synthesis has been accomplished by the
use of a tethered HWE reagent:
O
H3C CH3
O
O
CH3
OTIPS
O
(EtO)2P
O
(1:1 mixture of diastereomers)
P(OEt)2
O
O
O(CH2)5CO2H
DCC, DMAP, CH2Cl2
HO
OEt
100%
H3C CH3
O
O
O
O
O
(EtO)2P
O
OEt
n-BuLi, THF, –78 °C;
DIBAL-H, –78 ! 23 °C
OEt
O
81%, 91 : 9 E : Z
CH3
OTIPS
• Ester reduction in the presence of the phosphonate minimizes overreduction of the intermediate
O
aldehyde.
Takacs, J. M.; Helle, M. A.; Seely, F. L. Tetrahedron Lett. 1986, 27, 1257–1260.
Kent Barbay
8
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Olefination of Base-Sensitive Substrates (Masamune-Roush Conditions):
(Z)-Selective Olefination – Still Modification of HWE Olefination:
• Masamune and Roush reported mild conditions (LiCl, amine base, ambient temperature) for
Disubstituted olefins:
olefinations employing base-sensitive substrates or phosphonates:
NHCbz
CHO
O
(EtO)2P
O
(CF3CH2O)2P
O
NHCbz
OMe
CHO
H3C
CH3
H3C
KHMDS, 18-crown-6,
THF, –78 °C
CH3
LiCl, DIPEA
CH3CN, 23 °C, 17 h
CH3
O
O
CO2Me
90%, 12 : 1 Z : E
CH3
aldehyde
product
Z:E
yield, %
90%
CHO
H3C
• This aldehyde substrate epimerizes under standard HWE conditions (NaH as base).
H3C
CO2Me
ambient temperature.
O
(EtO2)P
O
OEt
M
solvent
pKa
K
DMSO
19.2
Li
diglyme
12.2
87
4:1
74
>50 : 1
>95
22 : 1
81
CHO
• Addition of LiCl enhances acidity of phosphonate, allows use of weak bases (DBU, i-Pr2NEt) and
M
>50 : 1
CO2Me
CHO
CH3O
CH3O
CH3
• Application of the Masamune-Roush conditions does not alter the inherent (E)-selectivity of the
CO2Me
CHO
H3C
CH3
CH3
CH3
H3C
CO2Me
HWE reaction.
Trisubstituted olefins:
Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T.
Tetrahedron Lett. 1984, 25, 2183–2186.
O
(CF3CH2O)2P
• Application of mild HWE conditions to (Z)-selective olefin synthesis (see adjacent column):
O
O
CHO
H
H3C
O
H
CH3
O
aldehyde
O
O
H3C
MeO2C
CH3
LiCl, DBU, CH3CN
O
H
H3C
H
CHO
H3C
O
CHO
Hammond, G.S.; Cox Blagg, M.; Weimer, D. F. J. Org. Chem. 1990, 55, 128.
>50 : 1
79
CH3
>50 : 1
80
CH3
30 : 1
>95
CO2Me
A
crown-6) yielded only the internal aldol product A.
CH3
H3C
yield, %
CO2Me
80%, 3 : 1 Z : E
• Application of the normal conditions for (Z)-selective HWE (KHMDS, 18-
Z:E
CO2Me
CO2Me
CH3
CH3
88%, 46 : 1 Z : E
product
CHO
CH3
H3C
KHMDS, 18-crown-6,
THF, –78 °C
O
P(OCH2CF3)2
MeO
OMe
CH3
CHO
H3C
O
H
H
H3C CH3
From: Still, W.C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408.
• The electrophilic phosphonate and the use of strongly dissociating conditions favor rapid breakdown
of the oxaphosphetane, resulting in excellent (Z)-selectivity.
Kent Barbay
9
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Trisubstituted olefins:
(Z)-Selective Olefination – (Diarylphosphono)acetates:
Disubstituted olefins:
O
(PhO)2P
O
(ArO)2P
O
OEt
OEt
CHO
CH3
O
NaH, THF
–78 ! –10 °C
R'
RCHO
CH3
R
base, THF
CO2Et
R'
CO2Et
100%, Z : E = 90 : 10
aldehyde
aldehyde
product
CHO
CH3
base
CH3
CO2Et
Me3NBuOH
Z:E
Ar
product
R'
89 : 11
97
n-Pr
CHO o-MePh
Me
CO2Et
CO2Et
91 : 9
Me
Ph
n-Bu
Ph
n-Bu
CO2Et
98
CHO
CHO
CH3
CH3
CO2Et
CH3
TBSO
TBSO
CO2Et
NaH
CHO
97
t-BuOK
97 : 3
100
NaH
96 : 4
91
NaH
95 : 5
85
NaH–LiBr
91 : 9
75
NaH
98 : 2
65
CO2Et
94 : 6
97 : 3
n-Bu
n-Bu
CO2Et
CH3
100
CH3
78
CH3
Ph
i-Pr
Ph
i-Pr
CH3
CO2Et
n-C7H15
CH3
CHO
OCH2Ph
CH3
CH3
CO2Et
PhCH2O
• (Z)-Selectivity was further enhanced using ortho-alkyl substituted (diarylphosphono)acetates:
O
(ArO)2P
89 : 11
98
n-C7H15CHO
CH3
CHO
93 : 7
n-Bu
NaH
Me3NBuOH
n-Bu
CH3
CH3
CH3
Me3NBuOH
yield, %
CH3
o-i-PrPh
CHO
CO2Et
Z:E
CH3
n-Pr
CHO
CHO
NaH
base
yield, %
Ando, K. J. Org. Chem. 1998, 63, 8411–8416.
O
• 93 : 7 – 99 : 1 (Z)-selectivity, 92–100% yield.
OEt
• Aryl, ",#-unsaturated, alkyl, branched alkyl, and
"-oxygenated aldehydes are suitable substrates.
• Masamune and Roush's mild conditions have been adapted for (Z)-selective olefin synthesis using
(diarylphosphono)acetates:
Ar = o-MePh, o-EtPh, o-i-PrPh
• In analogy to Still's (Z)-selective HWE reaction employing [bis(trifluoroethyl)phosphono]acetates, (Z)-
selectivity is attributed to the electron-withdrawing nature of the aryloxy substituent, which
accelerates elimination relative to equilibration of oxaphosphatane intermediates.
Ando, K. J. Org. Chem. 1997, 62, 1934–1939.
• For (diphenylphosphono)acetate esters, (Z)-selectivity increases with increasing steric bulk of the
ester moiety.
Ando, K. J. Org. Chem. 1999, 64, 8406–8408.
O
(PhO)2P
1. NaI, DBU, THF, 0 °C
O
OEt
2.
CH3
CH3
CHO
NHSO2Ar
–78 ! 0 °C
CH3
CH3
ArSO2N
H
CO2Et
89%, 87 : 13 Z : E
• no racemization
Ar = 2,4,6-trimethylphenyl
Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem. 2000, 65, 4745–4749. Kent Barbay
10
Myers
HWE Reaction in Macrolide Synthesis:
Amphotericin B:
(–)-Vermiculine:
H3C
O
O
CH3
O
NaH
O
P(OMe)2
THF, 23 °C
O
5.6 mM
49%
O
S
S CHO
O
O
CH3
O
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
O
S
S
S
S
TBSO
CH3
O
O
O
O
O
O
2
H3C
CHO
OEt
LDA, THF, –78 ! 0 °C
60%
O
O
O
OTHP
TBSO
H3C
O
(–)-Vermiculine
O
O
(EtO)2P
CH3
H3C
O
H3C
OTHP
CH3
OEt
H3C
O
• High-dilution or syringe-pump additions are frequently required to achieve high-yielding
OTBS
macrocyclizations.
Burri, K. F.; Cardone, R. A.; Chen, W. Y.; Rosen, P. J. Am. Chem. Soc. 1978, 100, 7069–7071.
H3C
TBSO
(–)-Asperdiol:
O
P(O)(OEt)2
H
O
O
O
H3C CH3
O
H3C CH3
Me
EEO
CH3
CH3
OMe
DBU, CH3CN, 10 mM
LiCl, 25 °C, 4 h
O
O
70%
OEt
O
O
Me
EEO
CH3CN, 23 °C
3 mM
CH3
OTBS
H3C
CH3
(E) only
61%
TBSO
OCH3
O
O
CH3
O
O
H3C CH3
O
O
O
OH
O
CHO
OEt
HO
O
O HO
CH3
OH
HO
OH
OH
OH O
OH
O
H
H3C
LiCl, DBU
Me
EEO
CH3CN, 23 °C
CH3
4 mM
CH3
O
O
Amphotericin B
HO
CH3
OH
NH2
CH3
30 %
CH3
O
O
H3C
Me
EEO
OMe
H3C
based on ring size and substitution. For example, compare to above:
P(O)(OEt)2
OTBS
O
H3C CH3
• Intramolecular HWE olefinations are usually selective for (E)-alkenes, but the selectivity can vary
H
P(OMe)2
O
Tius, M.A.; Fauq, A. J. Am. Chem. Soc. 1986, 108, 6389–6391.
EtO
O
H
LiCl, DBU
CHO
O
O
CH3
OTBS
H3C
O
EtO
OCH3
O
2:1E:Z
Tius, M. A.; Fauq, A. H. J. Am. Chem. Soc. 1986, 108, 1035–1039.
Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc. 1988, 110,
4685–4696.
Nicolaou, K.C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc. 1988, 110,
4696–4705.
Kent Barbay
11
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Asymmetric HWE:
Asymmetric Olefin Synthesis – Chiral Ester:
Chiral Phosphonamidates:
O
Li
H
H3C
H
O
Ph
O P
N
i-Pr
t-BuLi, THF
H3C
–70 °C;
Li
H
O
(MeO)2P
R' = i-Pr
R
O
R
O
O PR'
N
O
(MeO)2P
CH3
O
Ph
O
Ph
O
n-BuLi, THF;
CH3
CH3
CH3
O
O
CH3
CH3
O
H
H
H
H
O
O
H
H3C
O
O P
N
OTf
OH
R
Ph3COTf, 2,6-lutidine
CH3CN, 60 °C
i-Pr Ph
H
H3C
O
O P
N
R
R
yield, %
CPh3
OH
O
THF, –60 °C
Attack by "-face of phosphonate on
convex face of ketone
R
i-Pr Ph
94-98%, 88-100% de
Ph
O
ee, %
t-Bu
65
>99
Me
72
86
Ph
71
>99
CO2t-Bu
75
95
O
(MeO)2P
O
LiO
H
CH3
Ph
O
CH3
H
Ph
O
syn-elimination
O
CH3
CH3
H
H
93%, 90% de
H
O
CH3
O
CH3
O
O
• Electrophilic attack occurs from the less hindered !-face of the phosphonamidate-stabilized
carbanion. Bulky nucleophiles display high selectivity for equatorial attack on cyclohexanones.
• Stable "-hydroxy phosphonamidates are isolated and transformed to alkenes by electrophilic
activation with trityl salts. This procedure results in stereospecific syn-cycloelimination.
(Attempted base-catalyzed olefin formation led to retroaddition.)
Gais, H.-J.; Schmeidl, G.; Ball, W. A.; Bund, J.; Hellmann, G.; Erdelmeier, I. Tetrahedron Lett.
1988, 29, 1773–1774.
8-phenylmenthol: Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908–6909.
Denmark, S. E.; Chen, C.-T. J. Am. Chem. Soc. 1992, 114, 10674–10676.
Denmark, S. E.; Chen, C.-T. J. Org. Chem. 1994, 59, 2922–2924.
Kent Barbay
12
Myers
Chem 115
Stereoselective Olefination Reactions: Horner-Wadsworth-Emmons Olefination
Discrimination of enantiotopic or diastereotopic carbonyls:
Kinetic Resolution:
H
O
O
(F3CCH2O)2P
Ph
O
3 eq
CH3
CH3
1.1 eq
Ph
O
H3C
H
CH3
O
CH3
O
O
H
+
O
H
CO2R
81%, 98% de
14%, 92% de
OHC
OTBS
CHO
OTBS
H3C
O
O
(F3CCH2O)2P
major product
synelimination
O
H
Ph
O
CO2R
(RL = OR)
CH3
O
H
O
Nu
H
Tullis, J. S.; Vares, L.; Kann, N.; Norrby, P.-O.; Rein, T. J. Org. Chem. 1998, 63, 8284-8294.
1.
CH3
CO2R
P(O)(OR)2
O
53%, 90% de
preferentially bis-olefinated.
O
Attack from !-face of (Z)-enolate
H2C O
CH3 CH3
• Diastereoselectivity is dependent on conversion, because the minor diastereomeric products are
P(O)(OR)2
Felkin-Anh addition
CH3
O
P(OMe)2
Exercise: Based on the previous example, rationalize the stereochemical outcome of these
olefinations. (Note that the phosphonate used in this example is enantiomeric to that used in
the previous example).
O
CH3
O
O
See: Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525-1529.
H
Nu
H H
fast-reacting
enantiomer
K • 18-crown-6
Ph
O
H3C
H
CO2R
O
CO2R
OHC
CH3
O
CH3 CH3
83%, 96% de
CH3 CH3
• Mechanistic hypothesis:
O
CHO
KHMDS, 18-crown-6
THF, –100 °C
• E and Z products are formed from different enantiomers of the starting aldehyde.
H
TBSO
RO2C
Crude Z : E = 85 : 15
O CH2
O
P(OCH2CF3)2
H3C
CO2R
1 eq KHMDS,
18-crown-6
THF, –100 °C
O
O
H
H H
slow-reacting
enantiomer
H3C
Ph
O
O
O
P(OMe)2
H
CO2R
(Slow step may be addition or elimination)
minor product
H3C
Ph
O
O
K
O
P(OMe)2
O
Ph
O
H3C
O
O
P(OMe)2
t-BuOK, THF
O
–50 °C, 30 min
CH3
O
• Incapable of syn-elimination,
therefore reverts
O CH3
O
CH3
• For consideration of the stereochemical outcome of addition to "-alkyloxy aldehydes, see:
H3C
(MeO)2(O)P
CO2R
LiO
CH3
H3C
O
CH3
NaH, DMF, 23 °C
2. Acetone,
Amberlyst-15
H3C
synelimination
O
(CH2)2I
CH3
O
O
(MeO)2(O)P
CO2R
LiO
CO2R
O
O CH3
Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 3353–3361.
O
CH3
• Auxiliary shields "-face of (Z)-enolate
Rein, T.; Kann, N.; Kreuder, R.; Benoit, G.; Reiser, O. Angew. Chem., Int. Ed. Engl. 1994, 33, 556–558.
Rein, T.; Reiser, O. Acta. Chem. Scand. 1996, 50, 369–379.
80%, 98% de
• Attack occurs at either diastereomeric carbonyl from the face opposite the methyl group.
Mandai, T.; Kaihara, Y.; Tsuji, J. J. Org. Chem. 1994, 59, 5847–5849.
Kent Barbay
13
Myers
Advantages over the Wittig Reaction
Reviews
Kelly, S. E. Alkene Synthesis in Comprehensive Organic Synthesis; Trost, S. M.; Fleming, I., Ed.;
Pergamon, Oxford, 1991, 1, 729–818.
Weber, W. P. Peterson Reaction in Silicon Reagents for Organic Synthesis. Springer-Verlag, Berlin,
1983, 14, 58–78.
Magnus, P. Aldrichimica Acta 1980, 13, 43.
Overview
• The Peterson reagents are more basic and nucleophilic and less sterically hindered. As a result, they
are more reactive than phosphorus ylides.
• The byproduct siloxanes tend to be easier to remove than phosphorus byproducts.
Synthesis of Peterson Reagents, Applications
• via halogen-metal exchange
• The Peterson olefination reaction was first reported in 1968. It is considered to be the silicon variant
of the Wittig reaction.
O
n-BuLi
Ph3Si
Br
O
Ph
Chem 115
Stereoselective Olefination Reactions: Peterson Olefination
(H3C)3Si
Ph
MgCl
OH
(H3C)3Si
THF
Ph Ph
KH, THF
Li
Et2O
Ph
Ph
• via Deprotonation
O
(H3C)3Si
Mechanism
R1
OLi
Cy2NLi
OEt
(H3C)3Si
THF, –78 ºC
R2
H3C CH3
R3
CH3
Nu
TBSO
O
R2
Base R3Si
OH
R1
R2
R3Si
Acid
R1
R3
R3
R2
OH2
R2
R2
O
R1
+
H3C CH3
–78 " –25 ºC
82%
Z:E = 93:7
CH3
CO2Et
TBSO
Galano, J.-M.; Audran, G.; Monti, H. Tetrahedron Lett. 2001, 42, 6125–6128.
sec-BuLi
R3
R1
OEt
O
R3Si
R3
Ph
HO
Substituted silanes can be metalated if an anion-stabilizing group is present.
• Magnesium and lithium alkoxides are not prone to elimination while sodium and potassium
alkoxides readily form the product alkene.
R1
Ph3Si
81%
Brook, A. G.; Duff, J. M.; Anderson, D. G. Can. J. Chem. 1970, 48, 561–569.
23 ºC, 86%
Peterson, D. J. J. Org. Chem. 1968, 33, 780–784.
R3Si
H
Ph
Ph3Si
H3CO
Si(CH3)3
THF
–78 " –25 ºC
R3
Li
H3CO
H3C O
Si(CH3)3
O
O
H
H3C CH3
Nu
R3Si
R3Si
R1
R2
R3
OH2
Acid
R1
OH
R3
R2
R3Si
O
Base
R1
R3
R2
• The silicon-substituted carbanion adds irreversibly to the carbonyl substrate, producing a mixture
of diastereomeric !-silylcarbinols. Each diastereomer undergoes stereospecific decomposition to
give either E or Z alkenes depending on the elimination conditions, as shown above.
• when R1 = EWG, the intermediate !-silyl alkoxide undergoes spontaneous fragmentation as it is
formed to give the olefinic products.
H3C
H
OCH3
O
O
H3CO
H3C
KH, THF
TMS
OH O
H
O
0 ºC, 85%
H3C CH3
Z:E = 3:1
H3C CH3 73%
inseparable mixture of diastereomers
Analogous reactions with the corresponding phosphonium and phosphonate reagents were not as
successful.
Magnus, P.; Roy, G. J. Chem. Soc., Chem. Commun. 1979, 822–823.
Kende, A. S. Blacklock, T. J. Tetrahedron Lett. 1980, 21, 3119–3122.
Fan Liu
14
Myers
• Methylenation using commercially available (trimethylsilyl)methyllithium or
(trimethylsilyl)methylmagnesium chloride:
• via addition of organometallics to vinylsilanes
O
Li
EtLi
Si(CH3)3
THF, –78 ºC
Et
H
H3C
Si(CH3)3
Et
91%
Si(CH3)3
OH
O
Et
SPh
23 ºC
Hudrlik, P. F. Peterson, D. Tetrahedron Lett. 1974, 15, 1133–1136.
OTBS
H3C
SPh
H3C CH3
(4.5 equiv)
OTBS
MgCl
O
PivO
CbzHN N
Cbz
Ot-Bu
90%
2. SOCl2, C5H5N
86%
Li
Li
Si(CH3)3
• Reaction with Ph3P CH2 at room temperature was not successful and more forcing conditions
resulted in decomposition.
Si(CH3)3
THF, –78 ºC
CH3
SPh
H
1. (H3C)3Si
O
PivO
CbzHN N
Cbz OOt-Bu
• via reductive lithiation
N(CH3)2
H CH3
Lebsack, A. D.; Overman, L. E.; Valentekovich, R. J. J. Am. Chem. Soc. 2001, 123, 4851–4852.
Z:E = 28:72
H3C
Li
pentane, THF, –78 ºC
2. HF•pyr, CH3CN
23 ºC, 84%
H3C CH3
NaH, HMPA
Et
1. (H3C)3Si
H CH3
H
Et
H3C
Chem 115
Stereoselective Olefination Reactions: Peterson Olefination
H3C
Udodong, U. E.; Fraser-Reid, B. J. Org. Chem. 1989, 54, 2103–2112.
CH3
Stereoselective Synthesis of !-silylcarbinols
O
H3C
O–K+
Ar
Si(CH3)3
anti
H3C
H3C
Ar
Si(CH3)3
+
CH3
O–K+
H3C
CH3
H
KOAc
OBn
OBn
• Because "-silylcarbanion additions to carbonyl compounds are irreversible, the diastereomeric ratio in
the addition step defines the cis/trans-alkene product ratio unless diastereomeric adducts can be
separated and processed individually.
• Other approaches rely on the stereoselective generation of !-silylcarbinols.
96%, Z:E = 5:95
fast elimination
–78 ºC
(H3C)3Si
n-Pr
DIBAL-H
(H3C)3Si
pentane, –120 ºC
n-Pr
n-Pr
n-Pr
BF3•OEt2
97%
H3C
OBn
CH2Cl2, 0 ºC
CH3
n-Pr
n-Pr
99%, Z:E = 94:6
OBn
H3C
n-Pr
OH
O
slow elimination
AcOH, 60 ºC
n-Pr
KH, THF, 23 ºC
syn
Hudrlik, P. F. Peterson, D. Tetrahedron Lett. 1974, 15, 1133–1136.
68%
E:Z = 77:1
• The syn-hydroxysilane in the example above underwent facile (base-mediated) elimination at –
78 ºC while the anti-hydroxysilane did not react until acetic acid was added to give (after
heating) the E-alkene.
Tamao, K.; Kawachi, A. Organometallics 1995, 14, 3108–3111.
Perales, J. B.; Makino, N. F.; Van Vranken, D. L. J. Org. Chem. 2002, 67, 6711–6717.
O
C5H11
Ph
Si(CH3)3
MeLi, Et2O
–78 # 23 ºC
Ph
LiO CH3
C5H11
Ph
Si(CH3)3
C5H11
TFA
–78 # 23 ºC
H3C
57%
E:Z = 9:91
Barrett, A. G. M.; Flygare, J. A. J. Org. Chem. 1991, 56, 638–642.
Fan Liu
15
Myers
Chem 115
Stereoselective Olefination Reactions: Tebbe, Petasis Olefinations
Petasis Modification (1990):
Reviews:
Oleg G. Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–2834.
Petasis, N. A.;Hu, Y.-H. Curr. Org. Chem. 1997, 1, 249–286.
Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo, L.; Clawson, L.; Ho, S.; Meinhardt, D.;
Stille, J. R.; Straus, D.; Grubbs, R. H. Pure Appl. Chem. 1983, 55, 1733–1744.
Ti
Cl
MeLi or
Cl
MeMgBr
Generalized Reaction:
• The Tebbe and Petasis olefinations are useful methods for the methenylation of a wide variety of
carbonyl compounds. The active complex is a titanocene methylidene complex, which can be
generated from either the Tebbe reagent or the Petasis reagent.
CH3
Ti
"-elimination
CH3
Ti CH2
#
titanocene methylidene
Petasis reagent
• This is a milder version of the Tebbe reagent, which avoids generation of the Lewis acidic aluminum
intermediate.
• This reagent is also effective for olefination of silyl esters and acylsilanes.
Ti
O
R1
R2
CH3
Al
CH3
Cl
Ti
or
(Tebbe Reagent)
Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
CH3
Order of Reactivity:
CH3
O
R1
(Petasis Reagent)
R2
O
>
O
>
O
>
R
H
R1
R2
R1
OR
R1
NR2
R
H
R1
R2
R1
OR
R1
NR2
Tebbe reagent (1978):
O
Cp2TiCH2AlCl(CH3)2
!15 ºC, 65%
Acid halides and anhydrides:
Ti
Cl
2 Al(CH3)3
Cl
Al(CH3)2Cl,
CH4
Ti
Al
Cl
CH3
Lewis base
Ti CH2
CH3
Al(CH3)2Cl
• Acid halides provide ketones rather than olefins under Tebbe or Petasis conditions. Anhydrides give
ketones under Tebbe conditions and olefins under Petasis conditions.
O
titanocene methylidene
Tebbe reagent
R
O
or
Cl
R
Cp2TiCH2AlCl(CH3)2
O
Cp2Ti
R
O
H+
O
O
R
R
Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611–3613.
CH3
Cl– or AcO–
Mechanism:
• The Tebbe olefination reaction follows a mechanism similar to the Wittig olefination, but the
titanocene methylidene is generally more nucleophilic and less basic than Wittig reagents.
O
LB
R
O
Ti
Al
Cl
CH3
CH3
Ti CH2
Ti CH2
R1
R1
O
R2
R2
Cp Ti CH2
Cp
Cp2TiO
Cp2Ti(CH3)2
O
O
R
O
R
O
R
Chou, T.-S.; Huang, S.-B. Tetrahedron Lett. 1983, 24, 2169 - 2170.
Advantages:
• Reagents are relatively simple to prepare.
• Relatively bulky carbonyl groups can be olefinated.
• An alternative to the Wittig reaction, and works well on hindered carbonyls.
Disdvantages:
R1
R2
• A full equivalent of the reagent is required.
• Limited to methylenation: substituted olefinations are difficult.
Alpay Dermenci
16
Myers
Chem 115
Stereoselective Olefination Reactions: Tebbe, Petasis Olefinations
R1
• Selective mono- or bis-methylenation of dicarbonyls can be achieved by varying the equivalents of
reagent.
Petasis reagent
O
R2
R1
toluene or THF
R2
Ti
O
Substrate
Temp. (oC)
Product
Yield (%)
O
O
H
H3C
H
H3C
O
Ph
Ph
Ph
60–65
60–65
Ph
CH3
O
(n equiv)
O
43
CH3
O
O
THF, 65 oC
70%
1.0 equiv
10
:
1
2.0 equiv
2
:
1
4.0 equiv
0
:
1
90
O
60–65
60
Ti
O
O
O
O
OCH3
OCH3
60–65
O
O
60–65
CH3
OSi(CH3)2t-Bu
Ph
OSi(CH3)2t-Bu
70
70
Ph
OCH3
OMe
65
67
65
65
O
OEt
OEt
Ph
Ph
N(CH3)2
Ph
N(CH3)2
70
54
O
H3C
SPh
CH3
1.5 equiv
1
:
0
4.0 equiv
1
:
20
CH3
O
CH3
HO
CH3
O
CH3
THF, –78 oC
CH3
76%
Ireland, R. E.; Thaisrivongs, S.; Dussault, P. H. J. Am. Chem. Soc. 1988, 110, 5768 - 5779.
• Site-Selective Olefination:
O
Ph
O
Tebbe reagent
(1.5 equiv)
HO
O
O
Ph
N CH3
• Hindered carbonyls:
O
Ph
41
Ph
Ph
N CH3
toluene, 75 oC
75%
O
O
CH3
(n equiv)
N CH3
60
CH3
H3C
SPh
CH3
Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
Petasis, N. A.; Lu, S.-P. Tetrahedron Lett. 1995, 36, 2393 - 2396.
75
70
H3CO
O
O
N
O
H3C H
Ph
O
Cp2TiMe2 (2.5 equiv)
65 oC, 8 h
THF
O
N
52%
Colson, P.-J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 5918 - 5924.
O
H3CO
O
CH3
Ph
Alpay Dermenci
17
Myers
Chem 115
Stereoselective Olefination Reactions: Tebbe, Petasis Olefinations
• A strained enecarbamate was prepared using Petasis' olefination conditions:
• Acyl chlorides can be converted into the corresponding methyl ketones without epimerization.
CH3
CH3
Cl
Cp2Ti
(1.2 equiv)
Cl
BnO
toluene, 0
CH3
O
OEt
H3C
Ti
O
OH
BocO
oC
HN
NH4Cl
O
HN
77%
CH3
CH3
(90.4% ee)
14 steps
(90.4% ee)
Tandem Olefination/Aldol:
Gelsemoxonine
OH
HO
O
N OMe
H3C
O
Ph
CH3
Cl
Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 8500–8503.
Cl
Cp2Ti
(1.2 equiv)
O
PhCHO
O
Ph
toluene, 0 oC
OH
Ph
Ph
69%
Industrial-Scale Petasis Reaction:
• Dimethyltitanocene was used to produce Aprepitant, a recently approved substance P antagonist
used to prevent chemotherapy-induced nausea and vomiting:
CF3
O
Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 1664–1665.
Tandem Olefination/Metathesis:
O
• Cyclic enol ethers can be prepared through an olefination, ring-closing metathesis cascade
sequence:
N
H
BnO
BnO
H
O
H
H
H
O
O
O
H
CH3
H
BnO
BnO
THF, 25 oC (20 min)
then reflux (5 h), 71%
H
O
H
H
H
O
O
H
BnO
BnO
H
O
H
H
H
O
O
CH3
CH2
H
CF3
H3C
CF3
O
Cp2Ti(CH3)2
(2.9 equiv)
THF, 91%
F
CF3
O
O
steps
N
(250 kg)
N
H
N
F
Ph
HN
(227 kg)
CF3
O
F
N
Aprepitant
(Emend!)
O
H
65%
Tebbe reagent
(1.3 equiv)
THF, 20 min 25 oC
CH3
CF3
O
Ph
Tebbe reagent
(4 equiv)
CH3
H O
N
H
CH3
Ti
OEt
CH3
BnO
76%
BnO
O
H3C
C5H5N, toluene
70 oC, 8 h, 77%
O
O
OH
BocO
Cp2Ti(CH3)2
Tebbe reagent
(2.0 equiv)
THF, 3 h, reflux
CH3
77%
Nicolaou, K. C.; Postema, M. H. D.; Claiborne, C. F. J. Am. Chem. Soc. 1996, 118, 1565–1566.
CF3
Relative reactivity:
O
H3C
H3C
OCH3
CH3
<
O H3C CH3
H3C
O
R
R: alkyl, CH2Ph
O
<
H3C
O
CH3
O
CH3
O
<
CH3
CF3
O
N
Ph
F
Payack, J. F.; Huffman, M. A.; Cai, D.; Hughes, D. L.; Collins, P. C.; Johnson, B. K.; Cottrell, I. F.;
Tuma, L. D. Org. Proc. Res. Dev. 2004, 8, 256–259.
Alpay Dermenci
18
Myers
Stereoselective Olefination Reactions: The Takai Reaction
Chem 115
Haloforms
Reviews:
O
Furstner, A. Chem. Rev. 1999, 99, 991–1045.
H3C
Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1–36.
H
Reaction Overview:
R2
Xa
CrCl2-DMF
THF
R1
E-isomer
(major)
H
R1
THF
Temp (ºC)
time (h)
65
0
50
Cl
I
Brb
X
CHX3, CrCl2
O
R2 CHI2
CHX3, CrCl2, THF
X
H3C
yield (%)
2
2
1
76
82
76
R1
E-isomer
(major)
R2=alkyl, aryl, B(OR)2, SiR3, SnR3
aReaction
bCrBr
conditions: aldehyde (1 equiv), CHX3 (2 equiv), CrCl2 (6 equiv), THF.
LiAlH4 (1:0.5) was employed in lieu of CrCl2.
3 and
• Aldehydes are more reactive than ketones:
Mechanism:
O
O
CHX3
E/Z
95/5
83/17
95/5
2 CrCl2
X
CrIIIX2
CrIIIX2
X2CrIIIO
O
+
H
R1
R1
H
H X
CHI3, CrCl2
CHO
H3 C
I
H3C
75% (E/Z = 81:19)
THF, 0 oC
I
CrIIIX2
I
H3C
5%
X
R1
(E)-alkenyl halide
(major)
+
R1
X
(Z)-alkenyl halide
(minor)
Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408–7410.
1,1-Geminal Dihalides
CH3
O
H
General Trends:
• Reactivity is dependent on the haloform: I > Br > Cl.
• E/Z ratios are greatest in the order Cl > Br > I.
• Aldehydes react faster than ketones.
• The E-isomer is the predominant product for both haloforms and 1,1-geminal dihalides.
H3C
THF, 97%
E:Z = 94:6
CH3
Disadvantages
• Stoichiometric amounts of by-products are generated.
• Excess reagent is typically required.
H3C
H3C
CH3
t-Bu
t-BuCHI2
CrCl2-DMF
O
Advantages
• Reagents are readily available.
• Reaction is selective for the E-isomer.
• High functional group tolerance.
CH3CHI2, CrCl2
H
THF, 90%
E:Z = 94:6
H3C
Okazoe, T.; Takai, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 951–953.
Alpay Dermenci
19
Myers
Chem 115
Stereoselective Olefination Reactions: The Takai Reaction
• Olefination of ketones:
H3C
O
I
CHI3, CrCl2
OH
CH3
O
NBoc
O
t-Bu
THF
t-Bu
H
CH3 CH3 CH3
H3C
OH
CrCl2, CHI3
O
NBoc
I
THF-dioxane
CH3
CH3 CH3 CH3
96%
Lin, Y.-Y.; Wang, Y.-J.; Lin, C.-H.; Cheng, J.-H.; Lee, C.-F. J. Org. Chem. 2012, 77, 6100–6106
O
H2N
O
Takai Olefination in Natural Product Synthesis
H
CH3
CH3
H3CO
CH3
OH
H
NHAc
O
TBSO
CH3
HO
2. PPTS, EtOH
H
64% (2 steps)
O
I
O
CH3 CH3
Superstolide A
O
1. CrCl2, CHI3, THF
O
H3C
OH
CH3
CH3
Tortosa, M.; Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2008, 73, 9657 - 9667.
O
Sch-642305
CH3
CH3
SEMO
Dermenci, A; Selig, P. S.; Domaoal, R. A.; SpasovK. A.; Anderson, K. A.; Miller, S. J. Chem.
Sci. 2011, 2, 1568–1572.
SEMO
OH
OTHP
Cl
H3C
CH3
OTES
CH3
CHO
CrCl2, CHCl3
THF, 65 ºC
Cl
H3C
OTES
CH3
CH3
1. DMP
I
2. CrCl2, CHI3, THF
CH3
69%
Cl
OTHP
23 ºC, 77%
E:Z = 19:1
CH3
CH3
HO
OH
CH3
H
O
Br
CH3
Cl
H3C
Cl
aplysiapyranoid C
Jung, M. E.; Fahr, B. T.; D'Amico, D. C. J. Org. Chem. 1998, 63, 2982–2987.
CH3
O
H3C
O
CH3
Amphidinolide J
Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198–11199.
Alpay Dermenci
20
Myers
Chem 115
Stereoselective Olefination Reactions: The Julia Olefination
Reviews
• The reductive elimination step can follow two different pathways depending on the reducing agent,
however each pathway shows a preference for forming the E-olefin isomer.
Dumeunier, R.; Marko, I. E. Modern Carbonyl Olefination 2004, 104–150.
Julia, M. Pure Appl. Chem. 1985, 57, 763–768.
Na(Hg)/MeOH Reduction:
Reaction
• The Julia olefination and modified Julia olefination reactions involve the coupling of aryl sulfones
with aldehydes or ketones to provide olefins.
• Initial Report:
SO2Ar
Ph
1. n-BuLi (2 equiv)
2. MgI2 (2 equiv)
3.
Ph
PhO2S
O
Al/Hg
Ph
90%
Ph
H
Ph
O
Ar
S
Ph
NaOCH3
MeO
SO2Ar
H
R4
O
R1
H R2 O
R2
–ArSO2Na
• Typically, strong bases and stoichiometric quantities of reagents are required.
SO2Ar
R2
O
R3
R1
R1
ArO2S
R4
O
R1
R3
O
R2
H
Reductant
E-isomer
H
X
R4
R3
R1
(E)-alkene
Ar
SO2Ar
H
R4
O
R1
H R2 O
R2
H
R2
R1
SmI2 Reduction:
O
Base
1 e"
H
Z
(disfavored)
MeOH
• Often Julia olefination requires trapping of the initially formed !-oxido sulfone, which is then
reduced to give the E-alkene.
SO2Ar
O
R1
R2
R3
1 e"
Na(Hg)
R2
H
• The reaction predominantly forms (E)-olefins
Na(Hg)
R2
R1
E
(favored)
R1
S O
H
H
R2
O
R1
R2
R1
H
Pascali, V.; Umani-Ronchi, A. J. Chem. Soc., Chem. Comm. 1973, 351.
Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 49, 4833–4836.
SO2Ar
Ar
O–Na+
R1
Ph
Ph
Ph
SO2Ar
H
R4
O
R1
H R2 O
H
R1
R2
SmI2
R1
1 e"
H
OCOR4
O
OSmI2
S
R4
O
H
H R2 O
H R2 O
SmI2
H
1 e"
R1
R2
H
OCOR4
R4
O
R1
R1
H
R2
H
OCOR4
• A variety of different trapping and reducing agents can be used.
H
Trapping agents: Ac2O, BzCl, MsCl, TsCl
Reducing agents: SmI2 (most common), RMgX, Bu3SnH, Li or Na in ammonia, Na2S2O4,
Raney/Ni, Al(Hg) amalgam, LiAlH4, SmI2/HMPA
R2
R1
E-isomer
H
Keck, G. E.; Savin, K. A.; Weglarz, M. A. J. Org. Chem. 1995, 60, 3194–3204.
Alpay Dermenci
21
Stereoselective Olefination Reactions: The Julia Olefination
Myers
• Second-generation Julia olefination reactions employ an one-pot procedure: use of specially
designed heterocycles allows for in situ reductive elimination to occur, via a Smiles
rearrangement-like mechanism.
Julia-Silvestre
• In general, the E/Z ratio is dependent on reaction conditions, with PT-sulfones giving higher Eselectivities.
Julia-Kocienski
Ph
N N
N N
S
Ar:
Ar:
N
SO2Het
1-phenyl-1H-tetrazole
"BT-sulfone"
"PT-sulfone"
Mechanism:
N
Base
R1
O O
S
N
S
O
R1
R1
H
1. (Me3Si)2NM
CH3
benzothiazole
O O
S
Chem 115
O O
S
N
S
S
O
BT-sulfone
Yield (%)
E/Z
PT-sulfone
Yield (%)
Li
2
70 : 30
94
72 : 28
Na
32
75 : 25
95
89 : 11
4
76 : 24
81
99 : 1
Solvent
M
DME
K
R1
CH3
2. c-C6H11CHO
E/Z
R2
Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett. 1998, 26–28.
R1
R1
O
N
R2
S
R2
S
O
N
O
O O
S
S O
R1
• Origin of Selectivity:
R2
closed transition state
N
+
O
S
N N
N
N
Ph
O S HO
R1
SO2
H R2
Sulfone Preparation
Ph
N
N
SH
N N
commercially
available
1. DIAD, PPh3, THF
0 ! 23 ºC, 89%
OH
CH3
CH3
N N
N
N
SO2
Ph
2. m-CPBA, NaHCO3
CH2Cl2, 23 ºC, 68%
Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett. 1998, 26–28.
CH3
R1
CH3
R1
Li
H
R2
O
SO2PT
R2
O
Li
open transition state
SO2PT
O
H
Smiles
rearrangement
O
PT S H O K
R1
R2
O
H
R1
R2
R1
SO2PT
R2
O
R1
H
SO2PT
R2
O
H
Smiles
rearrangement
R1
R2
PT-sulfone
Alpay Dermenci
22
Stereoselective Olefination Reactions: The Julia Olefination
Myers
Examples
• Application to the synthesis of BMS-644950, a next-generation statin candidate:
OTBS
OTBS
TBDPSO
CH3
+
H
O
PTO2S
H
F
CH3 CH3
CH3
CH3
N
N
N N
E:Z
NaHMDS, THF, –78 oC
1:8
LiHMDS
DMF, DMPU, –35 oC
O
TBDPSO
N
N
O
+
O
CH3
CH3
H
CH3
O NH4
HO
•H2O
N
N
N N
O
N
+
t-Bu
OCH3
O
H3C CH3
(168.5 g)
(27.6 kg)
N N
N
N
CH3
CH3
(33.6 kg)
74%, E : Z = 91 : 1
O
H
O
N
N
BMS-644950
O
O
CH3
O
i-Pr
90%
CH3
Ot-Bu
F
1. HCl
2. NH3
N
N
H3C
O
H3C
O
O
i-Pr
S
2. EtOH, H2O
(crystallization)
CH3
• The Julia olefination reaction was applied to the synthesis of LAF389, an anti-cancer agent. The
addition of TMSCl was found to be crucial: the authors propose that TMSCl stabilizes the anionic
intermediate and the sensitive aldehyde substrate by attenuating the basicity of the reaction.
S
S
O
CH3 CH3
F
t-Bu
1. LHMDS, THF
CH3
Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 10772 - 10773.
O
O
(38.4 kg)
HO
O
Ot-Bu
N
N Ph
N N
(27.5 kg)
OTBS
OTBS
>30:1
H3C
O
H3C
O
i-Pr
Conditions
Conditions
O
O
O
O
Chem 115
(120.0 g)
1. n-BuLi, TMSCl
THF, CH3CN
2. MTBE
(crystallization)
OCH3
O
O
H3C CH3
(65.9 g)
45%, single isomer
Xu, D. D.; Waykole, L.; Calienni, J. V.; Ciszewski, L.; Lee, G. T.; Liu, W.; Szewczyk, J.; Vargas, K.;
Prasad, K.; Repic, O.; Blacklock, T. J. Org. Process Res. Dev. 2003, 7, 856–865.
Hobson, L. A.; Akiti, O.; Deshmukh, S. S.; Harper, S.; Katipally, K.; Lai, C. J.; Livingston, R. C.; Lo,
E.; Miller, M. M.; Ramakrishnan, S.; Shen, L.; Spink, J.; Tummala, S.; Wei, C.; Yamamoto, K.;
Young, J.; Parsons, R. L. Org. Process Res. Dev. 2010, 14, 441–458.
Alpay Dermenci, Fan Liu
23