Tải bản đầy đủ (.pdf) (10 trang)

30 cyclobutane synthesis

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.19 MB, 10 trang )


O

MV2+ = methyl viologen (N,N'-dimethyl-4,4'-bypyridinium)
H3C N

H3CO

Ph

visible light
MgSO4, MeNO2
88%, dr >10:1

O

5 mol% Ru(bpy)3(PF6)2
15 mol% MV(PF6)2

H

H
O

• Limitation of the method: at least one of the styrenes must bear an electron-donating substituent
at the para or ortho position. Aliphatic olefins are not suitable reaction partners.

N CH3

• Mechanism:


*Ru(bpy)32+
strong
reductant

visible light

• Photoredox catalysis can also be used for [2+2] cycloadditions of enones:

N CH3 (MV2+)

H3C N

Me N

+1 e-

N Me

Ph

(MV-radical)
Ru(bpy)32+
photocatalyst

O

O

Ph


product

Ru(bpy)33+
strong oxidant

visible light
Ru(bpy)3Cl2 (5 mol%)

O

O

H

H

Ph

Ph

LiBF4, i-Pr2NEt
MeCN, 89%, dr >10:1

MV2+
-1 e-

+1 e–

OCH3


p-CH3OC6H4

MV-radical

Ph
OR

p-CH3OC6H4

O

O

Ph
H

H
O

O

Ph

CH3
CH3

visible light
Ru(bpy)3Cl2 (5 mol%)
LiBF4, i-Pr2NEt
MeCN, 84%, dr >10:1


O
Ph

O
CH3

H3C

• Upon photoexcitation, the photocatalyst (Ru(bpy)3(PF6)2) acts as a strong reductant, reducing MV
by a single electron.
• The resulting Ru(III) species acts as a strong oxidant, which oxidizes the electron-rich styrene to
produce a radical cation and regenerates photocatalyst.
• The resulting radical cation undergoes cyclization.

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572–8574.

Ischay, M. A.; Anzovino, M.E.; Du, J.; Yoon, T.P. J. Am. Chem. Soc. 2008, 130, 12886–12887.
Du, J.; Yoon, T.P. J. Am. Chem. Soc. 2009, 131, 14604–14605.

Danica Rankic

7


Myers

Chem 115

Cyclobutane Synthesis


• Mechanism:

• An intramolecular variant was also developed.
• The product can be converted to acids, esters, thioesters and amides:

visible light
*Ru(bpy)3

2+

i-Pr2NEt

Li

O

LiBF4

Ph

Ru(bpy)32+

O

N

i-Pr2NEt

+1 e–

Ru(bpy)3+

Li

–1 e–

CH3
O

N

O

visible light
Ru(bpy)3Cl2 (2.5 mol%)

OBn

LiBF4, i-Pr2NEt
MeCN, 87%, dr >10:1

O

Ph

Ph
Me

CH3


Me

O

O

O

H

H

BnHN

CH3

O

O

N H

H

H3C
N

OBn

1. MeOTf, CH2Cl2

67%
2. BnNH2, DBU
CH2Cl2, 98%

OBn

98%, dr >10:1
Li

O

O
Ph

–1 e–
CH3

Ph

H3C

Li

O

O

CH3

H3C


Tyson, E. L.; Farney, E. P.; Yoon, T. P. Org. Lett. 2012, 14, 1110–1113.

O

O

Ph

CH3

• Styrenes and alkenes undergo [2+2] cycloaddition in the presence of an Ir catalyst (III) and light.
The catalyst functions as a photosensitizer.

H3C

CF3

F
• Lewis acid coordination decreases the reduction potential of the enone, facilitating single electron
transfer.
• Limitation of the method: one coupling partner must be an aromatic ketone. Aliphatic ketones and
esters do not under go cycloaddition because of their higher reduction potentials.

Ph

CH3

visible light
III (1 mol%)


CH3
CH3
H

Ph

CH3

H
DMSO, 83%

O

N

F

OH
EtO2C
H3C
O

H3C
N
N

visible light
Ru(bpy)3Cl2 (2.5 mol%)


O
CH3
i-Pr

LiBF4, i-Pr2NEt
MeCN, 73%, dr >10:1

H3C
N

O

CH3

F

N
N

O

F

CH3
O

CH3

EtO2C


DMSO, 86%

H3C

t-Bu
CF3

III

H3C CH3
H
H


O

CH3

O
CH3

N
i-Pr

HO

visible light
III (1 mol%)

PF6–


IrIII

Ischay, M. A.; Anzovino, M.E.; Du, J.; Yoon, T.P. J. Am. Chem. Soc. 2008, 130, 12886–12887.
Du, J.; Yoon, T.P. J. Am. Chem. Soc. 2009, 131, 14604–14605.

• !,"-Unsaturated 2-imidazolyl ketones also undergo photochemically induced cycloadditions:

t-Bu

N

HO
HO2C
H3C

H3C CH3
H
H


O

LiOH
60 ºC
97%

CH3

(±)-cannabiorcicyclolic acid

Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2012, 51, 10329–10332

Danica Rankic

8


Myers

Chem 115

Cyclobutane Synthesis

• Other Methods for Cyclobutane Synthesis

• Gold(I)-Catalyzed Ring Expansion of Cyclopropanes

• Brook Rearrangement of 1,4-Dicarbonyls

• Alkynyl cyclopropanols can undergo ring expansion upon treatment with catalytic Au(I):

• Treatment of keto acylsilanes with organolithium reagents produces highly functionalized
cyclobutanes favoring cis-stereochemistry between newly formed alcohols

t-Bu
PhLi, THF
i-Pr

TBS
O


O

–80 " –30 ºC

TBSO
Ph

OH
i-Pr

HO
Ph

67%

HO

OTBS

[(p-CF3C6H4)3P]AuCl (0.5 mol%)
AgSbF6 (0.5 mol%)

O

CH2Cl2, 23 ºC, 98%

i-Pr

single isomer


10%

Mechanism:

• The mechanism is proposed to involve a stereospecific 1,2-alkyl shift:

i-Pr

TBS
O

Ph

O

TBSO
Ph

i-Pr
O TBS O

OH
i-Pr

Ph Li

[(p-CF3C6H4)3P]AuCl (1 mol%)
AgSbF6 (1 mol%)


Ph

O

TBSO
CH2Cl2, 23 ºC, 94%

Brook rearrangement

H3C

H3C

CH3

AuL
• Ring Expansion of Cyclopropanes via Pinacol-Type Rearrangements

TBSO

• Hydroxycyclopropyl carbinols can be ring-expanded by treatment with protic or Lewis acids.

H3C

• Either cis- or trans-substituted cyclobutanones could be produced from a single diastereomer of a
an !-hydroxycyclopropyl carbinol:

BF3•Et2O
(20 mol%)


O
n-Bu

80%
17:1 cis:trans

concerted
migration proposed

THF, 23 ºC

HO

Ph
CH3

H+

Takeda, K.; Haraguchi, H.; Okamoto, Y. Org. Lett. 2003, 5, 3705–3707.

Ph

t-Bu

p-TsOH•H2O
(10 mol%)

O

CHCl3, 23 ºC


Ph

Ph

AuL
O

CH3

H3C

Ph

CH3

Markham, J. P.; Staben, S. T.; Toste, D. F. J. Am. Chem. Soc. 2005, 127, 9708–9709.

n-Bu

Ph
OH

single diastereomer

n-Bu

94%
1:17 cis:trans


thermodynamic
product

Hussain, M. M.; Li, H.; Hussain, N.; Urena, M.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc.
2009, 131, 6516–6524.

Danica Rankic

9


Myers

Chem 115

Cyclobutane Synthesis

• Cu-catalyzed 1,4-Ring closure

• The products can be derivatized:

• Homoallylic sulfonates can undergo borylation/cyclization using a CuI catalyst:

Bn(H3C)2Si

OMs
Ph

CuCl (5 mol%)
dppp (5 mol%)

Ph
B2pin2, KOt-Bu
THF, 23 ºC

H3C CH
3
CH3
O
B O CH3

O

CH3
CH3
CH3
CH3

O
B B

O

O

B2pin2

CuCl (5 mol%)
dppp (5 mol%)

(H3C)2PhSi


OMs

(H3C)2PhSi

H3C
H3C
H3C
H3C

H3C CH
3
CH3
O
B O CH3

1. TBAF, THF
23 ºC
2. H2O2, KHCO3
CH3OH, 23 ºC

OBz

49% (2 steps)

(dppp)Cu
(dppp)CuI-Bpin

R2


OBz

Bpin
H

R1
OMs

+KOt-Bu

Bpin

HO

OMs

(dppp)CuIOt-Bu

R1

OBz

R1

pinB Ot-Bu
pinB!Bpin

OBz

HO


1. TBAF, THF
23 ºC
2. H2O2, KHCO3
CH3OH, 23 ºC
57% (2 steps)

R2

R2

Bn(H3C)2Si

2. PhCOCl, C5H5N
CH2Cl2, 0 ºC
61% (2 steps)

1. LiCH2Cl, THF
–78 " 23 ºC
2. H2O2, NaOH
THF, 0 ºC
3. PhCOCl, C5H5N
CH2Cl2, 0 ºC
73% (3 steps)
R3Si

1. H2O2, NaOH
THF, 0 ºC

B2pin2, KOt-Bu

THF, 23 ºC

• Mechanism:

CuCl

BPin

R2
R1

R2 Bpin
H
tBuO CuIII
dppp
R1

t-BuO
K+

CuI
dppp

Bpin

Ph

BPin

1. BCl3, CH2Cl2

23 ºC

Ph

NHBn

2. BnN3, CH2Cl2
0 ºC, 57%

• Note that in each case the stereochemistry of the starting material is preserved in the product.

H
OMs

KOMs

• Limitation of the method: only aryl- or silyl-substituted olefins react; alkyl olefins do not undergo
borocupration.

Ito, H.; Toyoda, T.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 5990–5992.

Markham, J. P.; Staben, S. T.; Toste, D. F. J. Am. Chem. Soc. 2005, 127, 9708–9709.
Danica Rankic

10



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×