Myers
Chem 115
The Heck Reaction
Reviews:
Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E.Tetrahedron 2011, 67, 2815–2831.
• Pd(II) is reduced to the catalytically active Pd(0) in situ, typically through the oxidation of a
phosphine ligand.
Belestskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066.
• Intramolecular:
Link, J. T.; Overman, L. E. In Metal-catalyzed Cross-coupling Reactions, Diederich, F., and
Pd(OAc)2 + H2O + nPR3 + 2R'3N
Eds.; Wiley-VCH: New York, 1998, pp. 231–269.
Pd(PR3)n-1 + O=PR3 + 2R'3N•HOAc
Gibson, S. E.; Middleton, R. J. Contemp. Org. Synth. 1996, 3, 447–471.
Ozawa, F.; Kubo, A.; Hayashi, T. Chemistry Lett. 1992, 2177–2180.
• Asymmetric:
McCartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122–5150.
• Ag+ / Tl+ salts irreversibly abstract a halide ion from the Pd complex formed by oxidative
addition. Reductive elimination from the cationic complex is probably irreversible.
• Solid phase:
Franzén, R. Can. J. Chem. 2000, 78, 957–962.
• Dehydrogenative:
• An example of a proposed mechanism involving cationic Pd:
Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170–1214.
General transformation:
Pd(II) or Pd(0) catalyst
R–X
+
Pd catalyst
Ph–Br
R'
R = alkenyl, aryl, allyl, alkynyl, benzyl
R'
R
base
X = halide, triflate
CH3O2C
R' = alkyl, alkenyl, aryl, CO2R, OR, SiR3
Pd(II)
AgCO3–
reductive elimination
Mechanism:
Pd catalyst
CH3O2C
2 L; 2 e –
KHCO3 + KBr
K2CO3
H–Pd(II)L2–Br
Ph–Pd(II)L2–Br
syn elimination
CH3O2C
oxidative addition
internal rotation
CH3O2C
Ph
H
CH3O2C
H
CH3O2C
Pd(II)L2Br
H
Ph
H
H
CH3O2C
internal rotation
Pd(II)L2Br
Ph
H
H
Ph–Br
oxidative addition
Ph–Pd(II)L2–Br
Ph
syn elimination
Ph–Br
Pd(0)L2
Pd(0)L2
H–Pd(II)L2+
Ph
CH3O2C
Pd(II)
reductive elimination
2 L; 2 e –
AgHCO3
CH3O2C
Ph
HX
+
• Proposed mechanism involving neutral Pd:
Ph–Br
CH3O2C
Ag+
Ag +
AgBr
Pd(II)L2+
H
Ph
H
Ph–Pd(II)L2
H
CH3O2C
Pd(II)L2+
Ph
H
H
halide abstraction
+
CH3O2C
syn addition
syn addition
Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4133–4135.
Andrew Haidle, James Mousseau
Myers
Chem 115
The Heck Reaction
• Reactions with vinyl or aryl triflates often parallel those of the corresponding halides in the
presence of silver salts in yields.
TMS
TMS
I
I
Time, h
Yield, %
PPh3 (6 mol %)
1
24
50
DMF, 23 °C
1
48
35
2
5
80
N
SO2Ph
I
Pd(OAc)2 (3 mol %)
Ag2CO3, eq
Pd(OAc)2 (3 mol %)
N
SO2Ph
Et3N
DMSO, 100 °C, 15 h
57%
12%
CH3
30%
Sakamoto, T.; Kondo, Y.; Uchiyama, M.; Yamanaka, H.
GC yields
TMS
TMS
I Pd(OAc)2 (3 mol %)
By-product:
N
SO2Ph
J. Chem. Soc. Perkin Trans. 1 1993, 1941–1942.
TMS
OTf
Pd(OAc)2 (3 mol%)
AgNO3, Et3N
Et3N
DMSO, 50 °C, 3 h
DMSO, 50 °C, 3 h
64%
61%
• With some ligands, experimental evidence points to a Pd(II)/Pd(IV) catalytic cycle.
Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. J. Am. Chem. Soc. 1997, 119, 11687–11688.
Shaw, B. L.; Perera, S. D.; Staley, E. A. J. Chem. Soc., Chem. Commun. 1998, 1361–1362.
Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S.; Chem. Rev. 2010, 110, 824–889.
Karabelas, K.; Hallberg, A. J. Org. Chem. 1988, 53, 4909–4914.
• Reversible !-hydride elimination can lead to alkene isomerization.
H–Pd
*
*
*
Conditions:
Pd H
Pd
Pd(OAc)2
• Catalysts:
Pd2(dba)3
• Use of silver salts can minimize alkene isomerization.
stable Pd(0) source; useful if substrate
O
O
CH3
N
O
most common
CH3
N
is sensitive to oxidation
O
N
CH3 I
dba
=
Conditions
Pd(OAc)2 (1 mol %)
PPh3 (3 mol %)
Et3N (2 equiv)
• Ligands: Phosphines (PR3), used to prevent deposition of Pd(0) mirror.
1 : 1
• Solvents: Typically aprotic; a range of polarities.
acetonitrile, 3h, reflux
as above, plus
AgNO3 (1 equiv) and 23 °C
26 : 1
Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4133–4135.
Solvent
Dielectric constant
toluene
THF
1,1-dichloroethane
DMF
2.4
7.6
10.5
38.3
Andrew Haidle, Fan Liu
Myers
Chem 115
The Heck Reaction
Regiochemistry of addition:
• Bases: both soluble and insoluble bases are used.
Soluble examples
Insoluble examples
Et3N
CH3
CH3
N
CH3
CH3
CH3
K2CO3
• Neutral Pd complexes: regiochemistry is governed by sterics; position of Ar attachment:
10
Ag2CO3
CH3
Ph
OH
1,2,2,6,6-pentamethylpiperidine (PMP)
40
• Jeffery conditions: The combination of tetraalkylammonium salts (phase-transfer catalysts) and
CO2CH3
Pd(OAc)2 (5 mol %)
NaHCO3, 3Å-MS
DMF, 50 °C, 2 h
Equiv. of n-Bu4NCl
GC Yield(%)
0
2
1
99
Jeffery, T. Tetrahedron 1996, 52, 10113–10130.
20
O
insoluble bases accelerates the rate to the extent that lower reaction temperatures are possible.
CO2CH3
100
90
100
I
Y
N
100
• Cationic Pd complexes: regiochemistry is affected by electronics. The cationic Pd complex
increases the polarization of the alkene favoring transfer of the vinyl or aryl group to the site of
least electron density.
95
40
5
100
Y
N
100
Pd2(dba)3 (1.5 mol %)
P(t-Bu)3 (6 mol %)
CO2CH3
Cs2CO3 (1.1 equiv)
dioxane, 120 °C, 24 h
82%
CH3O
95
90
O
• Conditions for the Heck coupling of aryl chlorides have been developed.
OH
OH
60
Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 8375–8384.
100
CH3
Ph
likely to decompose under the Heck reaction conditions.
CH3O
mixture
80
Y = CO2R
CN
CONH2
complexes can be stabilized by the coordination of halide ions; thus, the catalyst is less
CO2CH3
OAc
OH
60
• One proposed explanation for this rate enhancement is based on the fact that palladium
Cl
OH
OAc
OH
10
5
Y = CO2R
CN
CONH2
Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2–7.
Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S.; Santi, R. J. Org. Chem. 1992, 57, 1481–1486.
Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10–11.
Andrew Haidle
Myers
Chem 115
The Heck Reaction
• A major issue in intramolecular Heck reactions is the mode of ring closure, i.e., exo versus endo.
• Conformational effects are more important when forming
endo
the reaction, even if this means the rest of the molecule
H
PdLn
exo
endo
LnPd
LnPd
R
smaller rings. The eclipsed orientation is preferred for
R
eclipsed
must adopt a less than ideal conformation.
twisted
O
O
exo
I
stereochemistry defines the
incipient quaternary center
O
• For large rings, conformational effects can be minimal. If a neutral Pd complex is used, sterics
NHCO2CH3
O
enforce endo selectivity.
O
• The Heck reaction is useful for macrocylization.
Pd(OAc)2 (10 mol %)
O
I
O
PPh3 (40 mol %)
O
Ag2CO3, THF, 66 °C
PdCl2(CH3CN)2 (100 mol %)
73%
Et3N
CH3CN, 25 °C
55%
CH3 H O
O
O
CH3
H
PdLn
O
CH3O2CN
H
NHCO2CH3
O
O
PdLn
O
H
O
• Five-, six-, and seven-membered ring closures (the most efficient Heck ring closures) give
predominantly exo products.
H
I
OBn
O
O
H
O
CH3O2CN
H
O
OBn
O
O
DBSN
O
> 20 : 1
H
O
O
OH
(–)-Morphine
O
OH
H
CH3N
DBS = dibenzosuberyl
O
NHCO2CH3
OCH3
60%
O
twisted (chair)
O
(10 mol %)
PMP, toluene, 120 °C
CH3O
eclipsed (boat)
O
Pd(OCOCF3)2(PPh3)2
DBSN
O
O
Ziegler, F. E.; Chakraborty, U. R.; Weisenfeld, R. B. Tetrahedron 1981, 37, 4035–4040.
H
Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028–11029.
CH3O
OH
O
N
H CH
3
(±)-6a-epipretazettine
Overman, L. E. Pure & Appl. Chem. 1994, 66, 1423–1430.
Andrew Haidle
Myers
• Variation of reaction conditions can greatly influence exo versus endo selectivity in small rings.
Pd(OAc)2 (6 mol %)
NHR
N
CH3O
O
N
O
CH3O
NHR
NHR
N
CH3
CH3O
O
O
H
OBn
O
4Å MS, 90 °C
O
49%
O
O
N
H
syn addition
Ar
H–Pd–X
R
!-H elimination
Ar
R
Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170–1214.
• Early examples of dehydrogenative processes did not employ oxidants and were stoichiometric in
palladium.
O
O
Ar–Pd–X
PdX
O2, HPMo11V, PhI(OAc)2,
benzoquinone, t-BuOOH,
KMnO4, Na2S2O8, Cu(OAc)2
O
H3C
• Steric and electronic effects begin to
compete with conformational effects
when forming medium–sized rings.
H–X
H–X
O
H OBn
Ar–H
Pd0
CH3
CH3
K2CO3, CH3CN
O
Some oxidants:
oxidative addition
PdX2
oxidant
CH3 OTBS
HX
R' = alkyl, alkenyl, aryl, CO2R, OR, SiR3
reduced oxidant
Catalyst
Regeneration
Pd(PPh3)4 (100 mol %) CH3
+
Mechanism:
32%
CH3
X = halide, triflate
O
Rigby, J. H.; Hughes, R. C.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 7834–7835.
R
Ar
base
• Proposed mechanism:
CH3O
Et3N, CH3CN
80 °C, 2 h
• The authors' rationale for these results is that under the Jeffery conditions, the coordination sphere
of palladium is smaller, and thus the metal can be accommodated at the more substituted alkene
site during migratory insertion.
OTBS
Pd(II) catalyst, oxdidant
R
R = alkenyl, aryl, allyl, alkynyl, benzyl
TBSO
PPh3 (6 mol %)
O
CH3 CH3
+
Ar–H
TBSO
Pd(OAc)2 (2 mol %)
N
CH3O
KOAc, DMF
80 °C, 22h
General transformation:
58%
I
CH3O
NHR
CH3O
OTBS
TBSO
• An oxidant is required.
TBSO
n–Bu4NCl
I
CH3O
Dehydrogenative Process
• It is possible to generate an aryl palladium(II) intermediate for Heck coupling from an arene by C–H
insertion.
TBSO
OTBS
TBSO
TfO
Chem 115
The Heck Reaction
CH3
O
OH
• Mechanistic studies suggest a concerted metallation-deprotonation sequence for C–H insertion,
facilitated by acetate.
O
O
OH
CH3
CH3
CH3
OH O
O
H
Pd(OAc)2 (1 equiv)
O
CH3
O
MeO
AcOH
63%
MeO
O
Taxol
Masters, J. J.; Link, J. T.; Snyder, L. B.; Young, W. B.; Danishefsky, S. J. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1723–1726.
Fujiwara, Y.; Moritani, I.; Asano, R.; Tanaka, H.; Teranishi, S. Tetrahedron 1969, 25, 4815–4818.
Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848–10849.
Andrew Haidle, James Mousseau
Tandem Reaction:
• Control of regioselectivity may be problematic with substituted arenes.
• Additional reaction pathways become available when the initial Pd–C species does not (or can not)
decompose via !-hydride elimination.
• In the case below, benzoquinone (BQ) was the oxidant and silver carbonate was essential.
Pd(OAc)2 (5 mol %)
BQ (2 equiv)
Ag2CO3 (0.6 equiv)
OAc
Cl
100 equiv
n-BuCO2H (16 equiv)
100 °C, 48 h
1 equiv
Cl
34 : 36 : 30 o : m :p
Me
CO2n-Bu
O
MeO
Cl
H
N
O
!-hydride
elimination
CH3OH
R3
R1
Oxidation, Nu
R2
–
Alkylation
Nu
R1
R1
82%
Heck sp cascade
R3–X
R2
Carbonylation
R2
R2
CO
CO2CH3
CO2n-Bu
R1
R2
R1
R3
PdX
R3M
Me
R1
R1PdX
R3
Transmetalation
MeO
AcOH, PhMe
22 °C, 16 h
R2
M
R1
• Directing groups may be applied to control the site of reaction.
H
N
R2
Heck sp2 cascade
Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem. Asian J. 2010, 5, 1090–1093.
Pd(OAc)2 (5 mol %)
BQ (1 equiv)
TsOH•H2O (1 equiv)
PdX
PdX
R1
52%
Cl
R3
R3
OAc
R2
R2
Nucleophilic attack
Heck reaction
Lee, G. T.; Jian, X.; Prasad, K.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 1921–1924.
• Various heterocycles are effective substrates, including indoles, thiazoles, oxazoles, pyrroles,
furans and activated pyridines.
• Tandem Heck reactions:
R
I
• Site selectivity with pyrrole substrates can be achieved by the use of directing (carbamate) or
blocking (triisopropylsilyl) groups on the nitrogen atom.
H
TBSO
Pd(OAc)2 (10 mol %)
PhCO3t-Bu (1 equiv)
N
R
CO2Bn
AcOH, dioxane, DMSO
t-BuO
35 °C, 24–48 h
R = CO2t-Bu
or
Si(i-Pr)3
TBAF, THF, 23°C
75%
N
O
CO2t-Bu
dioxane, 100 °C, 12 h
91%
CH3
N
O
CO2t-Bu
CH3
O
CH3
81%
Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528–2529.
Pd(OAc)2 (10 mol %)
Ag2CO3 (1.5 equiv)
pyridine (1 equiv)
82%
N
Si(i-Pr)3
O
H
OTBS
CO2Bn
N
R
H
CH3
CH3
CO2Bn
OTBS
R
Ag2CO3, THF, 65 °C
CH3
PdLn
LnPd
Pd(OAc)2 (10 mol %)
PPh3 (20 mol %)
R =
H
O
O
HO2C
HO
H
R
H
O
OH
O
Scopadulcic acid A
Kucera, D. J.; O'Connor, S. J.; Overman, L. E. J. Org. Chem. 1993, 58, 5304–5306.
Fox, M. E.; Li, C; Marino, J. P.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 5467–5480.
Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254–9256.
Andrew Haidle, James Mousseau
• Tandem Heck/!–allylpalladium reactions
• Tandem Heck reaction, intermolecular
H3C
H3C
TDSO
OTBS
CH3
H
CH3
Pd2(dba)3 (5 mol %)
PPh3 (48 mol %)
Et3N, toluene
120 °C, 1.5 h
H
Br
CH3O2C
OCH3
N
H
H3C
H3C
CH3O
PdLn
N
56%
OH
CH3
H
PMP, toluene, 120 °C
I
CH3O
OH
O
Pd(TFA)2(PPh3)2 (20 mol %)
76% overall
CH3
OH
OCH3
H
O
PdLn
OH
O
H
CH3N
CH3O
H
TDSO
O
N
(–)-Morphine
TBSO
Hong, C. Y.; Overman, L. E. Tetrahedron Lett. 1994, 35, 3453–3456.
• Tandem Suzuki/Heck reactions
H3C
H3C
H3C
H3C
TBSO
CH3
CH3
CH3
CH3
H
[1,7]-H-shift
H
1:9
TDSO
H
H3C
O
I
9-BBN
TfO
TfO
H
CO2CH3
H
CO2CH3
OTDS
PdCl2(dppf) (10 mol %)
AsPh3 (10 mol %)
CsHCO3, DMSO, 85 °C
OTBS
H3C O
TBAF
THF
79%
OH
H3C O
O
CH3
CH3
HO
H3C O
B
TDSO
H3C
H3C
CH3
Alphacalcidiol
TDSO
H3C O
O
O
H3C
H
CO2CH3
65%
TfO
CH3
H
CO2CH3
OTDS
Kojima, A.; Honzawa, S.; Boden, C. D. J.; Shibasaki, M. Tetrahedron Lett. 1997, 38, 3455–3458.
Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114, 9836–9845.
Andrew Haidle
• The ease of reaction (Heck versus Suzuki) is highly dependent upon the reaction conditions:
Enantioselective Heck Reactions:
Pd(OAc)2 (1 mol %)
• Typical yields = 50–80%
PPh3 (5 mol %)
B
O
O
CH3
CH3
:
87
• Formation of tertiary stereocenters:
H3CO
CH3 CH3
I
13
Bu3N, CH3CN, 120 °C
O
O
OCH3
B
O
OCH3
Pd(OAc)2 (5 mol %)
O
Phenanthroline (5 mol %)
O
Pd2(dba)3•CHCl3 (2.5 mol %)
CH3O
CH3
+
CH3
I
CH3
Si(CH3)3
Ag3PO4 (1.1 equiv)
DMF, 48 h, 80 °C
Pd[(R)–BINAP]2 (3 mol %)
(CH3)2N
CO2Et
• Tandem Heck/6!-electrocyclization reactions:
BrPdLn
EtO2C
N
H3CO2C
benzene, 60 °C, 20 h
H
Ag2CO3 (2 eq)
CH3CN, 80 °C, 3 h
H CO2Et
N(CH3)2
N
CO2CH3
OTf
Pd(OAc)2 (3 mol %)
PPh3 (6 mol %)
OH
7-Desmethyl-2-methoxycalamenene
Tietze, L. F.; Raschke, T. Synlett 1995, 597–598.
Hunt, A. R.; Stewart, S. K.; Whiting, A. Tetrahedron Lett., 1993, 34, 3599–3602.
EtO2C
EtO2C
H
100
t-BuOK, CH3CN, 45 °C
Br
CH3
91%, 92% ee
:
CH3O
(R)–BINAP (7.0 mol %)
H3C CH3
0
• Typical ee's = 80–95%
95%, > 99% ee
HO
CO2Et
• Note that the alkene within the intially formed pyrrolidine has migrated under the reaction conditions.
Ozawa, F.; Kobatake, Y.; Hayashi, T. Tetrahedron Lett. 1993, 34, 2505–2508.
PdLnBr
CO2CH3
H
EtO2C
85%
CO2Et
EtO2C
CO2Et
CO2CH3
H
HO
K2CO3 (2 equiv)
TfO
HO
EtO2C
CO2Et
O
H
(+)-Vernolepin
Ohari, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 11737–11748.
TfO
Me
Me
OH
H3CO
CO2Et
Li2CO3, C6F6
80 ºC, 71%
L = (+)-Menthyl(O2C)-Leu-OH
H3CO
Me
Me
O
O
O
ClCH2CH2Cl, 60 °C, 41 h
• Tandem dehydrogenative Heck/oxidative cyclization
Pd(OAc)2 (10 mol %)
L (40 mol %)
AgOAc (4 equiv)
H
KOAc (1 equiv)
70%, 86% ee
Henniges, H.; Meyer, F. E.; Schick, U.; Funke, F.; Parsons, P. J.; de Meijere, A. Tetrahedron 1996, 52,
11545–11578.
OH
O
(R)–BINAP (10 mol %)
H
HO
Pd(OAc)2 (5 mol %)
O
Pd2(dba)3 (3 mol %)
L (6 mol %)
(i-Pr)2NEt
benzene, 30 °C, 72 h
H
O
O
L=
Ph2P
N
t-Bu
92%, > 99% ee
CO2Et
Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc, 2010, 132, 5916–5921.
Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis 1997, 1338–1345.
Andrew Haidle, James Mousseau
• Formation of quaternary stereocenters:
CH3
CH3O
• Kinetic Resolution:
Pd(OAc)2 (7 mol %)
(R)–BINAP (17 mol %)
OTf
CH3O
K2CO3 (3 equiv)
THF, 60 °C, 72 h
OTDS
MOMO
H3C
TfO
H3C
OTDS
90%, 90% ee
CH3
N
H3C O
O
Pd(OAc)2 (20 mol %)
TDSO
(R)–Tol–BINAP (40 mol %)
H
1.7%
OTDS
OH
AcO
CH3
CH3O
(–)-Eptazocine
J. Am. Chem. Soc. 1993, 115, 8477–8488.
N
O
CH3
I
O
18.3%, 96% ee
O
O
Pd2(dba)3 (5 mol %)
(R)–BINAP (11 mol %)
PMP (5 equiv)
DMA, 110 °C, 8 h
O
H
H
O
O
influence the stereochemical outcome.
TDSO
H3C O
H3C O
MOMO
H3C
H3C
O
• The choice of base influences whether the Pd complex is neutral or cationic; this in turn can
O
O
H
K2CO3 (2.5 equiv)
toluene, 100 °C
racemic
Takemoto, T.; Sodeoka, M.; Sasai, H.; Shibasaki, M.
H3C O
MOMO
H3C
CH3
N
(+)-Wortmannin
neutral
O
• The enantiomer of the major product not observed. Instead, a complex mixture of products was
O
formed.
(S), 71%, 66% ee
O
N
O
CH3
I
O
O
Pd2(dba)3 (5 mol %)
(R)–BINAP (11 mol %)
Ag3PO4 (2 equiv)
Honzawa, S.; Mizutani, T.; Shibasaki, M. Tetrahedron Lett. 1999, 40, 311–314.
CH3
N
cationic
O
OTf
O
NMP, 80 °C, 26 h
Pd(OAc)2 (3 mol %)
(R)–Tol–BINAP (6 mol %)
O
(R), 86%, 70% ee
(i–Pr)2NEt (3 equiv)
benzene, 30 °C
O
(R), 71%, 93% ee
O
(S), 7%, 67% ee
Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477–6487.
CH3O
I
O
N
CH3 CH3
OTIPS Pd2(dba)3•CHCl3 (10 mol %)
CH3O
(S)–BINAP (23 mol %)
3 M HCl
PMP, DMA, 100 °C
23 °C
H3C
CHO
O
• Initial products are 2,5 dihydrofurans:
O
O
N
CH3
(S), 84%, 95% ee
• Only the (R) isomer can isomerize due
to the asymmetric environment of the ligand.
CH3
H
N
O
Matsuura, T.; Overman, L. E.; Poon, D. J.
J. Am. Chem. Soc. 1998, 120, 6500–6503.
O
(–)-Physostigmine
O
H3C
N
N H
CH3
CH3
Ozawa, F.; Kubo, F.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K.
Organometallics 1993, 12, 4188–4196.
Andrew Haidle
• An Enantioselective redox-relay Heck process was achieved by a regioselective Heck coupling
followed by isomerization of the transient allylic double bond to generate the aldehyde shown:
Pd(CH3CN)2(OTs)2 (6 mol %)
Cu(OTf)2, (6 mol %)
OH
ligand (13 mol %), O2
B(OH)2
Me
via
Pd
H
OH
Pd
Me
I
CH3
Me
Ar
[bmim]NTf2 = 1-butyl-3-methylimidazolium
bis(tri-fluoromethylsulfonyl)imide
Pd
Me
t-Bu
OH
Ar
Mei, T.-S.; Werner, E. W.; Burckly, A. J.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 6830–6833.
product
base•HX
Pd-cat
[bmim]NTf2
O
O
CH3
130 °C, 50 min
99%
OH
work-up procedure
N
N
Pd cat. (recycled)
N(i-Pr)3 (1.2 equiv)
[bmim]NTf2
O
O
Ligand = F3C
O
Cl
Ar
Ar
• By immobilizing the catalyst in an ionic liquid, [bmim]NTf2, the catalyst and product can be easily
separated from the reaction media.
H
OH
Me
Me
• Using flow microsystems, shorter reaction times are possible due to improved mixing.
O
DMF, 23 ºC, 24 h
65%, 99 : 1 er
Cl
• Continuous flow techniques have been applied in the Heck reaction.
H3C N
hexane
N n-Bu
Tf
N
Tf
Pd cat.
H3C
CH3
N
Ph3P Pd Cl
Cl
product
hexane
base•HX
Pd-cat
[bmim]NTf2
Heck Reactions in Continuous Flow:
• Continuous flow techniques have become an increasingly popular approach to streamlining multistep syntheses. A comparison between traditional and continuous flow multi-step synthesis is
shown below (Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675–680.):
H2O
H2O
base•HX
Pd-cat
[bmim]NTf2
reuse
Traditional Multi-Step Synthesis:
Liu, S.; Fukuyama, T.; Sato, M.; Ryu, I. Org. Proc. Res. Dev. 2004, 8, 477–481.
A
1. work-up
2. purify
+
B
1. work-up
2. purify
C
D
1. work-up
2. purify
E
• Supported Pd0 nanoparticles have also been employed as catalysts in flow Heck reactions and can
be reused.
• Reactions are performed ligand-free under "Jeffery-like" conditions.
• No additional purification is required as 100% conversion is achieved.
Continuous Flow Multi-Step Synthesis:
A
+
flow reactor 1
flow reactor 2
flow reactor 3
E
I
B
C and D not isolated
• Advantages of continuous flow:
• Improved control over mixing and temperature.
• Improved safety: reactions are "scaled out" instead of "scaled up"; if more material is needed, the
process is performed for a longer time. As a result, large amounts of chemicals or reaction
volumes are avoided, which decrease the likelihood of accidents.
• Inline work-up and purification are possible, increasing the overall efficiency of the process.
Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675–680.
Webb D.; Jamison, T. F. Org. Lett. 2012 14, 568–571.
N
CH3
O
ArNEt3+Cl– Pd0
N
DMF, 130 °C, Et3N
87%, >99% purity
CH3
O
Nikbin, N.; Ladlow, M.; Ley, S.V. Org. Proc. Res. Dev. 2007, 11, 458–462.
James Mousseau, Fan Liu
Myers
Chem 115
The Heck Reaction
Selected Applications in Industry:
• Application to the synthesis of the anti-smoking drug, Chantix!:
• Synthesis of an EP3 receptor antagonist via a double Heck cyclization reaction:
F
1. Pd(OAc)2 (0.2 mol %)
P(o-Tol)3 (0.6 mol %)
Et3N, CH3CN, 75 ºC
Br
N
H
Br
O
F3C
N
H
2. Pd(OAc)2 (1 mol %)
P(o-Tol)3 (3 mol %)
Et3N, CH3CN, 75 ºC
(5.0 kg)
CH3
F
Pd(OAc)2 (5 mol %)
P(o-tol)3 (10 mol %)
Et3N, DMF
N
O
N
80 °C, 87%
Br
CO2H
F3C
(2.17 kg)
67%
CH3
F
CO2H
Coe, J. W.; Brooks, P. R.; Vetelino, M. G.; Bashore, C. G.; Bianco, K.; Flick, A. C. Tetrahedron
Lett. 2011, 52, 953–954.
N
Cl
Cl
S
Cl
HN
O
S O
O
• Application in the manufacturing route of 1-hydroxy-4-(3-pyridyl)butan-2-one:
• Reaction was optimized to limit the formation of the by-products depicted below.
DG-041
Cl
Zegar, S.; Tokar, C.; Enache, L. A.; Rajagopol, V.; Zeller, W.; O'Connell, M.; Singh, J.; Muellner, F.
W.; Zembower, D. E. Org. Proc. Res. Dev. 2007, 11, 747–753.
• Near the final step of an oncology candidate:
N
CH3
N
(101 kg)
CH3 1. Pd2(dba)3 (1 mol%)
Et3N, i-PrOH, 78 ºC
Boc
N
Boc
OH
110 °C, 64%
O
OH
N
CH3
N
N
OH
(200 g)
N
NH2
CH3
I
Br
Pd(OAc)2 (10 mol %)
P(o-tol)3 (40 mol %)
Bu3N, toluene
N
• 2HCl
O
(91.6 kg)
N
O
2. HCl, i-PrOH, 40 ºC
97% (two steps)
O
O
H3CO
N
Possible by-products (not observed):
CH3
O
HN
NaOH
80%
Cl
OCH3
N
OH
N
OH
CH3
N
N
N
Me
OH
O
CP–724,714
Ripin, D.H. B.; Bourassa, D. E.; Brandt, T.; Castaldi, M. J.; Frost, H. N.; Hawkins, J.; Johnson, P. J.;
Massett, S. S.; Neumann, K.; Phillips, J.; Raggon, J. W.; Rose, P. R.; Rutherford, J. L.; Sitter, B.;
Stewart, A. M.; Vetelino, M. G.; Wei, L.Org. Proc. Res. Dev. 2005, 9, 440–450.
Ainge, D.; Vaz, L-M. Org. Proc. Res. Dev. 2002, 6, 811.
James Mousseau