Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (132.78 KB, 4 trang )
<span class='text_page_counter'>(1)</span>UBND HUYỆN KIM SƠN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO. ĐỀ THI CHỌN HỌC SINH GIỎI - 4. MÔN THI: TOÁN 8 Thời gian: 120 phút (không kể thời gian giao đề) Bài 1: (1,5 điểm) Phân tích đa thức thành nhân tử a) (x – 3y)2 – 3(x – 3y) b) x2 – 12x + 35 c) x3 + 2x2 + 2x + 1 Bài 2: (1,5điểm) Thực hiện phép tính a) (2n3 – 5n2 +1) : (2n – 1) x2 6 1 10 x 2 : x 2 3 x2 b) x 4 x 6 3x x 2 . c) (1- 3x)2 + 2(3x – 1)(3x +4) + (3x +4)2 Bài 3:( 2,0 điểm) a) Cho a là một số tự nhiên và a > 1. Chứng minh rằng: A = (a2 + a + 1)(a2 + a + 2) – 12 là hợp số. b) Tính B = c) Tìm dư khi chia x + x3 + x9 + x27 cho x2 – 1 Bài 4: (2,0 điểm) 2 1. 22 1 2 4 1 28 1 21006 1 1. a b c a) Cho abc = 1. Rút gọn biểu thức: M = ab+a+1 bc b 1 ac c 1 a 2013 b 2013 c 2013 2013. b) Cho a +b +c 0 và a3 + b3 + c3 = 3abc. Tính N = a b c Bài 5: (3,0 điểm) Cho hình thang ABCD có A D = 900, CD = 2AD = 2AB. Gọi H là hình chiếu của D lên AC; M, N, P lần lượt là trung điểm của CD, HC và HD. a) Chứng minh tứ giác ABMD là hình vuông và tam giác BCD là tam giác vuông cân. b) Chứng minh tứ giác DMPQ là hình bình hành c) Chứng minh AQ vuông góc với DP d) Chứng minh S ABCD 6S ABC ------------------H ẾT-----------------------.
<span class='text_page_counter'>(2)</span> UBND HUYỆN KIM SƠN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO. Bài. HƯỚNG DẪN CHẤM THI CHỌN HSG MÔN: TOÁN 8 Đáp án. a) = (x – 3y)(x – 3y – 3) b) = x2 – 5x – 7x + 35 = x(x – 5) – 7(x – 5) Bài 1 = (x – 5)(x – 7) (1,5 đ) c) = x3 + 1 + 2x2 +2x = (x + 1)(x2 – x + 1) + 2(x +1) = (x + 1)(x2 – x + 3) a) Thực hiện phép chi theo cột dọc đúng Kết quả (2n3 – 5n2 + 1) : (2n – 1) = n2 – 2n -1 x2 6 1 10 x 2 : x 2 x x 2 4 3 2 x x 2 x2 Bài 2 x 2 x 2 x 2 ( x 2)( x 2) 10 x 2 (1,5 đ) : ( x 2)( x 2) x2 6 x2 1 1 . x 2 2 x b) ( x 2)( x 2) 6. Bài 3 (2,0 đ). c) = (1- 3x + 3x + 4)2 = 52 = 25 a) Đặt x = a2 +a +1 a2 +a +2 = x +1 A = x(x + 1) – 12 = x2 + x – 12 = (x +4)(x – 3) Thay x = a2 +a +1 vào A ta có: A = (a2 +a +5) (a2 +a – 2) Vì a N và a > 1 nên a là số tự nhiên. Ngoài ước là 1 và chính A, nó còn có thêm 2 ước là (a2 +a +5) và (a2 +a – 2) Do đó A là hợp số b) B 2 1 2 1 22 1 24 1 28 1 21006 1 1. Điểm 0,5 0,25 0,25 0,25 0,25 0,25 0,25 0,1 0,2 0,2 0,5 0,25 0,25 0,75. 22 1 22 1 24 1 28 1 21006 1 1 24 1 24 1 28 1 21006 1 1. . 2. . 21006 1 1 22012. c) Vì đa thức x2 – 1 có bậc là 2, nên đa thức dư có dạng r(x) = ax + b. Gọi thương của phép chia trên là q(x), ta có: x + x3 + x9 + x27 = (x – 1)(x + 1).q(x) + ax + b (1) Đẳng thức (1) đúng với mọi x, với x = 1 ta có : a + b = 4 (2) với x = 2 ta có : - a + b = -4 (3) Từ (2) và (3) b = 0 và a = - 4 Vậy dư của phép chia x + x3 + x9 + x27 cho x2 – 1 là: – 4x c b Bài 4 (2,0 đ) a) Thay abc = 1 vào ac c 1 , nhân cả tử và mẫu của bc b 1 với a. 0,25 0,25 0,25.
<span class='text_page_counter'>(3)</span> ta có: M . 0,5. a ab c ab+a+1 a bc b 1 ac c abc. a ab 1 ab+a+1 1 ab+a+1 ab+a+1 ab+a+1 ab+a+1. 0,5. B) a3 + b3 + c3 = 3abc a 3 b3 c 3 3abc 0 a 3 b3 3ab(a b) c 3 3ab(a b) 3abc 0 3. a b c 3 3ab(a b c ) 0 (a b c)(a 2 2ab b 2 ac bc c 2 ) 3ab(a b c) 0. 0,25. (a b c)(a 2 b 2 c 2 ab ac bc ) 0 a2 + b2 + c2 – ab – ac – bc = 0 ( vì a +b +c 0) 2a2 + 2b2 + 2c2 – 2ab – 2ac –2bc = 0 (a – b)2 + (b – c)2 + (c – a)2 = 0 Vì (a – b)2 0 a, b; (b – c)2 0 b,c; (c – a)2 0 a, c. Nên (a – b)2 + (b – c)2 + (c – a)2 0 a, b,c ; Do đó (a – b)2 + (b – c)2 + (c – a)2 = 0 a, b,c. Khi a – b = 0 và b – c = 0 và c – a =0 a=b=c Mà a +b +c 0 a = b = c 0 (*) N. Bài 5 (3,0đ). Thay (*) vào N ta có: Hình vẽ. 0,25. a 2013 a 2013 a 2013. a a a. 2013. . 3a 2013. 3a . 2013. . 3a 2013 1 2013 27 a 9. a) +/ Chứng minh cho tứ giác ABMD có 4 cạnh bằng nhau lại có A =900 nên ABMD là hình vuông. +/ BMD có BM là đường trung tuyến ứng với cạnh DC và 1 BM = 2 DC BMD vuông tại B. 0,25. 0,25. 0,5 0,25 0,25.
<span class='text_page_counter'>(4)</span> lại có BDM = 450 BMD vuông cân tại B b) tứ giác DMPQ có PQ // DM và PQ = DM tứ giác DMPQ là hình bình hành c) Chứng minh Q là trực tâm của tam giác ADP AQ DP. Chứng minh ABC = AMC (c.c.c) S ABC S AMC 1 1 SAMC AD.MC AD 2 2 4 mà 1 3 S ABCD S ABMD S BCM AD 2 AD 2 AD 2 2 2 Lại có. 0,25 0,25 0,25 0,25 0,25 0,25 0,25. 2. S ABCD S ABC. 3 AD 2 6 S ABCD 6S ABC 1 2 AD 4. Học sinh có cách giải khác đúng vẫn cho đủ điểm. 0,25.
<span class='text_page_counter'>(5)</span>