1
BỘ CÔNG THƯƠNG
TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP TH
ÀNH PHỐ HỒ CHÍ MINH
KHOA: MAY THỜI TRANG
TIỂU LUẬN MÔN:
TÊN ĐỀ TÀI:
GVHD: Nguyễn Văn Bời
SVTH: Vũ Thị Phấn
MSSV: 08894201
L
ớp: ĐHTR2ATLT
Tp H
ồ Chí Minh tháng 04/ 2009
2
PHẦN MỞ ĐẦU
Trong xu thế hội nhập kinh tế quốc tế để có thể sánh kịp các cường quốc trên thế giới đòi
h
ỏi chúng ta phải cố gắng trên tất cả mọi lĩnh vực như: kinh tế, chính trị, khoa học kỹ
thuật… để làm được điều này không có con đường nào khác là con đường học tập, rèn
luy
ện kỹ năng, trau dồi kiến thức từ khi còn là học sinh, sinh viên. Trong khi các môn
h
ọc Xã hội giúp cung cấp những kiến thức xã hội cần thiết giúp chúng ta có đủ tự tin
bước v
ào cuộc sống thì các môn học thuộc lĩnh vực Tự nhiên lại là “chìa khoá” giúp cho
chúng ta m
ở được những cánh cửa “ thành công ” của cuộc sống. Chính những môn học
này mới là nền tảng giúp chúng ta tiến gần tới những thành tựu khoa học kỹ thuật hiện
đại
và sử dụng những thành tựu đó vào công cuộc xây dựng một đất nước.
Trong các môn Khoa Học Tự Nhiên thì Hoá học là một môn khoa học có vai trò rất quan
trong vào sự thành công của khoa học công nghệ. Xét riêng trong nghành công nghệ May
m
ặc thì Hoá học giúp chúng ta biết được tất cả những tính chất cần thiết của một loại vật
liệu nào đó, góp phần to lớn vào sự thành công của nghành Dệt may Việt Nam. Chính vì
t
ầm quan trọng và mong muốn được tìm hiểu, học hỏi cũng như chia sẻ những hiểu biết
nhỏ bé của mình mà tôi chọn đề tài “Tìm hiểu về hiệu ứng nhiệt độ trong phản ứng hoá
h
ọc”.
B
ằng những phương pháp thống kê, so sánh, phân tích tổng hợp từ những tài liệu quý báu
mà tôi đ
ã tìm được đã giúp tôi hiểu sâu sắc hơn về môn học này, đặc biệt là vấn đề về
hiệu ứng nhiệt trong phản ứng hoá học. Để hiểu sâu sắc vấn đề này chúng ta cùng tìm
hi
ểu ở phần nội dung.
3
PHẦN NỘI DUNG
I. Hiệu ứng nhiệt của các quá trình hóa học và phương trình nhiệt hoá học
1. Khái niệm về hiệu ứng nhiệt của quá trình hoá học
Hiệu ứng nhiệt của quá trình hoá học là nhiệt lượng mà hệ thu vào hay phát ra
trong các quá trình hoá h
ọc dung để thay đổi nội năng hay entanpi của hệ.
Trong các quá trình hoá học phát nhiệt làm cho nội năng U và entanpy H của hệ giảm
xuống tức là ∆U < 0 và ∆H < 0. ngược lại trong các quá trình thu nhiệt thì ∆U > 0 và ∆H
>0.
Trong nh
ững phản ứng mà chất rắn và chất lỏng tham gia sự biến đổi thể tích là không
đáng kể và nếu quá trình thực hiện ở áp suất bé có thể coi p∆U có giá trị rất nhỏ khi đó
∆H ≈ ∆U.
nếu các phản ứng có chất khí tham gia thì giá trị ∆H và ∆U sẽ khác nhau. Trong trường
hợp khí tham gia là lý tưởng:
PV = nRT
p
∆V = ∆n. RT
n là biến thiên số mol khí trong phản ứng ở nhiệt độ tuyệt đối T. R là hằng số khí R =
8,312at.lit / mol. độ
∆H = ∆U + ∆nRT
Khi ∆n = 0 thì ∆H = ∆U
∆n ≠ 0 thì ∆H ≠ ∆U
2. Phương trình nhiệt hoá học
Phương trình nhiệt hoá học là phương trình phản ứng hoá học bình thường có ghi kèm
hi
ệu ứng nhiệt và trạng thái tập hợp của các chất tham gia và thu được sau phản ứng. Đa
số các phản ứng sảy ra ở áp suất không thay đổi nên ta xét chủ yếu biến thiên ∆H.
Theo quy ước của nhiệt động học phản ứng
+ Nếu Q > 0 (∆H < 0 ) : phản ứng tỏa nhiệt
4
+ Nếu Q < 0 (∆H > 0 ): phản ứng thu nhiệt.
Các chất khác nhau thì nội năng hay entanpy cũng khác nhau, do đó có thể nói nội năng
hay entanpy của các chất tham gia phản ứng khác với các chất thu được sau phản ứng.
Hiệu ứng nhiệt ∆H của 1 phản ứng ở áp suất không đổi và một nhiệt độ xác định bằng
tổng entanpy của các sản phẩm phản ứng trừ đi tổng entanpi của các chất tham gia phản
ứng
∆H = ∑∆HSPpư - ∑∆Hchất đầu pư
Trong nhiệt động học thì quy ứoc entanpi của đơn chất ở trạng thái tiêu chuẩn bằng 0
Đối với chất khí trạng thái
tiêu chuẩn là trạng thái khí lý tưởng ở áp suất p
= 1 atm
Đối với chất lỏng và chất rắn trạng thái` tiêu chuẩn là trạng thái tinh khiết ở 298
0
K
(t
ức 25
0
C) và áp suất là 1atm. biến thiên entanpi tính đươc từ các chất ở điều kiện chuẩn
là entanpi tiêu chuẩn, ký hiệu ∆H
0
298.
3. Một số các loại nhiệt thường gặp.
a. Nhiệt tạo thành (sinh nhiệt)
Nhiệt tạo thành là hiệu ứng nhiệt của phản ứng tạo thành 1 mol chất từ các đơn
chất ứng với trạng thái tự do bền nhất.
Ví dụ: Nhiệt tạo thành của khí CO2 là hiệu ứng nhiệt của phản ứng:
C(gr) + O2 = CO2(k) ∆H = -393,5 kJ/mol
hi
ệu ứng nhiệt của pư kết hợp giữa H2 và O2 tạo thành nước:
2H2(k) + O2(k) = 2H2O(l) ∆H = -571,66 kJ/mol
nhi
ệt tạo thành của nước lỏng từ các đơn chất là: -571,66 : 2 = -285,83 kJ
(Xem nhi
ệt tạo thành của một số chất ở bảng 1)
b. Nhiệt đốt cháy (thiêu nhiệt)
5
Nhiệt đốt cháy là hiệu ứng nhiệt của phản ứng đốt cháy 1 mol chất hữu cơ bằng oxi phân
tử để tạo thành khí CO2, nước lỏng và một số sản phẩm khác
Ví du: Tính hiệu ứng nhiệt phản ứng nhiệt phân CaCO3 ở đktc:
CaCO3(r) = CO2(k) + CaO(r)
∆H
0
298 kJ/mol: -1206,9 -635.5 -393,5
Hi
ệu ứng nhiệt của phản ứng:
∆H
0
298 = (-635.5 -393,5) – (-1206,9) = -177,9 kJ/mol
II. Định luật Hess và các hệ quả, ứng dụng của định luật Hess.
1.
Định luật Hess (Hess là nhà bác học người Nga 1812- 1850)
Hi
ệu ứng nhiệt chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối chứ không phụ
thuộc vào các trạng thái trung gian
ví dụ: Điều chế khí CO2 từ hai cách
cách 1: Đốt cháy trực tiếp C (than chì) thành CO2
C(than chì) + O2 = CO2(kh)
∆H
Cách 2: Tiến hành qua 2 giai đoạn
C(than chì) + ½ O2 = CO(kh) ∆H1
CO(kh) ) + ½ O2 = CO2(kh) ∆H2
Nếu áp suất không đổi thì hiệu ứng nhiệt của hai cách tiến hành trên phải bằng
nhau tức là:
∆H = ∆H1 + ∆H2
Điều
này hoàn toàn phù hợp với kết quả thực tế đo được là: ∆H = -94,05 kcal/mol;
∆H1 = -26,42 kcal/mol; ∆H2 = -67,63 kcal/mol.
T
ừ định luật Hess, ng ười ta rút ra một số hệ quả để tính hiệu ứng nhiệt của các
phản ứng hoá học.
Hệ quả 1