TRƢỜNG ĐẠI HỌC CẦN THƠ
KHOA SƢ PHẠM
BỘ MÔN TOÁN
----------------
BÀI BÁO CÁO
MÔN GIẢI TOÁN PHỔ THÔNG
NHÓM 03
CHỦ ĐỀ 1: VECTƠ
GVHD: Lại Thị Cẩm
Các thành viên: 1. Trần Thị Kim Luyến MSSV: 1050042
2. Nguyễn Hoàng Anh MSSV: 1070109
3. Chế Ngọc Hà MSSV: 1070126
4. Lê Thúy Hằng MSSV: 1070127
5. Nguyễn Hòang Long MSSV: 1070142
6. Lý Sel MSSV: 1070157
7. Thạch Thanh Tâm MSSV: 1070163
Cần Thơ, ngày 26 tháng 08 năm 2009
TÓM TẮT LÍ THUYẾT VECTƠ
I. Các định nghĩa:
Vectơ là đoạn thẳng có đònh hướng Ký hiệu :
AB
;
CD
hoặc
a
;
b
Vectơ – không là vectơ có điểm đầu trùng điểm cuối. Ký hiệu
0
.
Giá của vectơ là đƣờng thẳng đi qua điểm đầu và điểm cuối của
vectơ.
Hai vectơ cùng phương là hai vectơ có giá song song hoặc trùng
nhau.
Hai vectơ cùng phương thì hoặc cùng hướng hoặc ngược hướng.
Hai vectơ bằng nhau nếu chúng cùng hướng và cùng độ dài.
II. Tổng và hiệu của hai vectơ:
Đònh nghóa: Cho
AB a
;
BC b
. Khi đó
AC a b
Tính chất : * Giao hoán :
ab
=
ba
* Kết hợp (
ab
) +
c
=
(ab
+
c
)
* Tính chất vectơ –không
a
+
0
=
a
Quy tắc 3 điểm :
Cho A, B ,C tùy ý. Ta có :
AB
+
BC
=
AC
Quy tắc hình bình hành . Nếu ABCD là hình bình hành thì
AB
+
AD
=
AC
Quy tắc về hiệu vectơ : Cho
BC
, với điểm O tùy ý ta có :
CBOCOB
.
Nếu M là trung điểm của đoạn thẳng AB thì
0 MBMA
.
Nếu G là trọng tâm của tam giác ABC thì
0 GCGBGA
.
Nếu AM là một trung tuyến của tam giác ABC thì
AMACAB 2
.
III. Tích của vectơ với một số:
Cho kR , k
a
là 1 vectơ được xác đònh:
* Nếu k 0 thì k
a
cùng hướng với
a
; k < 0 thì k
a
ngược hướng
với
a
* Độ dài vectơ k
a
bằng
k
.
a
Tính chất :
a) k(m
a
) = (km)
a
b) (k + m)
a
= k
a
+ m
a
c) k(
a
+
b
) = k
a
+ k
b
d) k
a
=
0
k = 0 hoặc
a
=
0
b
cùng phương
a
(
a
0
) khi và chỉ khi có số k thỏa
b
=k
a
.
Điều kiện cần và đủ để A , B , C thẳng hàng là có số k sao cho
AB
=k
AC
.
Cho
b
không cùngphương
a
,
x
luôn được biểu diễn
x
= m
a
+
n
b
( m, n duy nhất ).
IV. Trục tọa độ và hệ trục tọa độ:
Trục là đường thẳng trên đó xác đònh điểm O và 1 vectơ
i
có độ
dài bằng 1.
Ký hiệu trục (O;
i
) hoắc x’Ox
A,B nằm trên trục (O;
i
) thì
AB
=
AB
i
. Khi đó
AB
gọi là độ dài
đại số của
AB
.
Hệ trục tọa độ vuông góc gồm 2 trục Ox Oy. Ký hiệu Oxy hoặc
(O;
i
;
j
).
Đối với hệ trục (O;
i
;
j
), nếu
a
=x
i
+y
j
thì (x;y) là toạ độ của
a
. Ký hiệu
a
= (x;y).
Cho
a
= (x;y) ;
b
= (x’;y’) ta có :
a
b
= (x x’;y y’)
k
a
=(kx ; ky) ; k R
b
cùng phương
a
(
a
0
) khi và chỉ khi có số k thỏa
x’=kx và y’= ky.
Cho M(x
M
; y
M
) và N(x
N
; y
N
) ta có:
P là trung điểm MN thì x
p
=
2
MN
xx
và y
P
=
2
MN
yy
MN
= (x
M
– x
N
; y
M
– y
N
).
Nếu G là trọng tâm tam giác ABC thì
x
G
=
3
A B C
xxx
và y
G
=
2
A B C
yyy
.
MỘT SỐ DẠNG TỐN VECTƠ
1. Chứng minh đẳng thức vectơ:
Phƣơng pháp chung:
- Quy tắc 3 điểm:
BCCABA
BCCABA
- Quy tắc hình bình hành: với hình bình hành ABCD ta ln
có:
CABADA
- Quy tắc trung điểm: với điểm M tuỳ ý và I là trung điểm AB ln có:
BMAMIM
2
.
- Các tính chất của phép cộng,trừ vecctơ và phép nhân một số với một vectơ
để thực hiện biến đổi tƣơng đƣơng cho đẳng thức cần chứng minh khi đó ta
lựa chọn một trong các biến đổi sau:
+ Biến đổi một vế thành vế còn lại
Xuất phát từ vế phức tạp ta cần thực hiệnviệc đơn giản biểu thức.
Xuất phát từ vế đơn giản ta cần thực hiện việc phân tích vectơ.
+ Biến đổi đẳng thức cần chứng minh về đẳng thức đã biết là đúng.
+ Biến đổi một đẳng thức đã biết là đúng thành đẳng thức cần chứng minh.
+ Tạo dựng các hình phụ.
Ví dụ 1:
Cho 4 điểm A, B, C, D. Chứng minh rằng:
BCDADCBA
Giải: Ta có thể trình bày theo các cách sau:
Cách 1: Thực hiện phép biến đổI VT, ta có:
BCDADBBDBCDADBBCBDDADCBA
)(
Nhận xét: Thực hiện việc biến đổI VT thành VP, ta cần tạo ra sự xuất hiện
của các vectơ
DA
và
BC
. Do đó:
trong lời giải ta xen điểm D vào
BA
còn điểm B vào vectơ
DC
Ta cũng sử dụng khi lựa chọn phép biến đổi VP thành VT. Cụ thể trong cách 2
Cách 2: Thực hiện phép biến đổi VP. ta có:
DCBABDDBDCBABDDCDBBABCDA
)(
Cách 3: Biến đổi đẳng thức cần chứng minh về đẳng thức đã biết là
luôn đúng
BDBDDCBCDABABCDADCBA
Ví dụ 2:
Gọi M, N lần lƣợt là trung điểm các đoạn AB, CD . Chứng minh rằng:
CBDADBCANM
2
Giải:
Cách 1:
Ta có M là trung điểm của AB , với N bất kì thì
NMMNBNAN
22
(1)
N là trung điểm của CD, với M bất kì thì
NMDMCM
2
(2)
Lấy (2)-(1) ta đƣợc:
)(2
)(24
0)(20
)(
)()(
)(4
DBCANM
DBCANM
DBCA
DBCADNCNDBCABMAM
BDDNACCNDBBMCAAM
BNANDMCMNM
Chứng minh tƣơng tự: VT =
CBDA
Cách 2:
Gọi O la 1điểm tuỳ ý trên vectơ MN. Khi đó theo quy tắc trung điểm, ta có:
)2(2
)1(2
DOCONO
BOAOMO
Lấy (2)-(1) ta đƣợc:
)()()(2 BOAODOCOMONO
2
NM
=
)()( BODOAOCO
2
NM
=
DBCA
(1)
Ta cần chứng minh:
CBDADBCA
VT=
DCCBCDDA
=
CBDA
= VP (2)
Từ (1) và (2) ta suy ra:
CBDADBCANM
2
Ví dụ 3:
Cho tam giác đều ABC.Gọi I là tâm đƣờng tròn nội tiếp tam giác.CMR:
0...
CIcBIbAIa
( a,b,c
R
)
Giải:
Dựng hình bình hành
22
ICAB
có
2
AB
//
1
CC
,
2
AC
//
1
BB
. Ta đƣợc:
22
CIBIAI
(1)
Đặt: IB
2
= b, IC
2
= c
và IC = IB = IA = a.
BI
a
b
BI
2
( 2)
CICI
a
c
CB
AB
IC
IC
2
1
12
CI
a
c
CI
2
(3)
Thay (2),(3) vào (1)
0...
CIcBIbAIa
CI
a
c
BI
a
b
AI
Dạng 2: Xác định điểm thoả mãn một đẳng thức vectơ
Phƣơng pháp chung
-Ta biến đổi đẳng thức vectơ cho
vMO
, trong đó điểm O và
v
đã biết
-Nếu muốn dựng điểm M, ta lấy O làm gốc dựng một vectơ bằng vectơ v.
Khi đó điểm ngọn của vectơ này chính là điểm M
Ví dụ :
Cho tam giácABC.
a) Tìm điểm I sao cho:
02
BIAI
(1)
b) Tìm điểm K sao cho:
BCBKAK
2
(2)
BIBI
a
b
BC
AC
IB
IB
2
1
12
A
C2
B
C1
C
B2
B1
I
Giải:
a) Theo quy tắc 3 điểm, ta có:
ABBIAI
(1)
03
ABBI
BAABBI
3
BABI
3
1
3 điểm I, A, B thẳng hàng hay điểm thuộc đoạn AB và thoả
điều kiện:
BABI
3
1
b)Từ kết quả câu a ta suy ra:AI=2IB
BIIA
2
BIAI
2
VT(2)=
)(2)(2 BIIKAIIKBKAK
)2(3 BIAIIK
BIAI
2
02
BIAI
Vậy:
IKBKAK
32
Theo giả thiết ta đƣợc:
CBKIBCIKBCIK
3
1
3
1
3
Kết quả này cho ta 2 vectơ
KI
và
CB
là 2 vectơ cùng phƣơng và vì I
BC
nên IK//BC.
Vậy K là điểm thuộc miền trong tam giác, nằm trên đƣờng thẳng qua I song
song với BC sao cho :
CBKI
3
1
Dạng 3 : Chứng minh ba điểm thẳng hàng
Phƣơng pháp chung:
Muốn chứng minh 3 điểm A,B,C thẳng hàng, ta đi chứng minh:
ACkAB .
;(kR) (1)
Để nhận đƣợc (1) ta lựa chọn một trong hai hƣớng
- Hƣớng 1: Sử dụng các qui tắc biến đổi đã biết
- Hƣớng 2: Xác định
ACAB,
thông qua một tổ hợp trung gian.
Ví dụ:
Cho ABC. Gọi O, G, H theo thứ tự là tâm đƣờng tròn ngoại tiếp, trọng
tâm, trực tâm của ABC. Chứng minh rằng: O, G, H thẳng hàng.
Giải
Chọn tổ hợp 3 vectơ
OCOBOA ,,
Khi đó:
OCOBOAOG
3
1
(1)
Chọn E là trung điểm của BC và A
1
là điểm đối xứng với A qua O, ta đƣợc:
BH // CA
1
cùng vuông góc với AC.
CH // BA
1
cùng vuông góc với AB.
Tứ giác A
1
BHC là hình bình hành.
A
1
, E, H thẳng hàng .
1
HAHCHB
AHHAHAHAAHAA
HCHBAHOAHCAHOAHBAHOAOCOBOE
22
222
11
OEAH 2
Ta có:
OCOBOAOEOAAHOAOH 2
(2)
Từ (1) và (2) suy ra:
OHOG
3
1
O, G , H thẳng hàng.
C
A1
1
O
H G
B
A
E
Dạng 4: Biểu diễn vectơ :
Định lý: Cho trƣớc hai vectơ
a
và
b
khác
0
và không cùng phƣơng
.Với mọi vectơ
c
bao giờ cũng tìm đƣợc một cặp số thực
,
duy nhất
,sao cho:
c
=
a
+
b
Bây giờ chúng ta sẽ quan tâm tới phƣơng pháp thực hiện đƣợc miêu tả
trong bài toán sau:
Bài toán: Biểu diễn một vectơ thành tổ hợp vectơ.
PHƢƠNG PHÁP CHUNG :
Ta lựa chọn một trong hai hƣớng :
Hƣớng1: Từ giả thiết xác định đƣợc tính chất hình học, rồi từ đó khai
triển vectơ cần biễu diễn bằng phƣơng pháp xen điểm hoặc hiệu của hai
vectơ cùng gốc.
Hƣớng 2: Từ giả thiết thiết lập đƣợc mối liên hệ vectơ giữa các đối
tƣợng ,rồi từ đó khai triển biểu thức này bằng phƣơng pháp xen điểm hoặc
hiệu của hai vectơ cùng gốc.
Chú ý: Trong một vài trƣờng hợp cần sử dụng cơ sở trung gian.
Ví dụ: Cho
ABC , gọi G là trọng tâm tam giác và B
1
là điểm đối xứng của
B qua G. Hãy biểu diễn vectơ
1
CB
theo
AB
và
AC
Giải:
Từ giả thiết suy ra AB
1
CG là hình bình hành.
Ta đƣợc:
1
CB
=
GA
= -
AG
=
3
2
AM
=
3
2
.
2
1
(
AB
+
AC
)= -
3
1
(
AB
+
AC
)
Dạng 5: Chứng minh hai điểm trùng nhau.