THPT Chuyên Quang Trung
ĐỀ THI THỬ KHỐI 12 LẦN 1 NĂM 2018-MƠN TỐN
Thời gian làm bài: 90 phút
Mục tiêu. Nắm vững các kiến thức về số phức. Nắm vững các kiến thức về hàm số: điều kiện cần
và đủ của cực trị hàm số, phương trình tiếp tuyến, tiệm cận đứng, tiệm cận ngang.
Nắm vững kiến thức về lượng giác như công thức tổng, công thức cộng, công thức nhân đơi,tính
chẵn lẻ của hàm lượng giác…tìm nghiệm của phương trình lượng giác cơ bản
sinx sin, cosx cos,sinx sin,cosx cos
Nắm vững các kiến thức về cơng thức thể tích của khối đa diện, vận dụng linh hoạt các kiến thức đã
học để tính thể tích của khối đa diện.
Từ bài tốn thực tế biết cách lập được hàm số và dụng bất đẳng thức Cơ-si để tìm ra chi phí nhỏ
nhất.
4
2
2
4
Câu 1: . Cho hàm số y x 2mx 2m m có đồ thị C. Biết đồ thị C có ba điểm cực trị A,
B, C và ABDC là hình thoi, trong đó
9
m ;2
5
A.
D 0; 3 , A
1
m 1;
2
B.
thuộc trục tung. Khi đó m thuộc khoảng nào?
C.
1 9
m ;
2 5
D.
m 2;3
x3
y 3x 2 2
3
Câu 2: .Cho hàm số
có đồ thị C. Viết phương trình tiếp tuyến của C biết tiếp
tuyến có hệ số góc k 9
A.
y 16 9 x 3
B.
y 16 9 x 3
Câu 3: Cho số phức thỏa mãn
A. 13 1
z 2i z 4i
B. 10 1
Câu 4: Tiệm cận đứng của đồ thị hàm số
và
C.
y 9 x 3
z 3 3i 1.
C. 13
y
D.
y 16 9 x 3
Giá trị lớn nhất của
P z 2
là
D. 10
x 3 3x 2
x 2 3x 2 là
A. x 2
B. Khơng có tiệm cận đứng.
C. x 1; x 2
D. x 1
Câu 5: Cho hình chóp S.ABC có SA SB=SC=AB=AC=a, BC a 2. Tính số đo của góc
(AB;SC) ta được kết quả
A. 90
B. 30
C. 60
cos 2x 3sin x 2
0
cos x
Câu 6: Nghiệm của phương trình
là:
D. 45
x 2 k2
x k k
6
x 5 k
6
A.
x 6 k
k
x 5 k
6
B.
x 2 k
x k2 k
6
x 5 k2
6
C.
x 6 k2
k
x 5 k2
6
D.
Câu 7: Trong tập các số phức, cho phương trình
z 2 6z m 1, m 1 .
Gọi m 0 là một giá trị
z z z 2 z 2 .
của m để phương trình 1 có hai nghiệm phân biệt z1 , z 2 thỏa mãn 1 1
Hỏi trong khoảng
(0; 20) có bao nhiêu giá trị m ?
A. 13
B. 11
C. 12
D. 10
2
Câu 8: Cho hàm số y x 1. Nghiệm của phương trình y '.y 2x+1 là
A. x 2
B. x 1
Câu 9: Gọi số phức
z a bi a, b
D. x 1
C. Vô nghiệm.
thỏa mãn
z 1 1
và
1 i z 1
có phần thực bằng 1
đồng thời z khơng là số thực. Khi đó a.b bằng
A. ab 2
B. ab 2
C. ab 1
6
D. ab 1
7
5
P x x 1 x 1 ... x 1
Câu 10: Tìm hệ số của x trong khai triển
A. 1715.
B. 1711.
C. 1287.
12
D. 1716.
Câu 11: Cho hàm số y x sin 2x 2017. Tìm tất cả các điểm cực tiểu của hàm số.
A.
x
k, k
x k2, k x k2, k
x k, k
3
3
3
3
B.
C.
D.
2
cos x
4
2 là
Câu 12: Nghiệm của phương trình
x k2
k
x k
2
A.
x k
k
x k
2
B.
x k
k
x k2
2
C.
x k2
k
x k2
2
D.
Câu 13: Cho lăng trụ ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A 'B' và CC'. Khi đó CB'
song song với
A. AM
B. A'N.
C.
BC 'M
D.
AC ' M
Câu 14: Cho hình chóp S.ABCD, đáy là hình thang vng tại A và B, biết
AB BC a, AD 2a,SA a 3 và SA ABCD . Gọi M và N lần lượt là trung điểm của
SB,SA. Tính khoảng cách từ M đến (NCD) theo a.
a 66
A. 22
a 66
C. 11
B. 2a 66
a 66
D. 44
2
Câu 15: Số tiệm cận ngang của đồ thị hàm số y 2x 1 4x 4 là
A. 2
B. 1
Câu 16: Tìm m để đường thẳng
C. 0
y x m d
D. 3
cắt đồ thị hàm số
y
2x 1
C
x 2
tại hai điểm phân
biệt thuộc hai nhánh của đồ thị C).
A. m
1
m \
2
B.
C.
m
1
2
m
D.
1
2
Câu 17: Tìm tập xác định D của hàm số y tan 2x.
D \ k2 k
4
A.
D \ k k
2
B.
D \ k k
4
C.
k
D \
k
4 2
D.
Câu 18: Xét khối tứ diện ABCD, AB x, các cạnh còn lại bằng 2 3. Tìm x để thể tích khối tứ
diện ABCD lớn nhất.
A. x 6
B. x 2 2
C. x 14
D. x 3 2
Câu 19: Cho các hàm số
I : y x 2 3; II : x 3 3x 2 3x 5; III : y x
1
7
; IV : y 2x 1 .
x 2
Các hàm số khơng có
cực trị là
A.
I , II , III
B.
III , IV , I
C.
IV , I , II
Câu 20: Chọn phát biểu đúng.
A. Các hàm số y sinx, y cosx, y cotx đều là hàm số chẵn.
B. Các hàm số y sinx, y cosx, y cotx đều là hàm số lẻ
D.
II , III , IV
C. Các hàm số y sinx, y cot x, y tan x đều là hàm số chẵn.
D. Các hàm số y sinx, y cot x, y tan x đều là hàm số lẻ
Câu 21: Trên tập số phức, cho phương trình
az 2 bz c 0 a, b, c ; a 0 .
Chọn kết luận sai.
A. Nếu b 0 thì phương trình có hai nghiệm mà tổng bằng 0.
2
B. Nếu b 4ac 0 thì phương trình có hai nghiệm mà modun bằng nhau.
C. Phương trình ln có hai nghiệm phức là liên hợp của nhau.
D. Phương trình ln có nghiệm.
Câu 22: .Cho hàm số
x 0 a, b .
y f x
xác định và có đạo hàm cấp một và cấp hai trên khoảng (a, b) và
Khẳng định nào sau đây là sai?
A
y ' x 0 0
và
y '' x 0 0
thì x 0 là điểm cực trị của hàm số.
B.
y ' x 0 0
và
y '' x 0 0
thì x 0 là điểm cực tiểu của hàm số.
y ' x 0 0
C. Hàm số đạt cực đại tại x 0 thì
D.
y ' x 0 0
và
Câu 23: Cho hàm số
3
A. y x 1
y '' x 0 0
y f x
B.
thì x 0 khơng điểm cực trị của hàm số.
có đồ thị C như hình vẽ. Hỏi C là đồ thị của hàm số nào?
y x 1
Câu 24: Cho số phức z thỏa mãn
A.
z 34
B.
3
C.
z 2 i 13i 1.
z 34
y x 1
3
3
D. y x 1
Tính mơ đun của số phức z.
C.
z
34
3
D.
z
5 34
3
Câu 25: Cho khối lăng trụ tam giác ABC.A'B'C' có thể tích là V. Gọi I, J lần lượt là trung điểm hai
cạnh AA' và BB'. Khi đó thể tích của khối đa diện ABCIJC' bằng.
4
V
A. 5
3
V
B. 4
5
V
C. 6
2
V
D. 3
0;10
Câu 26: Phương trình cos2x 4sin x 5 0 có bao nhiêu nghiệm trên khoảng
A. 5
B. 4
C. 2
D. 3
Câu 27: Cho tứ diện ABCD có AB AC 2, DB DC 3. Khẳng định nào sau đây đúng?
A. BC AD.
B. AC BD
C.
AB BCD
D.
DC ABC
Câu 28: Cho khối chóp S.ABC có ASB BSC CSA 60 ,SA a,SB 2a,SC 4a. Tính thể
tích khối chóp S.ABC theo a.
8a 3 2
3
A.
2a 3 2
3
B.
4a 3 2
3
C.
a3 2
D. 3
1 i
z 2 m
Câu 29: Cho số phức z thỏa mãn z là số thực và
với m . Gọi m 0 là một giá trị
của m để có đúng một số phức thỏa mãn bài tốn. Khi đó
1
m 0 0;
2
A.
Câu 30: Cho hàm số
1
m 0 ;1
2
B.
y
3
m0 ; 2
2
C.
3
m 0 1;
2
D.
16
x m
min y max y
3
1;2
x 1 (m là tham số thực) thỏa mãn 1;2
Mệnh đề nào dưới đây đúng?
A. 2 m 4
B. 0 m 2
C. m 0
D. m 4
; ; ;
6 4 3 2 để phương trình cos2x 3sin2x 2cosx 0 tương đương với
Câu 31: Tìm góc
phương trình
A.
6
cos 2x cosx
B.
4
C.
2
D.
3
Câu 32: Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí
B trên hịn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vng góc với bờ
biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn
theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp
mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng.
A. 7km.
B. 6km.
C. 7.5km
D. 6.5km
Câu 33: Người ta muốn xây một chiếc bể chứa nước có hình dạng là một khối hộp chữ nhật khơng
500 3
m.
nắp có thể tích bằng 3
Biết đáy hồ là một hình chữ nhật có chiều dài gấp đơi chiều rộng và
2
giá thuê thợ xây là 100.000 đồng /m . Tìm kích thước của hồ để chi phí th nhân cơng ít nhất. Khi
đó chi phí th nhân cơng là
A. 15 triệu đồng.
B. 11 triệu đồng.
C. 13 triệu đồng.
D. 17 triệu đồng.
2
Câu 34: Biết rằng giá trị lớn nhất của hàm số y x 4 x m là 3 2. Giá trị của m là
A. m 2
B. m 2 2
C.
m
2
2
D. m 2
Câu 35: Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức
z a bi a, b , b 0 .
B. M thuộc tia Oy
C. M thuộc tia đối của tia Ox.
D. M thuộc tia đối của tia Oy.
Câu 36: Trong tập các số phức, gọi z1 , z 2 là hai nghiệm của phương trình
có thành phần ảo dương. Cho số phức z thỏa mãn
2016 1
2
với
Chọn kết luận đúng
A. M thuộc tia Ox.
A.
z z
B.
2017 1
2
z z1 1
C.
z2 z
Giá trị nhỏ nhất của
2016 1
2
D.
2017
0
4
với z 2
P z z2
là
2017 1
Câu 37: Số mặt phẳng đối xứng của khối tứ diện đều là
A. 7
B. 8
Câu 38: Cho hàm số
A.
C. 9
y f x ax 3 bx 2 cx d, a 0 .
lim x
D. 6
Khẳng định nào sau đây đúng?
B. Đồ thị hàm số ln cắt trục hồnh.
x
C. Hàm số ln tăng trên
D. Hàm số ln có cực trị.
Câu 39: Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh
lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biểu diễn trong lễ bế giảng. Hỏi có bao
nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
A. 120
B. 98
C. 150
D. 360
Câu 40: Có bao nhiêu số chẵn mà mỗi số có 4 chữ số đôi một khác nhau?
A. . 2520.
B. 50000.
C. 4500
D. 2296.
Câu 41: .Gọi S là tập hợp các số thực m sao cho với mỗi m S có đúng một số phức thỏa mãn
z m 6
A. 10
z
và z 4 là số thuần ảo. Tính tổng của các phần tử của tập S.
B. 0
C. 16
D. 8
Câu 42: Tìm số phức z thỏa mãn
A. z 1 2i
Câu 43: Cho hàm số
z 2 z
B. 1 2i
y
và
z 1 z i
là số thực
C. z 2 i
D. z 1 2i
x3
ax 2 3ax 4.
3
Để hàm số đạt cực trị tại x1; x 2 thỏa mãn
x12 2ax 2 9a x 22 2ax1 9a
2
a2
a2
thì a thuộc khoảng nào?
5
a 3;
2
A.
7
a 5;
2
B.
C.
Câu 44: Tìm tất cả các giá trị của m để đồ thị hàm số
A. m 2
B. m 2
a 2; 1
y
7
a ; 3
2
D.
2x 4
x m có tiệm cận đứng.
C. m 2
D. m 2
3
2
1;
Câu 45: Tìm m để hàm số y x 3x mx 2 tăng trên khoảng
A. m 3
B. m 3
C. m 3
D. m 3
Câu 46: .Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là
trung điểm của CD,CB,SA. Thiết diện của hình chóp cắt bởi mặt phẳng MNK là một đa giác H.
Hãy chọn khẳng định đúng.
A. H là một hình thang
B. H là một ngũ giác
C. H là một hình bình hành.
D. H là một tam giác
a; b . Tính tổng T a b ?
Câu 47: Tập giá trị của hàm số y sin2x 3cos2x+1 là đoạn
A. T 1
B. T 2
C. T 0
D. T 1
Câu 48: Trên giá sách có 4 quyển sách tốn, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3
quyển sách. Tính xác suất để được 3 quyển được lấy ra có ít nhất một quyển là tốn.
2
A. 7
3
B. 4
37
C. 42
10
D. 21
x 2 1, x 1
y f x
2x, x 1
Câu 49: Cho hàm số
Mệnh đề sai là
A.
f ' 1 2
B. f khơng có đạo hàm tại x 0 1
C.
f ' 0 2
D.
f ' 2 4
Câu 50: Nghiệm của phương trình tan3x tan x là
x k , k
2
A.
B.
x k, k
C.
x k2, k
x k , k
6
D.
Tổ Toán – Tin
MA TRẬN TỔNG QUÁT ĐỀ THI THPT QUỐC GIA MƠN TỐN 2018
Mức độ kiến thức đánh giá
STT
Các chủ đề
1
Tổng số câu
hỏi
Nhận
biết
Thơng
hiểu
Vận
dụng
Vận dụng
cao
Hàm số và các bài tốn
liên quan
4
6
6
3
19
2
Mũ và Lơgarit
0
0
0
0
0
3
Ngun hàm – Tích
phân và ứng dụng
0
0
0
0
0
Lớp 12
4
Số phức
1
3
4
3
11
(...%)
5
Thể tích khối đa diện
3
2
3
1
9
6
Khối trịn xoay
0
0
0
0
0
7
Phương pháp tọa độ
trong khơng gian
0
0
0
0
0
1
Hàm số lượng giác và
phương trình lượng
giác
1
1
1
1
4
2
Tổ hợp-Xác suất
0
2
2
0
4
Lớp 11
3
Dãy số. Cấp số cộng.
Cấp số nhân
0
0
0
0
0
4
Giới hạn
0
0
0
0
0
5
Đạo hàm
0
0
1
0
1
6
Phép dời hình và phép
đồng dạng trong mặt
phẳng
0
0
0
0
0
7
Đường thẳng và mặt
phẳng trong không gian
Quan hệ song song
0
0
0
0
0
8
Vectơ trong không gian
Quan hệ vng góc
trong khơng gian
0
0
0
0
0
1
Bài tốn thực tế
0
0
1
1
2
(...%)
Tổng
Số câu
Tỷ lệ
50
ĐÁP ÁN
1-D
11-A
21-C
31-D
41-B
2-D
12-D
22-D
32-D
42-D
3-C
13-D
23-B
33-A
43-B
4-A
14-C
24-B
34-A
44-A
5-C
15-B
25-D
35-C
45-A
6-D
16-A
26-A
36-A
46-B
7-D
17-D
27-A
37-D
47-B
8-C
18-D
28-B
38-B
48-C
9-C
19-D
29-D
39-B
49-B
10-A
20-D
30-D
40-D
50-A
LỜI GIẢI CHI TIẾT
Câu 1: Đáp án D
Phương pháp.Sử dụng điều kiện cần của cực trị hàm số để tìm điều kiện của m để hàm số có cực
trị. Sau đó tìm tọa độ các điểm cực trị. Sử dụng tính chất của hình thoi
để tìm giá trị của m.
Lời giải chi tiết.
3
Ta có y ' 4x 4mx Để đồ thị có ba điểm cực trị thì phương trình
y ' 0 4x 3 4mx 0 phải có 3 nghiệm phân biệt.
x 0
4x 3 4mx 0 2
x m
Khi đó điều kiện cần là m 0. Ta có ba nghiệm là x 0, x m, x m
4
2
Với x 0 thì y m 2m
4
2
Với x m thì y m 3m
Do A thuộc trục tung nên
B
A 0; m 4 2m 2
m; m 4 3m 2 , C m; m 4 3m 2
Giả sử điểm B nằm bên phải của hệ trục tọa độ, khi đó
AB
CD. Ta có
AD
BC.
Ta kiểm tra được
Do đó để ABDC là hình thoi thì trước hết ta cần
AB
CD
m; m 4 3m 2 m 4 2m 2
m; 3 m 4 3m 2
Do đó
AB CD
m; m 2
m; m 2
m; m 4 3m 2 3
m; m 4 3m 2 3 m 2 m 4 3m 2 3
m 2 1
m 1
m 4m 3 0 2
m 3
m 3
4
2
Do điều kiện để có ba điểm cực trị là m 0 nên ta chỉ có m 1 hoặc m 3
A
0;
1
,
B
1;
2
,
C
1;
2
.
AB
1; 1 AB 2.
Với m 1 thì
Ta có
Tương tự ta có
BD CD CA 2. Như vậy ABDC là hình thoi. Vậy m 1 thỏa mãn yêu cầu bài toán.
1
9
m 1 ; 2 , 1; , 2;3
2
5
Do
nên các đáp án A, B, C đều sai.
Với
m 3
Trong trường hợp này
B
4
3;0 , C 4 3;0 , A 0;3 .
Ta kiểm tra được
AB BD DC CA 9 3. Do đó ABDC cũng là hình thoi và m 3 thỏa mãn yêu cầu bài
toán
Nhận xét. Đối với bài toán thi trắc nghiệm địi hỏi cần tiết kiệm thời gian thì chỉ cần xét trường hợp
m 1 thì chúng ta đã có thể kết luận được đáp án cần chọn là D mà không cần xét thêm trường hợp
m 3
Câu 2: Đáp án D
Phương pháp: Phương trình tiếp tuyến của hàm số
y f x 0 f ' x 0 x x 0 1 .
Hệ số góc là
k f ' x 0
y f x 0
tại điểm
x ;f x
0
0
là
sử dụng điều này để tìm điểm x 0 sau đó
thay vào 1 để tìm phương trình tiếp tuyến.
Lời giải chi tiết.
2
x 2 6x 0 9 x 0 3.
Ta có y ' x 6x. Do tiếp tuyến có hệ số góc là k 9 nên 0
Khi đó
phương trình tiếp tuyến là
y y x 0 k x x 0 y 16 9 x 3
Câu 3: Đáp án C
Phương pháp: Gọi
z a bi, a, b
là số phức cần tìm. Sử dụng giả thiết để đưa ra một hệ điều
kiện đẳng thức, bất đẳng thức cho a,b. Sử dụng điều kiện trên để đánh giá và tìm giá trị lớn nhất của
P.
Lời giải chi tiết.
Giả sử số phức thỏa mãn yêu cầu bài tốn có dạng
z
z
z
z
2i a bi 2i a2 b 2
2
4i a bi 4i a2 b 4
2
2
3 3i a bi 3 3i
2 a bi 2
a 2
a 3 b 3
2
z a bi, a, b
Khi đó ta có
2
b2
Từ giả thiết ta suy ra
2
2
2
2
2
2
a b 2 a b 4
b 2 b 4
2
2
2
2
a 3 b 3 1
a 3 b 3 1
2
a 3 b 3
Từ
Do đó
P z 2
2
b 2 b 4 VN
b 2 b 4
2
2
a 3 b 3 1
b 3
2
2
a 3 b 3 1
2
1 a 3 1 2 a 4 0 a 2 2
a 2
2
b2 22 32 13.
Đẳng thức xảy ra khi và chỉ khi
a 2 2 22
a 4
b 3
b 3
2
2
a 3 b 3 1
Chú ý. Đối với bài toán liên quan tới cực trị học sinh thường mắc phải sai lầm là quên tìm giá trị để
cực trị xảy ra. Điều này có thể dẫn tới việc tìm sai giá trị lớn nhất nhỏ nhất.
Câu 4: Đáp án A
Phương pháp
Sử dụng định nghĩa của tiệm cận đứng.
Lời giải chi tiết.
Để tìm tiệm cận đứng ta cần tìm điểm
x0
sao cho
lim y
x x 0
hoặc
lim y
x x 0
nhận một trong hai giá trị
;
Với
x 1; 2
Ta có
y
thì ta có
lim y lim
x 2
x 2
2
x 3 3x 2 x 1 x x 2 x 2 x 2
x 3 3x 2
x 2
x 1 x 2
x2 x 2
x 2
Vậy x 2 là tiệm cận đứng của đồ thị hàm số đã cho.
Sai lầm. Một số học sinh có thể mắc sai lầm như sau: Do quan sát thấy mẫu số của hàm số trên có
hai nghiệm là x 1, x 2 nên học sinh có thể khơng tính mà đưa ra kết quả
lim y
x 1
rồi kết luận x 1 là tiệm cân đứng của đồ thị hàm số.
Câu 5: Đáp án C
Phương pháp
Chứng minh góc giữa SC và AB cũng bằng góc giữa SC và CD. Chứng minh Tam giác SCD
là tam giác đều để suy ra góc giữa SC và AB bằng 60 .
Lời giải chi tiết.
2
2
2
2
Ta có AB AC a, BC a 2 AB AC BC 2a ABC vuông cân
tại A.
Gọi H là hình chiếu của S lên
ABC
Do SA=SB=SC=a nên HA=HB=HC H là trung điểm của BC.
Trên mặt
ABC
lấy điểm D sao cho ABDC là hình vng.
Do CD / /AB nên góc giữa SC và AB cũng bằng góc giữa SC và CD. H là trung điểm BC nên
HC HD
Ta có SHC SHD SC=SD=a. Tam giác SCD có SC=CD=SD=a nên là tam giác đều.
Do đó SCD 60 . Vậy góc giữa SC và AB bằng SCD 60 .
Câu 6: Đáp án D
Phương pháp
2
Tìm điều kiện để phương trình có nghĩa. Sau đó sử dụng cơng thức 2cos2x=1 2sin x để đưa
phương trình đã cho về phương trình bậc 2 đối với sin x và giải phương trình này để tìm nghiệm.
Bước cuối cùng là đối chiếu điều kiện để kết luận nghiệm.
Lời giải chi tiết.
cos x 0 x k k 1
2
Điều kiện
Với điều kiện trên phương trình đã cho trở thành
cos 2x 3sin x 2 0 1 2sin 2 x 3sin x 2 0 2sin 2 x 3sin x 1 0
2sin x 1 0
2sin x 1 s inx 1 0
s inx 1 0
Nếu s inx 1 0 s inx 1 cos x 0, không thỏa mãn điều kiện (1)
x k2
1
6
2sin x 1 0 sin x sin
k
2
6
x k2 5 k2
6
6
Vậy
Câu 7: Đáp án D
Phương pháp
Biện luận để tìm trực tiếp nghiệm z1 , z 2 . Sử dụng giả thiết để tìm ra giá trị m 0
Lời giải chi tiết.
Viết lại phương trình đã cho thành
z 3
2
9 m 0
Nếu m 0 9 z 3 Hay phương trình chỉ có một nghiệm. (Loại)
z 3
Nếu m 0 9 thì phương trình đã cho có hai nghiệm thực 1
z1 z1 z 2 z 2 z1 z 2 3
3
3
Nếu
9 m0
9 m 0 3 9 m 0
9 m 0 3
m 0 9 thì
9 m 0 VN
phương
trình
2
3
đã
9 m0
9 m 0 , z 2 3 9 m 0 .
Do
2
9 m 0 0 m 0 9 ktm
cho
có
hai
nghiệm
phức
liên
hợp
là
z1 3 i m 0 9, z 2 3 i m 0 9.
Khi đó
z1 z1 z 2 z 2 32 m 0 9
Do đó m 0 9 thỏa mãn yêu cầu bài toán. Do bài tốn địi hỏi
m 0 10;11;12;...;19 .
m 0 (0; 20) nên
Vậy có 10 giá trị thỏa mãn.
Câu 8: Đáp án C
Phương pháp
Tìm điều kiện để hàm số xác định. Tính trực tiếp đạo hàm y' và thay vào phương trình để giải
tìm nghiệm. Đối chiếu với điều kiện ban đầu để kết luận nghiệm.
Lời giải chi tiết.
x 1
x 2 1 0
x 1
Điều kiện:
Hàm số đã cho khơng có đạo hàm tại x 1. Do đó phương trình y '.y 2x+1 chỉ có thể có
x 1
x 1.
nghiệm trên
Khi đó ta có
y'
x
2
x 1
y '.y 2x+1
x
2
x 1
. x 2 1 2x+1 x 1 ktm
Vậy phương trình đã cho vơ nghiệm.
Sai lầm. Một số học sinh khi tính đạo hàm và thay vào phương trình để giải tìm được x 1 sẽ kết
luận ln x 1 là nghiệm của phương trình đã cho.
Câu 9: Đáp án C
Phương pháp
Gọi số phức đã cho có dạng
z a bi a, b .
Sử dụng giả thiết để đưa ra một hệ cho a, b giải
trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
2
Ta có:
2
2
12 z 1 a bi 1 a 1 b 2 1
b 0 2
Do z không là số thực nên ta phải có
Ta lại có
1 Re 1 i z 1 Re 1 i a bi 1 Re a b 1 a b 1 a b 1 3
Từ
1 , 2 , 3
ta có hệ
a 1 2 b 2 1 a 1 2 b 2 1 1 b 2 b2 1 2b 2 2b 0
a 1
a 1 1 b
a 1 1 b
a 2 b
ab 1
a b 1 1
b
1
b 0
b 0
b 0
b 0
Câu 10: Đáp án A
Phương pháp
5
x 1
Hệ số của x trong khai triển
k
k 5
5
là Ck . Lấy tổng các hệ số này lại để ra kết quả.
Lời giải chi tiết.
5
x 1
Hệ số của x trong khai triển
k
k 5
là
C5k .
5
p x
Do đó hệ số của x trong khai triển của
5
5
5
5
5
5
5
là C6 C7 C8 C9 C10 C11 C12 1715
Câu 11: Đáp án A
Phương pháp
Sử dụng điều kiện cần và đủ cho cực trị hàm số để tìm điểm cực tiểu của hàm số.
Lời giải chi tiết.
Tập xác định x
Ta có
y ' 1 2cos 2x y ' x 0 0 1 2 cos 2x 0 0 cos 2x 0
1
2
cos
x 0 k k
2
3
3
2
y '' x 0 4sin 2 k 4sin
0
x 0 k
x 0 k k
3
3
3
3
Với
thì
vì vậy
là điểm
cực đại của hàm đã cho.
Với
x 0
2
y '' x 0 4sin 2 k 4sin
k
x 0 k
0
3
3
3
3
thì
vì vậy
là
điểm cực tiểu của hàm đã cho.
Sai lầm. Học sinh có thể nhớ nhầm điều kiện đủ cho cực tiểu và cực đại của hàm số dẫn tới kết luận
sai giá trị của cực tiểu.
Câu 12: Đáp án D
Phương pháp
Giải phương trình lượng giác cơ bản.
Lời giải chi tiết.
x k2
2
4 4
cos x
cos
4
2
4
x k2
4
4
Ta có
x k2
k
x k2
2
Câu 13: Đáp án D
Phương pháp
Gọi P là trung điểm của B'C'.
Chứng minh
NP / / AMC '
B 'C / / AMC '
và NP / /B'C để suy ra
Lời giải chi tiết.
Gọi P là trung điểm của B'C'.
Giả sử S AC ' A 'C
Khi đó S là trung điểm của A'C.
1
SN / /A 'C ',SN= A 'C ' 1
2
Vì SN là đường trung bình của A 'C 'C nên
1
MP / /A 'C ', MP A 'C ' 2
2
Vì MP là đường trung bình của A ' B'C ' nên
Từ
1 , 2
ta nhận được SN / /MP,SN=MP. Do đó MPNS là hình bình hành. Kéo theo NP / /MS.
MS AMC ' NP / / AMC ' 3 .
Vì
Vì NP là đường trung bình của
B 'C 'C
nên
NP / /B 'C 4
Từ
3 , 4
suy ra
B 'C / / AMC '
Câu 14: Đáp án C
Phương pháp
1
VSNED = d S, NDE SNDE .
d S, NDE
3
Sử dụng cơng thức
Tính SNDE , VSNED để suy ra
Lời giải chi tiết.
Gọi E=AB CD, G=NE SB.
1
BC / /AD, BC= AD
2
Vì
nên BC là đường trung bình của tam giác ADE. Do đó B, C lần lượt
là trung điểm của AE, DE. Do đó G là trọng tâm của SAE.
2
1
4
4
SG= SB.
SM= SB,
SG= SM= SG MG SG=4MG.
3
2
3
3
Kéo theo
Mà
nên
Do đó
d S, NCD =d S, NED 4d M, NED d M, NCD d S, NCD
1
1
1
1 a 3
a3 3
2
SAED AD.AE 2a 2a 2a 2 VNAED NA.SAED
2a
2
2
3
3 2
3
Ta có
1
2a 3 3
a3 3
VSAED = SA.SAED
VSNED VSAED VNAED
2
3
3
Mặt khác gọi P là trung điểm của AD, thì CP AD, CP=PD ACD vng tại C. Do đó
CD AC.
Mà
CD SA CD SAC CD NC
Ta có
NC2 NA 2 AC2 NA 2 AB2 BC 2
3a 2
11a 2
2a 2
4
4
1
1 a 11
a 2 22
ED 2 AD 2 AE 2 8a 2 SNDE NC.ED
2
2a
2
2 2
2
3V
1
VSNED d S NED SNDE d S NDE SNDE
3
SNDE
Vì
Câu 15: Đáp án D
3a 3 3
a 66
23
11
a 22
3
Phương pháp
Sử dụng định nghĩa tiệm cận ngang để tìm tiệm cận ngang của đồ thị hàm số.
Lời giải chi tiết.
Ta có
lim y
x
2
lim y lim 2x 1 4x 4
x
lim
x
4x
2
4 2x 1
4x 2 4 2x 1
lim
x
4x 2 4 2x 1
4x 2 4 2x 1
x
2
4x 2 4 2x 1
x
lim
5
x 4
4x 5
4
x
lim
1
4 2
4
1
4x 2 4 2x 1 x
x 4 2 2
x
x
Vậy y 1 là tiệm cận ngang của đồ thị hàm số đã cho.
lim y
Sai lầm. Do ta xét giới hạn
x
hơn nữa lại có x trong căn nên một số học sinh khi đưa x vào
trong căn sẽ quên đổi thành -x rồi mới đưa vào căn. Cụ thể một số học sinh có thể tính được kết
quả.
4x
lim
x
2
4 2x 1
2
4x 2 4 2x 1
lim
4x 2 4 2x 1
x
5
x
4
1
4 2 2
x
x
4
4x 5
lim
x
Câu 16: Đáp án A
Phương pháp
Tìm tập xác đinh của hàm số.Để
d
cắt
C
tại hai điểm phân biệt thì phương trình
2x 1
x m
x 2
có hai nghiệm phân biệt.Giải và biện luận hệ này để tìm giá trị của m.
Lời giải chi tiết.
Tập xác định x 2.
d
Để
C
cắt
2x 1
x m
tại hai điểm phân biệt thì phương trình x 2
có hai
nghiệm phân biệt. Khi đó ta cần
2x 1 x m x 2 2x 1 x 2 mx 2x 2m 0 x 2 m 4 x 2m 1 0 1
có hai nghiệm phân biệt khác 2. Do
22 m 4 .2 2m 1 5 0
nghiệm thì các nghiệm này sẽ khác 2. Phương trình
1
nên phương trình
1
nếu có
có hai nghiệm phân biệt
2
khi và chỉ khi
m 4 4 2m 1 m 2 20 0.
phân biệt. Hơn nữa ta tìm được hai nghiệm này là
Vậy phương trình (1) ln có hai nghiệm
x1
m2 20
4 m
2
; x2
4 m m2 20
.
2
4 m m 2 20 m m2 20
2
x
2
0
1
2
2
x1 2 x 2
2
2
4
m
m
20
m
m
20
2
0
x 2 2
2
2
Ta lại có
Do đó x1 , x 2 nằm về hai nhánh của đồ thị (C) với mọi x
Sai lầm. Một số học sinh khi tìm ra được điều kiện của m để phương trình có hai nghiệm sẽ bỏ qua
việc tìm điều kiện của m để hai nghiệm thuộc hai nhánh của đồ thị mà đi tới kết luận nghiệm luôn
Câu 17: Đáp án B
Phương pháp
Sử dụng công thức cơ bản của lượng giác.
Lời giải chi tiết.
k
cos2x 0 2x k x k
2
4 2
Tập xác định
Câu 18: Đáp án D
Phương pháp
Gọi H là trung điểm của cạnh AB. Hạ đường cao CK xuống HD.Vậy CK là đường cao của tứ
diện. Áp dụng định lý Py-ta-go để tính CK. Sử dụng cơng thức tính thể tích để tính thể tích tứ diện.
Áp dụng bất đẳng thức Cơ-si để tìm giá trị lớn nhất của tứ diện.
Lời giải chi tiết.
Gọi H là trung điểm của cạnh AB, do ABC cân tại C nên CH là đường cao. Tam giác ABD có
AD=DB=2 3 nên là tam giác cân tại D. Do đó HD là đường cao. Khi đó ta có
CH AB
AB CHD
HD AB
CK ABD .
Hạ đường cao CK xuống HD khi đó CK AB. Do đó
Vậy CK là đường cao của tứ
HB
diện. Ta có
2
x
2 Áp dụng định lý Py-ta-go cho tam giác HBC ta có
2
HC BC HB
Tương tự ta có
HD
2 3
2
2
48 x 2
x
2
2
48 x 2
.
2
Đặt y KD. Áp dụng định lý Py-ta-go cho tam giác CHK và CKD
ta có
2
CK 2 CH 2 HK 2 CD 2 KD 2 CH 2 HD y 2 3
CH 2 HD 2 2HD.y y 2 12 y 2 2HD.y 12 y
2
y2
6
12
HD
48 x 2
Vì vậy
2
2
2
CK CD y 12
12 48 x 2 12 12 36 x 2
12 36 x 2
CK
48 x 2
48 x 2
48 x 2
48 x 2
12
1
1
48 x 2 x 48 x 2
S1 AB.HD x
2
2
2
4
Diện tích tam giác ABD là
2
1
1 12 36 x x 48 x 2 1
V CK.S1
.
3.x. 36 x 2
2
3
3
48
x
4
6
Do đó thể tích tứ diện là
x,
Áp dụng bất đẳng thức Cơ-si cho
36 x 2
ta có
2
2
3
3 x 36 x
2
V x. 36 x
3 3.
6
6
2
Dấu bằng xảy ra khi và chỉ khi
x 36 x 2 x 18 3 2
Nhận xét.Chúng ta có thể thay điều kiện các cạnh cịn lại bằng 2 3 bởi điều kiện các cạnh còn lại
bởi một số a 0 nào đó bất kì, để được một bài toán khác nhưng cách làm tương tự bài này.
Câu 19: Đáp án D
Phương pháp
Sử dụng điều kiện cần và đủ để hàm số có cực trị để giải.
Lời giải chi tiết.