1
Sức bền vật liệu
Mục đích của môn học nhằm trang bị cho sinh viên những kiến thức
cơ bản về việc tính toán, thiết kế các chi tiết máy, kết cấu công trình.
Chơng 1.
Những khái niệm cơ bảN
I. Nhiệm vụ v đối tợng của sức bền vật liệu
1. Nhiệm vụ
Tính toán về độ bền, độ cứng v độ ổn định của các bộ phận công
trình hoặc các chi tiết máy. Khi thiết kế các bộ phận công trình hoặc các
chi tiết máy, ta phải thoả mãn các điều kiện sau:
- Chi tiết không bị phá hỏng hay đảm bảo
điều kiện bền
.
- Độ biến dạng của chi tiết không vợt quá mức độ cho phép hay đảm
bảo
điều kiện cứng
.
- Chi tiết luôn giữ đợc hình dáng ban đầu hay đảm bảo điều kiện
ổn
định
.
2. Đối tợng nghiên cứu
Vật rắn biến dạng
: về vật liệu l các vật thể có tính
đn hồi tuyệt đối
,
về mặt hình học chủ yếu l các thanh. Ngoi ra các dạng khác nh: tấm,
vỏ, ống dy, đĩa, v.v. Thông thờng xét một trong ba cấu hình sau:
Khối (hình 1.1)
Tấm v vỏ (hình 1.2)
Thanh (hình 1.3)
Hình 1.3
a
)
b
)
F - diện tích m
ặ
t cắt n
g
an
g
Tr
ụ
c thanh
Hình 1.1
Hình 1.
2
2
II. Một số giả thuyết cơ bản về vật liệu
1. Giả thuyết về sự liên tục, đồng nhất v đẳng hớng
Dới tác dụng của ngoại lực mọi vật rắn thực đều bị biến dạng, nghĩa
l biến đổi hình dạng v kích thớc, đó l vì ngoại lực lm thay đổi vị trí
tơng đối vốn có giữa các phân tử cấu tạo nên vật rắn ấy.
Tính liên tục
: vật rắn đợc gọi l
liên tục
nếu mỗi phân tố bé tuỳ ý
của nó đều chứa vô số chất điểm sao cho trong vật thể không có lỗ rỗng.
Tính đồng nhất
có nghĩa l tại mọi điểm trong vật thể, vật liệu có
tính chất lý - hoá nh nhau.
Tính đẳng hớng
l tính chất cơ - lý của vật liệu theo mọi phơng
đều nh nhau.
2. Giả thuyết về sự đn hồi, biến dạng v chuyển vị bé
Vật rắn đợc gọi l đn hồi (hay rõ hơn, đn hồi tuyệt đối) nếu có khả
năng phục hồi hon ton hình dạng v kích thớc vốn có sau khi ngoại lực
thôi tác dụng, biến dạng đợc khôi phục hon ton sau khi hết ngoại lực
đợc gọi l biến dạng đn hồi.
Vật đn hồi tuyến tính l vật m biến dạng l đn hồi v tỉ lệ bậc nhất
với nội lực. Những vật đn hồi khác đợc gọi l vật đn hồi phi tuyến.
Biến dạng bé có thể hiểu l nó nhỏ đến mức nh những đại lợng vô
cùng bé. Chuyển vị l rất bé so với kích thớc của vật thể.
3. Giả thuyết về quan hệ giữa lực v biến dạng
Giữa ngoại lực tác động lên vật thể v biến dạng của nó có mối
quan hệ biểu diễn bởi một hm số no đó. Nếu hm số đó l bậc nhất ta
gọi vật liệu tuân theo quy luật
tuyến tính
. Nếu hm số đó không phải bậc
nhất ta gọi l quy luật
phi tuyến
. Trong chơng trình sức bền vật liệu, ta
chỉ xét đến quy luật tuyến tính giữa lực v biến dạng.
3
III. Ngoại lực, nội lực
1. Ngoại lực
Ngoại lực bao gồm
tải trọng
(
tĩnh
v
động)
v các
phản lực liên kết
.
Tải trọng gồm:
-
Lực tập trung
-
Lực phân bố
(
hình 1-4
)
-
Ngẫu lực tập trung
(
mômen tập trung
) hoặc
phân bố
(
hình 1-5
).
2. Nội lực
Phần lực tác dụng
tơng hỗ để chống lại tác
dụng của ngoại lực gọi l
nội lực
.
Phơng pháp mặt cắt
xác định nội lực.
Các thnh phần nội lực
(hình 1-9)
v quy ớc về dấu
(hình 1-10)
:
Lực dọc N
z
; lực cắt Q
x
, Q
y
; mômen uốn M
x
, M
y
; mômen xoắn M
z
.
IV. Biến dạng v ứng suất
Hình
1
-
8
Hình
1
-
9
M
z
>0
M
x
M
x
>0
Q
y
N
z
N
z
N
z
> 0
N
z
N
z
N
z
< 0
Q
y
> 0
Q
y
Q
y
< 0
Q
y
Q
y
M
x
M
x
M
x
<0
M
x
Hình 1-1
0
M
z
<0
l
z
a
q
1
kN/m
2
q=q
1
.b
q(z)
dz
a)
b)
c)
Hình 1-
4
b
kN/m
Hình
1
-
5
a
P
P
M=P.a
m (kN/m
2
)
a
b
a)
b)
Hình 1-6
Hình 1-7
4
1. Biến dạng
Biến dạng cơ bản đợc phân loại theo thnh phần nội lực trên hệ
trục quán tính chính trung tâm.
a. Kéo (hoặc nén) đúng tâm
(hình 1-11):
Hệ nội lực ở mặt cắt ngang tơng đơng với một lực dọc
z
N
G
Hình 1-11
b. Cắt (hay trợt)
(hình 1-12)
Hệ nội lực ở mặt cắt
ngang tơng đơng với
một lực ngang
y
Q
G
(hoặc
x
Q
G
).
c. Xoắn
(hình 1-13).
Hệ nội lực ở mặt cắt
ngang tơng đơng với
một ngẫu lực có mômen M
z
nằm trong mặt cắt
d. Uốn
(hình 1-14).
Uốn thuần tuý: Hệ nội lực ở mặt cắt ngang tơng đơng với một ngẫu
lực có mômen M
x
(hoặc M
y
). Uốn ngang: Q
y
, M
x
(Q
x
, M
y
)
Hình 1-14
2. ứng suất
Hình 1-1
3
Hình 1-1
2
5
Cờng độ của nội lực tại một điểm no đó trên mặt cắt đợc gọi l
ứng suất ton phần, ký hiệu
p
G
(hình 1-15).
ứng suất trung bình tại điểm M ký hiệu l:
tb
P
p
F
=
JG
G
(1-1)
ứng suất ton phần tại điểm M:
F0
P
p lim
F
=
JG
G
[lực/chiều di
2
] (1-2)
ứng suất ton phần
p
G
phân lm hai thnh phần (hình 1-15): ứng suất
pháp, ký hiệu
, ứng suất tiếp, ký hiệu
:
22
p =+
(1-3)
Có thể phân ứng suất
p
G
thnh ba phần theo 3 trục toạ độ l ứng suất
pháp
z
v ứng suất tiếp
zx
,
zy
(hình 1-17).
Quan hệ giữa ứng suất v các nội lực có hệ thức sau:
()
= = = =
= =
xzx yzy z z x z
FFF F
yzz zyzx
FF
Q dF;Q dF;N dF ;M y dF;
M x dF;M x y dF
(1-4)
Quy ớc dấu của ứng suất
:
ứng suất pháp đợc coi l dơng nếu nó đi ra khỏi mặt cắt.
ứng suất tiếp đợc coi l dơng nếu khi quay pháp tuyến ngoi của
mặt cắt cùng chiều kim đồng hồ m chiều của nó trùng với chiều của ứng
suất tiếp.
V. Quan hệ giữa ứng suất v biến dạng
I
Hình 1-16
Hình 1-15
Hình
1
-1
7
6
Quan hệ giữa ứng suất v biến dạng biểu diễn bằng định luật Húc
tổng quát:
()
()
()
xy
xxyzxy
yz
yyzxyz
zx
zzxyzx
1
; ;
EG
1
; ;
EG
1
;
EG
= + =
= + =
= + =
(1-5)
E: môđuyn đn hồi của vật liệu, [
lực/(chiều di)
2
].
: hệ số Poát-xông của vật liệu, có giá trị 0
ữ
0,5.
G: môđuyn trợt của vật liệu, [
lực/(chiều di)
2
]
VI. sơ đồ hoá kết cấu
Hình 1-18 l hai sơ đồ tính đợc rút ra từ dầm thực tơng ứng, đợc
sơ đồ hoá bởi một đờng trục v các liên kết.
Hình 1-19 biểu diễn một số liên kết qua các sơ đồ hoá chúng v
phản lực liên kết:
VII. Liên hệ vi phân giữa nội lực v ngoại lực
Hình 1-1
9
ngm
N
M
R
gối di động (gối con lăn)
R
R
gối cố định
R
R
N
N
R=k.
Gối đn hồi
ngm trợt
M
M
M
M=k
ngm đn hồi
Hình 1-1
8
A
B
q
P
P
1
P
2
a)
b)
7
Ta nhận thấy giữa cờng độ tải trọng phân bố, lực cắt v mômen
uốn sẽ có mối quan hệ vi phân nhất định.
Hình 1-20
Thực vậy giả sử cho dầm chịu lực bất kỳ nh trên hình 1-20a. Xét
cân bằng của đoạn thanh hình 1-20b:
yyy
x0 xx
QP(QdQ)0
dz
M Qdz M P (M dM ) 0
2
+ + =
+++ + =
Bỏ qua lợng vô cùng bé: Q
y
dz v
2
dz
P
so với M
x
v M, ta rút ra
điều cần nhận xét:
yx
dQ P; dM M==
Xét cân bằng của đoạn thanh hình 1-20c:
yyy
xy x x
Qq.dz (Q dQ) 0
dz
M Q .dz qdz (M dM ) 0
2
+ =
++ +=
Nếu bỏ qua lợng vô cùng bé
2
dz
q
2
, ta đợc:
y
x
y
dQ
dM
q(z); Q
dz dz
==
;
2
y
x
2
dQ (z)
dM(z)
q
(z)
dz dz
==
(1-6)
Vậy đạo hm của lực cắt bằng cờng độ của tải trọng phân bố theo
chiều di v đạo hm của mômen uốn bằng lực cắt. Sự liên hệ đó gọi l
sự liên hệ vi phân giữa cờng độ tải trọng phân bố, lực cắt v mômen
uốn.
dz
dz
8
VIII. Biểu đồ nội lực
Biểu đồ nội lực l biểu thị sự biến thiên của các thnh phần nội lực
dọc theo trục thanh.
1. Để vẽ biểu đồ nội lực cần thực hiện theo trình tự sau:
Xác định các thnh phần phản lực liên kết cần thiết
Phân đoạn v dùng phơng pháp mặt cắt xác định các thnh phần
nội lực trên từng đoạn thanh.
Dựa vo quy luật phân bố từng thnh phần nội lực vẽ biểu đồ nội
lực cho từng loại nội lực.
Kiểm tra lại biểu đồ nội lực
2. Để vẽ nhanh v kiểm tra biểu đồ nội lực cần:
Dựa trên các nhận xét về bớc nhảy:
Tại mặt cắt có đặt lực tập trung, biểu đồ lực cắt có bớc nhảy, trị
số bớc nhảy bằng trị số lực tập trung.
Tại mặt cắt có mômen tập trung, biểu đồ mômen uốn có bớc
nhảy, trị số bớc nhảy bằng trị số mômen tập trung.
Dựa trên các liên hệ vi phân giữa ngoại lực v nội lực:
Trên đoạn thanh không có lực phân bố (q = 0), biểu đồ lực cắt (Q
y
)
l hằng số, mômen uốn (M
x
) l đờng bậc nhất.
Lực phân bố q=const
Q
y
bậc nhất, M
x
l đờng bậc hai.
Nếu trên đoạn thanh m q(z) l đa thức bậc n
Q
y
l một đờng
bậc (n+1) v M
x
l một đờng (n+2).
Trên đoạn thanh có q>0 (hớng lên) thì Q
y
đồng biến, trên đoạn
thanh có q<0 (hớng xuống) thì Q
y
nghịch biến.
Trên đoạn thanh có Q
y
>0 thì M
x
đồng biến, trên đoạn thanh có
Q
y
<0 thì M
x
nghịch biến. Tại mặt cắt Q
y
= 0, M
x
đạt cực trị:
+
Cực đại khi q < 0 (có chiều hớng xuống q
)
+
Cực tiểu khi q > 0 (có chiều hớng lên trên q
)
Dựa trên tính đối xứng v tác dụng của tải trọng:
Bề lõm của biểu đồ mômen uốn M
x
luôn hứng lấy chiều tác dụng
của lực phân bố.
Trờng hợp hệ có kết cấu đối xứng chịu tải trọng đối xứng, biểu
đồ mômen uốn sẽ đối xứng, biểu đồ lực cắt sẽ phản đối xứng qua
trục đối xứng của hệ. Nếu kết cấu đối xứng chịu tải trọng phản đối
xứng thì biểu đồ lực cắt đối xứng v biểu đồ mômen uốn phản đối
xứng.
3. Ví dụ minh hoạ
9
Ví dụ 1.1.
: Cho một dầm chịu lực nh hình 1.21. Vẽ biểu đồ nội lực
Q
y
, M
x
.
Bi giải
:
Bớc 1
: Xác định phản lực liên kết:
()
AB
a
mF Y.3aMP.aq.a. 0
2
=++=
G
B
q.a
Y0
2
=<
Chiều Y
B
ngợc lại hình vẽ. Ta đổi chiều Y
B
xuống dới.
yAB
FYYPq.a0=+=
AB
q.a
YY 0
2
==>
.
Vậy chiều của Y
A
giữ nguyên.
Bớc 2
: Vẽ biểu đồ lực cắt.
Trên đoạn AC có tải trọng phân bố đều q = const, vậy biểu đồ lực cắt
l hm bậc nhất. Tại A có lực tập trung
2
.aq
Y
A
=
l dơng. Tại C có lực
tập trung P=q.a hớng lên
trên nên biểu đồ Q
y
có bớc
nhảy đúng bằng P. Trên đoạn
CB, biểu đồ lực cắt l hằng số
v bằng phản lực liên kết tại
B.
Bớc 3
: Vẽ biểu đồ mô
men uốn.
Trên đoạn AC biểu đồ
mômen l hm bậc 2, đờng
parabol có bề lõm hứng lấy
chiều của tải trọng q. Trên
đoạn CB, biểu đồ M
x
l hm
bậc nhất. Tại B, mô men có
giá trị chính bằng mô men
tập trung M lm căng thớ
dới. Tại D, ta có Q
y
= 0 nên M
x
đạt giá trị cực trị.
Trên hình 1.21 biểu diễn biểu đồ Q
y
v M
x
của dầm.
H
ình
121