Tải bản đầy đủ (.docx) (67 trang)

Luận văn thạc sĩ nghiên cứu điều chế biodiesel từ dầu thực vật và etanol trên hệ xúc tác rắn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.94 MB, 67 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
۞۞۞

Nguyễn Mạnh Thắng

NGHIÊN CỨ U ĐIỀ U CHẾ BIODIESEL TỪ DẦ U
THƯ
VÂ VÀ ETANOL TRÊN HỆ XÚ C TÁ C RẮ N
C
T

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – 2011


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
۞۞۞

Nguyễn Mạnh Thắng

NGHIÊN CỨ U ĐIỀ U CHẾ BIODIESEL TỪ DẦ U
THƯ
VÂ VÀ ETANOL TRÊN HỆ XÚ C TÁ C RẮ N
C
T

Chuyên ngành


:

Hóa dầu và xúc tác hữu cơ

Mã số

:

60 44 35

LUẬN VĂN THẠC SĨ KHOA HỌC

NGƢỜ I HƢỚ NG DẪN KHOA
HOC
: PGS. TS. LÊ THANH SƠN

Hà Nội –2011


MỤC LUC̣
MỞ ĐẦU........................................................................................................ 1
Chương 1: TỔNG QUAN VỀ BIODIESEL................................................. 2
1.1. Biodiesel là gì?................................................................................. 2
1.1.1. Diesel và động cơ diesel........................................................................ 2
1.1.2. Biodiesel – nhiên liệu sinh học.............................................................. 3
1.2. Các nguồn nguyên liệu để sản xuất biodiesel................................... 4
1.2.1. Dầu thực vật.......................................................................................... 4
1.2.2. Mỡ động vật.......................................................................................... 6
1.2.3. Dầu mỡ thải trong công nghiệp thực phẩm............................................ 7
1.2.4. Vi sinh vật và tảo biển............................................................................ 8

1.2.5. Một số loại nguyên liệu khác................................................................. 9
1.3. Các loại xúc tác và quá trình điều chế biodiesel.................................. 9
1.3.1. Xúc tác kiềm tính................................................................................. 10
1.3.2. Xúc tác axit.......................................................................................... 13
1.3.3. Xúc tác enzyme.................................................................................... 15
1.3.4. Xúc tác đường rắn............................................................................... 19
1.3.5. Các siêu axit rắn.................................................................................. 20
1.4. Sử dụng và đánh giá sản phẩm biodiesel........................................... 25
1.4.1. Ưu và nhược điểm của biodiesel.......................................................... 25
1.4.2. Đánh giá chất lượng sản phẩm biodiesel............................................. 27
1.4.3. Sử dụng biodiesel................................................................................. 30
2.1. Quá trình điều chế xúc tác.............................................................. 32
2.1.1. Hóa chất và thiết bị.............................................................................. 32
2.1.2. Điều chế xúc tác................................................................................... 32
2.2. Các phương pháp nghiên cứu đặc trưng của xúc tác..........................33
2.2.1. Phương pháp nhiễu xạ tia X (XRD).....................................................33
2.2.2. Phổ hồng ngoại (IR)............................................................................33
2.2.3. Phương pháp giải hấp NH3 theo chương trình nhiệt độ (TPD-NH3). .34
2.2.4. Phương pháp hiển vi điện tử quét (Scanning Electron Microscopy–
SEM) 34
2.2.5. Phương pháp xác định diện tích bề mặt riêng theo BET......................34


2.2.6. Phương pháp sắc kí khối phổ (GC-MS)...............................................35
2.2.7. Phương pháp đánh giá hoạt tính xúc tác.............................................35
Chương 3: KẾ T QUẢ VÀ THẢ O
...................................................37
LUÂN
3.1. Đặc trưng tính chất cấu trúc và bề mặt xúc tác thu được...................37
3.1.1. Kết quả nhiễu xạ tia X..........................................................................37

3.1.2. Kết quả phổ hồng ngoại.......................................................................39
3.1.3. Kết quả phân tích nhiệt TG-DTA.........................................................40
3.1.4. Kết quả phương pháp hiển vi điện tử quét (SEM)................................41
3.1.5. Kết quả xác định bề mặt riêng theo BET và phân bố lỗ xốp................41
3.1.6. Phân tích sản phẩm bằng GC-MS........................................................42
3.1.7. Phân tích đặc trưng nhiên liệu B20.....................................................45
KẾT LUẬN..................................................................................................47
TÀI LIỆU THAM KHẢO............................................................................48
PHU LUC.....................................................................................................53


DANH MUC BẢ NG
Bảng 1.1 – Các thông số kỹ thuật của dầu Diesel..........................................2
Bảng 1.2 – Thành phần acid béo của một số loại dầu thực vật......................5
Bảng 1.3 – Thành phần axit béo của một số loại mỡ động vật.......................7
Bảng 1.4 – Chỉ tiêu chất lượng B100............................................................27
Bảng 1.5 – Ý nghĩa các chỉ tiêu chất lượng của B100..................................28
Bảng 3.1 – Độ chuyển hóa của sản phẩm.....................................................42
Bảng 3.2 – Kết quả phân tích đặc trưng nhiên liệu B20...............................46


DANH MUC HÌNH Ả NH
Hình 1.1 – Cơ chế của phản ứng transester hóa với xúc tác kiềm tính........11
Hình 1.2 – Các bước quan trọng trong sản xuất biodiesel với xúc tác kiềm12
Hình 1.3 – Thiết bị phản ứng liên tục sản xuất biodiesel, xúc tác kiềm........13
Hình 1.4 – Cơ chế của phản ứng transester hóa với xúc tác axit.................14
Hình 1.5 – Quy trình cơng nghệ sản xuất biodiesel liên tục với xúc tác rắn.15
Hình 1.6 – Sơ đồ của phản ứng transester hóa với xúc tác enzyme.............18
Hình 1.7 - Quy trình cơng nghệ sản xuất biodiesel liên tục với xúc tác lipase
cố định.....................................................................................................................19

Hình 1.8 – Một số dạng tinh thể của ZrO2...................................................22
Hình 1.9 – Mơ hình cấu trúc của siêu axit SO42-/ZrO2...............................24
Hình 3.1 – Giản đồ nhiễu xạ Rơnghen (XRD) của mẫu SBA-15...................37
Hình 3.2 – Giản đồ nhiễu xạ Rơnghen (XRD) của mẫu 5% SO42-- ZrO2.......38
Hình 3.3 – Giản đồ nhiễu xạ Rơnghen (XRD) của mẫu 10% SO42-- ZrO2.....38
Hình 3.4 – Hình ảnh phổ hồng ngoại mẫu 5% SO42-- ZrO2........................39
Hình 3.5 – Hình ảnh phổ hồng ngoại mẫu 10% SO42-- ZrO2......................... 39
Hình 3.6 – TG-DTA mẫu 10% SO42-- ZrO2.................................................... 40
Hình 3.7 – Hình ảnh SEM của mẫu xúc tác 5% SO42-- ZrO2/SBA-15............41
Hình 3.8 – Đồ thị biểu diễn sự phụ thuộc của P/V(P0-P) vào P/Po.............41
Hình 3.9 – Sắ c đồ sắ c kí khí kế t quả phân tí ch
biodiesel.....................43
mâu
Hình 3.10 – Sắ c đờ khớ i phở phân tí ch
biodiesel..................................44
mâu


Thế giơí hiên

MỞ ĐẦU
nay đang đứ ng trư ớc một nguy cơ khủng hoảng “ 3F”: fuel
(nhiên
liêu

); feed (thứ c ăn cho gia súc ); food (lương thưc

).Và nguy cơ có thể dê

dàng nhận thấy và cận kề nhất chính là khủng hoảng nhiên liệu .

Như chúng ta đã biết thế giới đang trên đà phát triển v ới tốc độ chóng mặt,
cùng với đó là nhu cầu về nhiên liệu càng gia tăng đặc biệt là nhiên liệu hóa thạch
nói chung và dầu mỏ nói riêng . Trong khi đó nguồn cung cấp dầu mỏ không tăng
mà còn giảm về trữ lượng.
Vấn đề đăṭ ra là phaỉ có biên phaṕ
kip
về an ninh năng
lươn

thời để tránh đươc cuôc khủng hoảng

g naỳ . Trên thế giơí đã tiến haǹ h nghiên cứ u vấn đề naỳ tư

lâu.Và có nhiều giải pháp cho vấn đề này . Giải pháp được nghiên cư ́ u nhiều nhất co
thể kể đến là sản xuất dầu từ các sản phẩm có nguồn gốc thưc

vâṭ hoăc đồng vâṭ hay

còn gọi là dầu biodiesel . Các quy trinh
̀ sản xuất biodiesel được phát triển từ đầu
những năm 40 với hai nhà s ản xuất lớn là E.I. duPont và Colgate–Palmolive–Peet.
Nói chung thì mục đích lớn nhất vào thời điểm này là phát triển phương pha ṕ trích
có hiệu quả và đơn giản hơn Glycerin từ sản phẩm.
Ở Việt Nam, sau khi Bộ Trưởng bộ khoa học công nghệ phê duyêṭ “Đ ề án
phát triển nhiên liệu sinh học đến năm 2015, tầm nhìn đến năm 2025”, nhiều dự án
nhiên liệu sinh học đã được thực hiện, nguồn nhiên liệu dần được thay thế… cho
thấy nươć ta dù muôn vâ không đứ ng ngoaì
n cuôc

trong

viêc

đi tim
̀ giaỉ phaṕ cho

vấn đề năng lươn g. Đây la bươc đi hơp ly lam tiền đề cho công nghiêp “biofuel”
̀
́
́ ̀



Việt Nam, đây cũng là một cơ hội lớn phát triển cho những nước nơng nghiệp có
thời tiết ưu đãi như nước ta.
Chính vì những lí do trên, đề tài: “nghiên cứu điều chế Biodiesel từ dầu
thực vật và etanol trên hệ xúc tác rắn” đã được tiến hành nhằm mục đích thu
7


được nhiên liệu sinh học thay thế một phần nhiên liệu hóa thạch đang ngày càng cạn
kiệt, giảm thiểu ơ nhiêm mơi trường và tìm ra hệ xúc tác rắn tối ưu cho quá trình
tổng hợp biodiesel.

8


Chương 1: TỔNG QUAN VỀ BIODIESEL
1.1. Biodiesel là gì?
1.1.1. Diesel và động cơ diesel
Dầu diesel là một loại nhiên liệu lỏng, sản phẩm tinh chế từ dầu mỏ có thành

phần chưng cất nằm giữa dầu hoả (kesosene) và dầu bôi trơn (lubricating oil).
Chúng thường có nhiệt độ bốc hơi từ 175oC đến 370oC. Các nhiên liệu Diesel nặng
hơn, với nhiệt độ bốc hơi 315 đến 425 độ C còn gọi là dầu ma dút.
Dầu Diesel được đặt tên theo nhà sáng chế Rudolf Diesel, và có thể được
dùng trong loại động cơ đốt trong mang cùng tên, động cơ Diesel [7].
Bảng 1.1 – Các thông số kỹ thuật của dầu Diesel

Các chỉ tiêu chất lượng:
-

Tính tự cháy – tính chống kích nổ: Nếu dầu khó tự cháy sẽ gây cháy

kích nổ, khó khởi động máy. Quá trình cháy có 2 trường hợp xảy ra: Cháy bình
thường, cháy kích nổ. Ngun nhân gây cháy kích nổ chính là do trong dầu có phân


tử khó tự cháy (hoặc là phân tử có kích thước nhỏ hay phân tử có cấu trúc dày đặc).
Chỉ tiêu đặc trưng cho tính chống kích nổ _ tính tự cháy của dầu là chỉ số xêtan
C16H34. Dầu có trị số xêtan càng cao thì càng dê tự cháy có tính chống kích nổ càng
cao.
-

Tính bay hơi thích hợp: Cũng giống như xăng, dầu DO chỉ có thể

cháy khi đang ở dạng hơi. Bên cạnh đó sự cháy của dầu trong động cơ chỉ xảy ra
dưới tác dụng của áp suất và nhiệt độ, cho nên dầu phải có tính bay hơi thích hợp.
Dầu khơng lỗng quá hay đặc quá
-

Độ nhớt thích hợp: Dầu DO sử dụng trong máy có 2 chức năng: đốt


cháy sinh cơng và làm trơn bơm cao áp khi nó chảy bơm. Do đó dầu phải có độ
nhớt thích hợp để vừa dê bay hơi, dê tự cháy, cháy sinh nhiệt lượng cao và vừa bơi
trơn bơm tốt. Độ nhớt thích hợp của dầu DO theo TCVN là 1,8 đến 5,0 cSt ở 20oC.
-

Nhiệt độ bắt cháy: Nhiệt độ bắt cháy là nhiệt độ cần thiết để hỗn hợp

hơi nhiên liệu và khơng khí gặp tia lửa sẽ bùng cháy và tắt ngay. Nhiệt độ bắt cháy
của dầu DO biểu thị khả năng bay hơi, khả năng gây cháy có thể xảy ra khi bảo
quản, vận chuyển hoặc sử dụng nhiên liệu đó ở nơi kín gió. Nhiệt độ bắt cháy của
dầu DO thơng thường khơng được nhỏ hơn 55-60oC, vì dê đảm bảo trong khâu tồn
trữ.
-

Khơng có tạp chất và nước: Cũng như xăng dầu là nhiên liệu cho

động cơ đốt trong nên dầu khơng được phép có tạp chất cơ học và nước; hàm lượng
keo nhựa và các chất gây ăn mòn (axit, lưu huỳnh) phải được khống chế trong phạm
vi cho phép.
1.1.2. Biodiesel – nhiên liệu sinh học
Biodiesel còn được gọi là diesel sinh học bắt đầu được sản xuất khoảng giữa
những năm 1800, trong thời điểm đó người ta chuyển hóa dầu thực vật để thu
Glycerin ứng dụng làm xà phòng và thu được các phụ phẩm là metyl hoặc ethyl
Este gọi chung là biodiessel [7,11, 25].
Dưới đây là sơ đồ phản ứng thu biodiesel:


Phản ứng trên được gọi là phản ứng chuyển vị este (transesterification). Bản
chất của phản ứng nằm ở chỗ “phá vỡ” cấu trúc cồng kềnh của triglyxerit và tạo

thành este với kích thước nhỏ hơn nhiều lần. Do vậy biodiesel thu được sẽ có độ
nhớt giảm và độ bền oxi hóa tăng so với dầu thực vật ban đầu.
Như vậy ở đây chúng ta đề cập về bản chất biodiesel là một loại nhiên liệu
có tính chất giống với dầu, là những metyl, ethyl este của những axit béo, nó có thể
được sản xuất từ mỡ động vật, hoặc dầu thực vật, từ các lọai mỡ động vật hỏng,
kém chất lượng, hoặc từ dầu ăn đã qua sử dụng. Ở Mỹ người ta sản xuất biodiesel
từ dầu hạt đậu tương. Người ta phân lọai biodiesel dựa vào thể tích của biodiesel
nguyên chất pha vào diesel, nếu pha 2% biodiesel nguyên chất vào diesel, ta gọi là
biodiesel B2, còn nếu hoàn tồn là biodiesel ngun chất thì gọi là B100. Hiện nay
trên thị trường có bán 2 lọai biodiesel phổ biến đó là B2 và B20 [9, 17, 36].
Mặt khác chúng không độc và dể phân giải trong tự nhiên nên Biodiesel
được biết tới như nguồn năng lượng xanh, sạch chống lại ô nhiêm môi trường mà từ
lâu các nhà khoa học đã nghiên cứu và nhất là trong lúc giá dầu đang ở mức cao thì
việc tận dụng nguồn mỡ cá tra để sản xuất biodiesel cũng là một giải pháp hiệu quả.

1.2. Các nguồn nguyên liệu để sản xuất biodiesel
1.2.1. Dầu thực vật
Nói chung, các hạt quả của thực vật đều chứa dầu, nhưng dầu thực vật chỉ
dùng để chỉ dầu của các cây có dầu với hàm lượng lớn, như: đậu phộng, đậu nành,
cải dầu, ô liu, hướng dương, dừa, cọ… Trong số các cây này, nhiều cây lấy dầu


không dùng trong thực phẩm nên không ảnh hưởng đến an ninh lương thực, như:
Jatropha, Karanja, kusum… (do cây chứa độc tố).
Hàm lượng dầu trong các loại hạt cũng khác nhau, ngoài ra còn để giảm giá
thành sản phẩm biodiesel và tăng sản lượng, việc lựa chọn nguồn nguyên liệu thô ở
từng vùng là khác nhau [42].
Bảng 1.2 – Thành phần acid béo của một số loại dầu thực vật



Thành phần hóa học của dầu thực vật chủ yếu là các phân tử triglyceride,
khác nhau ở cấu trúc và độ lớn của gốc axit béo. Bên cạnh đó trong dầu thực vật
còn chứa một lượng nhỏ axit béo tự do, đặc trưng bởi chỉ số axit. Chỉ số axit càng
cao thì hiệu suất phản ứng transester hóa trực tiếp càng thấp, sẽ khiến nhà sản xuất
tốn kém thêm công đoạn ester hóa axit béo tự do. Cuối cùng, là các thành phần phụ
của dầu thực vật, bao gồm cả các thành phần chứa lưu huỳnh, photpho, nitơ… là
các thành phần cần chú ý trong sản xuất để tránh gây ô nhiêm môi trường.
Ưu điểm: Dầu thực vật là nguồn tái sinh được, hơn nữa các cây thực vật còn
thân thiện với môi trường và các thông số về mặt năng lượng gần giống với nhiên
liệu diesel, do đó động cơ khơng cần cải tiến vẫn có thể sử dụng nhiên liệu biodiesel
trộn lẫn diesel thông thường.
Nhược điểm: Do đặc thù sản phẩm thực vật có sản lượng và tính chất sản
phẩm phụ thuộc địa lý tự nhiên, thời tiết, do đó sản lượng khơng được đảm bảo ổn
định, giá thành cao do phải qua nhiều khâu sơ chế, chuyển đổi. Ngoài ra nhiên liệu
biodiesel từ dầu thực vật còn có nhược điểm lớn nhất là độ nhớt cao, do đó ở nhiệt
độ thấp sẽ khó sử dụng. Việc bảo quản thành phẩm cũng gặp khó khăn do phản ứng
của các mạch hydrocacbon chưa bão hòa.
1.2.2. Mỡ động vật
Mỡ động vật từ các ngành công nghiệp thực phẩm hiện nay là khá lơn, do
một số loại mỡ không được khuyến khích sử dụng cho mục đích chế biến thực
phẩm bởi khả năng gây bệnh của chúng. Mỡ động vật hiện tại chủ yếu là mỡ gia súc
từ các lò giết mổ và mỡ cá từ các xưởng chế biến thủy hải sản. Các loại phế phẩm
trong công nghiệp thực phẩm này gặp vấn đề trong xử lý tiêu hủy và tái chế, do đó
việc sử dụng chúng vào sản xuất biodiesel đồng thời cũng có lợi với mơi trường.
Tại Việt Nam đã có nhiều cơ sở sản xuất biodiesel từ mỡ cá basa cơng suất lớn,
thậm chí còn xuất khẩu [28].
Thành phần hóa học của mỡ động vật tương tự dầu thực vật, tuy nhiên chỉ số
axit của mỡ động vật là khá cao, ảnh hưởng nhiều đến hiệu suất transester hóa.



Bảng 1.3 – Thành phần axit béo của một số loại mỡ động vật

Ưu điểm: không ảnh hưởng an ninh lương thực và giá thành nguyên liệu thô
rẻ do sản phẩm dùng là phế phẩm của ngành công nghiệp thực phẩm. Ngồi ra sử
dụng phế phẩm loại này còn có lợi cho môi trường. Đây cũng là nguồn nguyên liệu
tái sinh, sản phẩm không độc và phân giải được trong tự nhiên, hàm lượng các hợp
chất thơm và lưu huỳnh thấp – thân thiện với môi trường. Không cần cải tiến động
cơ vẫn có thể sử dụng nhiên liệu.
Nhược điểm: độ nhớt sản phẩm cao, chứa nhiều mạch không no do đó thời
tiết lạnh khơng sử dụng được. Việc bảo quản cũng gặp khó khăn. Các khâu chế biến
và lọc tạp chất còn chưa tìm được giải pháp tiết kiệm.
1.2.3. Dầu mỡ thải trong công nghiệp thực phẩm
Dầu mỡ thải thực chất là các loại dầu thực vật và mỡ động vật đã được sử
dụng qua trong ngành công nghiệp thực phẩm. Sử dụng nhiều lần dầu mỡ sẽ sinh ra
độc tố, do đó ngành cơng nghiệp thực phẩm mỗi năm thải ra một sản lượng rất lớn
dầu mỡ đã qua sử dụng.
Thành phần hóa học của dầu mỡ thải là gần tương tự dầu thực vật và mỡ
động vật, tuy nhiên qua các quá trình sử dụng nhiệt, thậm chí là sử dụng nhiều lần
một lượng dầu, tính chất của dầu mỡ đã thay đổi. Độ nhớt nguyên liệu tăng, nhiệt
dung riêng tăng, màu sắc thay đổi, giảm sức căng bề mặt, tạo các hợp chất dê bay
hơi và chứa nhiều khơng khí bão hòa trong sản phẩm. Qua các quá trình chiên rán,
các phản ứng nhiệt phân (dưới tác dụng của nhiệt và khơng có oxy) tạo CO, CO 2,
các hợp chất dimer, kêtôn, ester,… và các hợp chất khơng no; các phản ứng oxy hóa


theo cơ chế gốc tự do tạo các hợp chất dimer và oligomer cồng kềnh; các phản ứng
thủy phân tạo axit béo tự do, monoglyceride và diglyceride… Do các axit béo có
thể mất đi trong quá trình chiên rán, do đó người ta khơng dùng chỉ số axit mà dùng
hàm lượng chất phân cực để xác định chất lượng dầu mỡ thải, có thể xác định bằng
HPSEC [10, 41].

Ưu điểm: nguồn nguyên liệu thô rất rẻ, không cạnh tranh nguyên liệu với
ngành khác, thân thiện với môi trường, không độc hại và phân giải tự nhiên được,
chỉ số xêtan của sản phẩm cao, hàm lượng các chất thơm và lưu huỳnh thấp, sử
dụng được cho động cơ không cải tiến.
Nhược điểm: giá thành sản phẩm cao do mất nhiều chi phí cho cơng đoạn thu
hồi và tinh sạch sơ bộ; độ nhớt cao, nhiệt độ đông đặc thấp, nhiều cặn rắn có hại
cho động cơ; dê bị oxy hóa ngồi mơi trường; chứa nhiều bọt khí và nước gây sủi
bọt, khó khăn trong điều chế; sản phẩm biodiesel tạo nhiều NOx khi thử nghiệm.
1.2.4. Vi sinh vật và tảo biển
TS. Trương Vĩnh và các cộng sự ở ĐH Nông Lâm TP.HCM từ năm 2008 đã
có những kết quả nghiên cứu cho thấy tảo biển Chlorella có nhiều triển vọng ứng
dụng tại Việt Nam, là nguồn sản xuất biodiesel phong phú mà không xâm hại an
ninh lương thực như những loại cây trồng lấy dầu biodiesel khác. Đặc biệt, tảo có
thể tồn tại ở bất cứ nơi nào có đủ ánh sáng, kể cả vùng hoang hoá, nước mặn, nước
thải, lại có khả năng làm sạch mơi trường nước thải.
Để ni tảo, chỉ cần ánh sáng, CO2, nước và dinh dưỡng có thể là phân hoá
học hoặc phân chuồng. Tảo giống thường ni trong phòng thí nghiệm, về sau có
thể chuyển qua bể hoặc ao để ni. Ngồi việc dùng vi tảo để sản xuất nhiên liệu,
có thể dùng bụi tảo khô để đốt trong các động cơ diesel thay thế cho than bụi. Đặc
biệt, tảo có hàm lượng dầu cao có thể dùng để chiết tách lấy dầu.
Nghiên cứu sử dụng nguồn tảo giống Chlorella trong nước, được cung cấp từ
Khoa Thuỷ sản Trường ĐH Nông Lâm TP.HCM, Khoa Thuỷ sản Trường ĐH Cần
Thơ và Trung tâm Quốc gia giống Hải sản Nam Bộ.


Thí nghiệm cho thấy tảo Chlorella cho dầu có màu vàng sậm, năng suất
chuyển đổi dầu thành biodiesel là 97% sau 2 giờ phản ứng. Trên thế giới, tảo
Chlorella đã được nhiều tác giả nghiên cứu để sản xuất nhiên liệu biodiesel sinh
học. Ý tưởng sản xuất Biodisel từ vi tảo có từ lâu (Chisti Y, 1980). Năm 1994,
Roessler và cộng tác viên đã nghiên cứu sản xuất biodiesel từ vi tảo, sau đó nhiều

tác giả khác đã nghiên cứu.
Hàm lượng dầu trong tảo tính trung bình trên thế giới, theo Chisti từ 15 77% tuỳ lồi. Qua thí nghiệm của nhóm nghiên cứu Trường ĐH Nơng Lâm cho
thấy, hàm lượng dầu ở tảo tại VN còn thấp, cần có những bước cải tiến để nâng hàm
lượng dầu lên.
Theo tính toán của các nhà khoa học Mỹ, dùng vi tảo lợi hơn các loại cây có
dầu khác do năng suất dầu cao gấp 19 - 23 lần trên cùng một diện tích đất trồng.
Việc sản xuất biodiesl từ tảo khơng cạnh tranh với đất trồng cho thực phẩm
và góp phần giảm thiểu khí nhà kính làm sạch mơi trường. Theo nhóm nghiên cứu,
đây là một hướng đi triển vọng mà nhiều nước trên thế giới đã đi.
1.2.5. Một số loại nguyên liệu khác
Hiện nay, việc tìm kiếm các nguồn nguyên liệu để sản xuất biodiesel là rất
phong phú, bao gồm cả nhựa cây cao su, trấu, rơm rạ, các loại thực vật kí sinh, các
nguồn phế thải…
Việc tìm kiếm các nguồn nguyên liệu đều đặt tiêu chí tái sinh, thân thiện với
mơi trường, tính chất sản phẩm và giá thành lên hàng đầu.

1.3. Các loại xúc tác và quá trình điều chế biodiesel
Có nhiều cách để sản xuất biodiesel và các nhiên liệu bán sinh học (nhiên
liệu chứa cả các sản phẩm nhiên liệu sinh học và nhiên liệu hóa thạch):
-

Phương pháp pha loãng trực tiếp

-

Phương pháp nhiệt phân

-

Phương pháp tạo vi nhũ tương


-

Phương pháp transester hóa


Ở đây chúng ta chỉ xét phương pháp transester hóa và các xúc tác sử dụng
trong quá trình transester hóa. Quá trình này cũng có thể diên ra khi khơng xúc tác,
hoặc thay thế xúc tác bằng phương pháp sóng siêu âm, hoặc không dùng xúc tác với
rượu siêu tới hạn…
Có nhiều cách phân loại xúc tác cho quá trình transester hóa tạo biodiesel:
phân biệt dựa vào pha xúc tác (đồng thể hoặc dị thể); phân biệt dựa vào tính chất
xúc tác (kiềm, axit, enzyme,…);… Dưới đây là sơ bộ đặc trưng các xúc tác phân
biệt theo tính chất:
1.3.1. Xúc tác kiềm tính
NaOH, KOH, NaOCH3… là những xúc tác thường dùng trong phản ứng
chuyển hóa dầu mỡ thành nhiên liệu biodiesel.
Cơ chế của phản ứng gồm 3 bước chính như hình 1.1. Bước đầu tiên là khơi
mào phản ứng. Rượu sẽ phản ứng với xúc tác bazơ tạo anion alkoxide RO - và
proton H+. Tác nhân ái nhân alkoxide tấn cơng vào ngun tử cacbon của nhóm
cacbonyl hình thành hợp chất trung gian cấu trúc tứ diện, từ đó tái cấu trúc thành
alkyl ester và anion diglyceride tương ứng. Anion diglyceride tác dụng với proton
BH+ tạo phân tử diglyceride và giải phóng bazơ B tiếp tục tham gia xúc tác phản
ứng khác. Các diglyceride và monoglyceride cũng có cơ chế phản ứng tương tự
hình thành hỗn hợp alkyl ester và glycerol.
Các alkoxide của một vài kim loại kiềm như NaOCH 3 là chất xúc tác rất
mạnh, cho hiệu suất cao trong thời gian ngắn dù được sử dụng ở nồng độ thấp.
Chất xúc tác và rượu phải đạt được yêu cầu kỹ thuật là khan (lượng nước 0.1
– 0.3% khối lượng hoặc ít hơn) vì nước sẽ khiến xảy ra phản ứng xà phòng hóa.
Trong phản ứng, K2CO3 được sử dụng ở nồng độ nhỏ để hạn chế hình thành nước và

xà phòng.
Ưu điểm của xúc tác kiềm là phản ứng có tốc độ nhanh, hiệu suất cao.
Nhược điểm là chỉ dùng cho các loại dầu tương đối sạch, có hàm lượng axit
béo tự do nhỏ hơn 1%.


Hình 1.1 – Cơ chế của phản ứng transester hóa với xúc tác kiềm tính


Quy trình sản xuất biodiesel từ methanol, mỡ bò và xúc tác NaOH được mơ
tả như hình 1.2.

Hình 1.2 – Các bước quan trọng trong sản xuất biodiesel với xúc tác kiềm
Hình 1.3 là thiết bị phản ứng transester hóa liên tục sử dụng xúc tác kiềm.
Các tác chất cho vào thiết bị thông qua bộ trao đổi nhiệt ở phần trên của thiết bị.
Phản ứng transester hóa diên ra khi các tác nhân đi trong này. Thiết kế được làm sao
cho khi phản ứng kết thúc, các chất ra khỏi bộ trao đổi nhiệt. Methanol dư bay hơi
và được thu hồi lại. Hỗn hợp sản phẩm sẽ được trung hòa bằng acid trước khi chảy
xuống buồng phía dưới của thiết bị. Tại buồng chứa này, các methyl ester và
glycerol tiếp tục được để cho tách pha. Pha chứa glycerine nằm bên dưới được tháo
ra ở đáy thiết bị, pha dầu nằm bên trên được tháo ra ở thành bên thiết bị.


Hình 1.3 – Thiết bị phản ứng liên tục sản xuất biodiesel, xúc tác kiềm
1.3.2. Xúc tác axit
Thường chúng ta dùng các axit Bronsted như axit sulfonic, axit sulfuric, axit
hydrocloride; hoặc các axit Lewis như các muối acetate, stearate của canxi, bari,
mangan, chì, cađimi, kẽm, cơban, niken… Các chất xúc tác này cho hiệu suất cao,
nhưng phản ứng chậm. Tỷ lệ mol rượu/dầulà một trong các nhân tố chính ảnh
hưởng phản ứng, vì thế cần được khảo sát cho từng phản ứng.

Cơ chế phản ứng được mơ tả ở hình 1.4. Đầu tiên diên ra quá trình proton
hóa nhóm cacbonyl của ester thành cacbocation II nhờ ion H +. Sau đó phân tử rượu
sẽ gắn vào, tạo hợp chất trung gian III có cấu trúc tứ diện. Hợp chất này sẽ tách
phân tử diglyceride ra để hình thành ester IV, giải phóng ion H + tiếp tục quá trình
xúc tác.


Theo cơ chế này, các axit cacboxylic có thể được hình thành nhờ phản ứng
của cacbocation II với nước hình thành trong hỗn hợp phản ứng. điều này cho thấy
rằng phản ứng nên tiến hành khơng có nước nhằm giảm sự cạnh tranh tác nhân
cacbocation vì đây là nhân tố quan trọng hình thành alkylester.

Hình 1.4 – Cơ chế của phản ứng transester hóa với xúc tác axit
Ưu điểm của xúc tác axit đồng thể là không gây xà phòng hóa, sử dụng được
cho các loại nguyên liệu có hàm lượng axit béo tự do cao. Hiệu quả xúc tác rất tốt.
Nhược điểm là thời gian phản ứng rất chậm, hiệu suất kinh tế k cao, nồng độ
xúc tác cũng cần cao tuy nhiên lại khó khăn trong việc thu hồi và tái sử dụng xúc
tác.


Hiện nay người ta hướng nghiên cứu về các xúc tác axit dị thể vì các ưu điểm
của nó tương tự axit đồng thể, tuy nhiên nó khắc phục được phần lớn nhược điểm
của axit đồng thể như: thu hồi và tái sử dụng được xúc tác, lượng xúc tác nhỏ…
Quy trình sản xuất bidiesel dùng xúc tác axit rắn được mơ tả ở hình 1.5.

Hình 1.5 – Quy trình công nghệ sản xuất biodiesel liên tục với xúc tác rắn
Đầu tiên nguyên liệu thô được xử lý bằng phương pháp lọc và đehyrate hóa
để loại tạp chất và nước. Sau đó dòng nguyên liệu đầu vào đi qua lần lượt các nồi
phản ứng R-1, R-2, R-3 chứa xúc tác rắn và dòng methanol hóa hơi được cho vào
ngược chiều. Methanol phản ứng với cả dầu và axit béo tự do. Quá trình khuấy tại

S-1 khiến phản ứng đồng nhất. Nhiệt độ tối ưu là 220 oC. Lượng methanol dư được
tinh sạch nhờ các tháp chưng chất T-1 và thu hồi lại, pha dầu được tinh sạch tại tháp
chưng chân không T-2 để thu sản phẩm biodiesel [43].
1.3.3. Xúc tác enzyme
Hiện nay mọi quá trình hóa học đều hướng tới nghiên cứu sử dụng enzyme
cho xúc tác bởi tính ưu việt của nó. Nhiều nghiên cứu sử dụng enzyme đã được áp
dụng cho biodiesel.


Sản xuất biodiesel dùng lipase xúc tác được miêu tả lần đầu tiên bởi
Mittlebach (1990). Mittlebach chỉ ra rằng lipase P.fluorescens dùng để sản xuất
biodiesel từ alcohol hoá dầu hướng dương thích hợp hơn so với lipase từ Candida
sp. và Mucor miehei. Sự alcohol hoá được thực hiện khi có sự hiên diện của dung
mơi (petroleum ether)/khơng có dung mơi và dùng 5 loại alcohol tương ứng có hoặc
khơng thêm nước. Tiếp sau đó, các nghiên cứu tập trung trên các lipase khác nhau,
các nguyên liệu triglyceride khác nhau, các alcohol khác nhau và các điều kiện thí
nghiệm khác nhau (nhiệt độ, hàm lượng nước, tỷ lệ hoá học giữa cơ chất, enzym và
dung môi dùng, .v.v.).
Việc biến đổi dầu ăn, mỡ cá basa hoặc các phụ phẩm của ngành chăn nuôi và
thủy sản thành methyl, alkyl ester hoặc các chuỗi alcohol ester ngắn có thể được
lipase xúc tác bởi một phản ứng chuyển vị ester trong dung môi hữu cơ (Fukuda và
cs., 2001; Haas và cs., 2005). Tuy nhiên, việc ứng dụng ở quy mơ cơng nghiệp đang
gặp khó khăn do chi phí cao hơn so với phương pháp luyện dầu ở nhiệt độ cao. Hai
xu hướng đang được áp dụng gần đây là cố định lipase của P.fluorescens, R.miehei
để sử dụng lặp lại enzym (Salis và cs., 2008; Cheirsilp và cs., 2008) và biểu hiện
lipase R.oryzae quá mức ở S.cerevisiae đồng thời sử dụng toàn bộ tế bào đã được
sấy đông khô để xúc tác phản ứng methanol hóa trong hệ thống phản ứng dung mơi
hữu cơ tự do (Jäeger và cs., 2002; Haas và cs., 2005) hoặc trong hệ thống hai
pha (Kraai và cs., 2008). Su và Wei (2008) đã cải tiến thuỷ phân methanol bằng xúc
tác lipase để sản xuất biodiesel dùng kỹ thuật hoà tan. Các nhà khoa học Trung

Quốc cũng đã sử dụng toàn bộ tế bào Rhizopus chinensis để tổng hợp biodiesel từ
dầu đậu nành (He và cs., 2008).
Các loại dầu ăn được nghiên cứu để sản xuất biodiesel bởi các xúc tác sinh
học bắt đầu từ dầu đậu nành (Nelson và cs., 1996; Kaieda và cs., 1999; Kaieda và
cs., 2001; Shieh và cs., 2003), dầu hướng dương (Mittlebach, 1990; Bélafi-Bakó và
cs., 2002; Soumanou và Bornscheuer, 2003a) và hạt cải dầu (Nelson và cs., 1996).
Tuy nhiên, một vài loại có dầu, dầu khơng ăn được khác như là: Jatropha
(euphorbiaceae) là loại thực vật có thể phát triển ở vùng đất khơ cằn và hạt của nó


có chứa 40–60% dầu (w/w). Thực vật này khơng thể dùng để ăn vì dầu của nó có
chứa một vài chất độc như các ester phorbol (Shah và cs., 2004). Các nguồn
triglyceride khác cũng đã được thăm dò như dầu hạt cọ và dầu dừa (Abigor và cs.,
2000), dầu cám (Kamini và Iefuji, 2001; Lai và cs., 2005), dầu hạt bơng tinh chế
(Kưse và cs., 2002), dầu đậu phộng (Soumanou và Bornscheuer, 2003b) và dầu thầu
dầu (De Oliveira và cs., 2004). Đối với quá trình xúc tác sinh học, hầu hết các
nguồn glyceride đều có thể được coi như là nguồn cơ chất. Tỷ lệ chuyển hoá thu
được từ dầu hạt cọ và dầu dừa với lipase PS30 đã được thực hiện với nhiều alcohol
khác nhau (ethanol và butanol) (Abigor và cs., 2000).
Một số lipase đã được thương mại hoá cho mục đích này như Novozyme 435
(Rosa và cs., 2008); PS-Amano (Cheirsilp và cs., 2008).
Sơ đồ phản ứng của dầu hạt hướng dương với butanol được mơ tả ở hình 1.6.
Cơ chế phản ứng diên ra qua nhiều giai đoạn và khá phức tạp, ở đây không xét tới.
Điều kiện tối ưu của phản ứng phụ thuộc bản chất enzyme và tỷ lệ mol
rượu/dầu. Nhìn chung, các enzyme tốt nhất có khả năng cho độ chuyển hóa cao đều
diên ra ở khoảng nhiệt độ 30 – 50 oC. Thời gian phản ứng có thể rất ngắn hoặc rất
dài phụ thuộc phương pháp. Tỷ lệ mol rượu dầu còn ảnh hưởng cả hiệu suất phản
ứng, thời gian phản ứng và thời gian sử dụng enzyme (thường tỷ lệ trên 3:1 thì rượu
ức chế và biến tính enzyme).
Người ta còn dùng dung môi hữu cơ để methanol và dầu xảy ra phản ứng

trong cùng 1 pha, giảm độ nhớt của hỗn hợp phản ứng do đó tăng khả năng khuyếch
tán và hoạt động của enzyme.


Hình 1.6 – Sơ đồ của phản ứng transester hóa với xúc tác enzyme
Ưu điểm của enzyme lipase là có thể sử dụng nguyên liệu có hàm lượng axit
béo tự do cao, có thể tái sử dụng xúc tác, điều kiện phản ứng ôn hòa, không tạo sản
phẩm phụ, giảm công đoạn sản xuất, giảm nước thải ra môi trường, cải thiện khâu
phân tách sản phẩm và chất lượng glycerol thu được…
Nhược điểm là tốc độ phản ứng chậm, bị ức chế khi rượu dư, giá thành hiện
tại còn khá cao, mất hoạt tính sau một số lần tái sử dụng…
Quy trình sản xuất biodiesel từ dầu thải với enzyme lipase cố định trong thiết
bị phản ứng dạn ống được mơ tả ở hình 1.7.


×