Tải bản đầy đủ (.doc) (10 trang)

Tài liệu Giải phương trình lượng giác 08.05 (Bài tập và hướng dẫn giải) pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (379.69 KB, 10 trang )

TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 08 tháng 05 năm 2010
BTVN NGÀY 08-05
Giải các phương trình lượng giác sau:
2 2
3 3
2 2
1
1/ 2cos 2 8cos 7
cos
2 / 4cos 3tan 4 3 cos 2 3 t anx 4 0
3 / 3 cos cos 1 2
4 / in os os2 .tan .tan
4 4
2 1
5 / os os (sinx 1)
3 3 2
x x
x
x x x
x x
S x c x c x x x
C x C x
π π
π π
− + =
+ − + + =
− − + =
   
− = + −


 ÷  ÷
   
   
+ + + = +
 ÷  ÷
   
………………….Hết…………………
Phụ trách môn Toán hocmai.vn
Trịnh Hào Quang
Hocmai.vn – Ngôi trường chung của học trò Việt 1
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
HDG CÁC BTVN
• BTVN NGÀY 05-05:
3
2
2
2 2
1/ 4sin 1 3sin 3 os3x
1 3 1
sin3 3 os3 1 sin3 os3
2 2 2
2
18 3
sin 3 sin
2
3 6
2 3
2 / sin3 ( 3 2) os3 1

3 2 ( 3 2)(1 )
: tan 1 ( 3 1) 2 (3 3) 0
2 1 1
1
3
x x c
x c x x c x
k
x
x
k
x
x c x
x t t
Coi t t t
t t
t
t
π π
π π
π π
− = −
⇔ − = − ⇔ − = −

= +

   
⇔ − = − ⇔

 ÷  ÷

   

= +


+ − =
− −
= ⇒ + = ⇔ − − + − =
+ +
=

⇔ ⇔

=

3 3 2
3
3 2
2
3
tan 1
6 3
2
3 2 2
tan 3
2 9 3
3/ 4sin 3cos 3sin sin cos 0(1)
* ét sinx 0 3cos 3 0
(1) 4 3cot 3(cot 1) cot 0
cot 1

1
4
cot
3
3
1
cot
3
k
x
x
x k
x
x x x x x
X x
x x x
x
x k
x
x k
x
π π
π π
π
π
π
π


= +

=







= = +




+ − − =
= ⇒ = ± ≠
⇔ + − + − =


=


= +


⇔ = − ⇔




= ± +




=


Page 2 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
3
4 / 2sin 5 3 os3 sin 3 0
3 1
3 os3 sin 3 2sin5 os3 sin3 sin 5
2 2
5
os 3 sin5 os( 5 )
6 2
5
3 5 2
6 2
24 4
2
5
3 5 2
3
6 2
5 / 2sin 4 3cos 2 16sin cos 5 0
2sin 4
+ + =

+ = − ⇔ − − =
 
⇔ + = = −
 ÷
 


+ = − +
= − +


⇔ ⇔




= −
+ = − +




+ + − =

x c x x
c x x x c x x x
c x x c x
k
x x k
x

x k
x x k
x x x x
π π
π π
π π
π
π
π π
π
π
2
3cos 2 8sin 2 .sin 5 0
1 os2
2sin 4 3cos 2 8sin 2 . 5 0
2
2sin 4 3cos 2 4sin 2 2sin 4 5 0
3 4
3cos 2 4sin 2 5 cos2 sin 2 1
5 5
3
cos
5
os(2 ) 1 ;( );
4
2
sin
5
+ + − =


 
⇔ + + − =
 ÷
 
⇔ + + − − =
⇔ + = ⇔ + =

=


⇔ − = ⇒ = + ∈


=


¢
x x x x
c x
x x x
x x x x
x x x x
C x x k k
α
α
α π
α
Page 3 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408

Hà Nội, ngày 28 tháng 02 năm 2010
• BTVN NGÀY 06-05
( )
( )
( )
3
3
2 3 2
2
3 2
2 2
2
1/ inx 4sin cos 0(1)
ê' :cos 0 inx 4sin 3 0
(1) t anx(1 tan ) 4tan 1 tan 0
t anx
t anx
t anx 1
1 3 2 1 0
4
3 1 0
2 / tan x sin 2sin 3 os2 sin x cos
, os
S x x
N u x S x
x x x
t
t
x k
t t t

t t t
x x c x x
Chia VT VP cho c x
π
π
− + =
⇔ = ⇒ − = ± ≠
⇔ + − + + =
=

=


⇔ ⇔ ⇔ = ⇔ = +
 
− + + =
− + + + =



− = +
( )
( )
( )
( )
2 2
3 2
2
3 2 2
3 2

2
2
ó :
os sin sin x cos
tan 2 tan 3
os
t anx
tan 2tan 3 1 tan t anx
3 3 0
t anx
t anx 1
4
1 3 0
t anx 3
3
3 / 2 2 tan 3
, os ó :
2 tan 2t
ta c
c x x x
x x
c x
t
x x x
t t t
x k
t
t t
x k
Sin x x

Chia VT VP cho c x ta c
x
π
π
π
π
− +
− =
=

⇔ − = − + ⇔

+ − − =


= − +
=


= −


⇔ ⇔ ⇔



+ − =
= ±





= ± +


+ =
+
( )
( )
2 2
3 2
2
tan
an (tan 1) 3(tan 1)
2 3 4 3 0
tan
t anx 1
1 2 3 0
4
t x
x x x
t t t
t x
x k
t t t
π
π
=

+ = + ⇔


− + − =

=


⇔ ⇔ = ⇔ = +

− − + =


Page 4 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
2 2
2
2
2
4 2 2 4
4
2 4
4 2
4 / os 3sin 2 1 sin
, os ó:
t anx
1 2 3 t anx 2 tan 1
2 2 3 0
t anx 0
t anx 3

3
5 / 3cos 4sin cos sin 0
, os ó:
t anx
3 4 tan tan 0
4 3 0
C x x x
Chia VT VP cho c x ta c
t
x
t t
k
x
k
x x x x
Chia VT VP cho c x ta c
t
x x
t t
π
π
π
− = +
=


− = + ⇔

+ =




=


⇔ ⇔ =


− +
= −


− + =
=

− + = ⇔

− + =

2
2
tan 1
4
tan 3
3
x k
x
x
x k
π

π
π
π

= ± +


=
⇔ ⇔


=


= ± +


• BTVN NGÀY 07-05
2 2
1/ inx cos 7sin 2 1
: sinx cos ;( 2)
sinx cos 1
7(1 ) 1 7 6 0
6
sinx cos
7
2
2
1
sin

2
4
2
3 2
;sin
7
2
3 2
sin
4
4 7
2
4
S x x
Coi t x t
x
t t t t
x
x k
x
x k
x k
x
x k
π
π
π
π π
α
π

α π
π
π
α π
− + =
= − ≤
− =


⇒ + − = ⇔ − − = ⇔

− =


= +


 

− =
= +
 ÷


 


⇔ ⇔ = −

= + +


 
− = −

 ÷

 


= − +


Page 5 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
2
0
2
2
2 / 2 2 sin 1
4
: sinx cos ;( 2)
2
4
0 0
1 1 2 sin 2
1 1
4 2
2

3 / Tìm : 2 4(cos sinx) ó
: cos sinx;( 2) 1 4
( ) 4
Sin x x
Coi t x t
x k
t
t t x x k
t
x k
m cho PT Sin x x m c ng
Coi t x t t t m
m f t t t
π
π
π
π π
π
π π
 
+ − =
 ÷
 
= − ≤

= +


=
 

 

⇒ − + = ⇔ ⇔ − = ⇔ = +
 ÷
 

=
 
 

= +



+ − =
= − ≤ ⇒ − + =
⇔ = = − +
2 2
1 '( ) 2 4 0; 2
( 2) ( 2) 4 2 1 4 2 1
4 / os2 5 2(2 cos )(sinx cos )
os2 5 4(sinx cos ) sin 2 os2 1
4((sinx cos ) sin 2 4 0
: sinx cos ;( 2) 4 ( 1) 4 0 4 3 0
2 sin 1 si
4
f t t t
f m f m
C x x x
C x x x c x

x x
Coi t x t t t t t
x
π
+ ⇒ = − + > ∀ ≤
⇒ − ≤ ≤ ⇔ − − ≤ ≤ −
+ = − −
+ = − − + +
⇔ − − − =
= − ≤ ⇒ − − − = ⇔ − + =
 
⇔ − = ⇔
 ÷
 
( ) ( )
( )
( )
3 3 5 5
3 2 3 2
2 2
2
1
n
2
4
2
2
5 / os 2(sin os )
1 2sin os 2cos 1 0
os2 sinx cos sin sin x cos os 0

os2 0
4 2
k
x x
k
Sin x c x x c x
Sin x x c x x
c x x x x c x
k
c x x
π
π
π
π π
π π

+
 

− = ⇔ =
 ÷

 
+

+ = +
⇔ − + − =
⇔ − − + =
⇔ = ⇔ = +
Page 6 of 10

TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
• BTVN NGÀY 08-05
( ) ( )
3 2
2 2
2 2
1
1/ 2cos2 8cos 7 (1)
cos
:
2
cos 1 2
cos ( )
(1) ;
1
cos 2
4 8 5 1 0
2 3
2 / 4cos 3tan 4 3 cos 2 3 t anx 4 0(2)
:
2
(2) 2cos 3 3 t anx 1 0
3
cos 2
2 6
1
t anx
3

x x
x
DK x k
x x k
t x t
k
x x k
t t t
x x x
DK x k
x
x x k
π
π
π
π
π
π
π
π
π
− + =
≠ +
= ⇒ =

= ≠


⇔ ⇔ ∈



= ⇒ = ± +
− + − =


+ − + + =
≠ +
⇔ − + + =
= ⇒ = ± +

= − ⇒
¢
( )
( )
2
6
6
3 / 3 cos cos 1 2
3 cos cos 1 2 4 cos 1 2(cos 1)
2(cos 1) 0;
: cos 1 0 cos 1 2
4 cos 1;
x k k
x k
x x
x x x x
x x
Do x x x k k
x x
π

π
π
π
π π



⇔ = − + ∈

= − +


− − + =
⇔ − = + + ⇔ + = − +
− + ≤ ∀


⇒ + = ⇔ = − ⇔ = + ∈

+ ∀


¢
¢
Page 7 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
( ) ( ) ( ) ( )
3 3

2
2
4 / in os os2 .tan .tan
4 4
sinx-cos 1 sin x cos os2 sinx-cos 1 sin x cos sinx cos 0
sinx-cos 0 sin 0
4 4
sinx cos ( 2)
1 sin x cos sinx cos 0
1
1 0 2 1
2
S x c x c x x x
x x c x x x x
x x x k
t x t
x x
t
t t t
π π
π π
π
   
− = + −
 ÷  ÷
   
+ = − ⇔ + + + =
 
= ⇒ − = ⇔ = +
 ÷

 

= + ≤
+ + + = ⇔

+ + = ⇔ + + =
( )
( ) ( )
( )
2 2
2 2
2 2
0 1
4
4
2 ;
1
2
sin
2
4
2
2 1
5 / os os (sinx 1)
3 3 2
1 1 1
cos 3sinx cos 3sinx (sinx 1)
4 4 2
1 1
1 2sin (sinx 1) 2sin s

2 2
t
x k
x k
x k k
x
x k
C x C x
x x
x x
π
π
π
π
π
π
π
π π
π π









⇔ = −






= +


= +




⇔ ⇔ = − + ∈

 

+ = −

 ÷

= +
 




   
+ + + = +
 ÷  ÷
   

⇔ − + + = +
⇔ + = + ⇔ −
¢
2
sinx 0
in 0 2 ;
1
6
sinx
2
5
2
6
x k
x x k k
x k
π
π
π
π
π


=
=




= ⇔ ⇔ = + ∈



=



= +

¢
• BTVN NGÀY 10-05
Page 8 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010
Bài 1:
Tìm các nghiệm thuộc khoảng (2π/5; 6π/7) của phương trình:
3sin7 cos7 2x x
− =
Giải:
1
5 2
3 1 2
84 7
sin 7 os7 sin 7 sin ;( )
11 2
2 2 2 6 4
84 7
5 2 2 5 2 6 2 5 2 6 5
* :
84 7 5 84 7 7 5 84 7 7 84

53
2
84
11 2 2 11 2 6 2 11 2 6 11
* :
84 7 5 84 7 7 5 84 7 7 84
k
x
PT x c x x k
k
x
k k k
Khi x
k x
k k k
Khi x
π π
π π
π π
π π π π π π
π
π π π π π π

= +

 
⇔ − = ⇔ − = ⇔ ∈

 ÷
 


= +


= + ⇒ < + < ⇔ − < < −
⇔ = ⇔ =
= + ⇒ < + < ⇔ − < < −

¢
2 3
35 59
1,2 ;
84 84
k x x
π π
= ⇔ = =
Bài 2:
Tìm các nghiệm thuộc khoảng (π/2; 3π) của phương trình:

5 7
sin 2 3cos 1 2sin
2 2
x x x
π π
   
+ − − = +
 ÷  ÷
   
Giải:


2
2 2 3cos 4 1 2sin
2 2
os2 3sin 1 2sin 1 2sin 1 sinx
PT Sin x x x
c x x x x
π π
π π
   
⇔ + + − + − = +
 ÷  ÷
   
⇔ + = + ⇔ − = −
Page 9 of 10
TRUNG TÂM HOCMAI.ONLINE
P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408
Hà Nội, ngày 28 tháng 02 năm 2010

2
1 2 3 4 5
sinx 0
2
2sin sinx 0
1
6
sinx
5
2
2
6

13 5 17
( ;3 ) ; 2 ; ; ;
2 6 6 6
x k
x k
x
x k
Do x x x x x x
π
π
π
π
π
π π π π
π π π
= ⇒ =




= +

⇔ − = ⇔

= ⇒




= +




⇔ ∈ ⇒ = = = = =
Bài 3:
Tìm m để phương trình sau có 4 nghiệm thuộc khoảng (-π;7π/3):
sinx cosm x m
+ =
Giải:
cos 1 0 à 2
sinx (1 cos )
sinx sinx
(*)
1 cos 1 cos
x x v x
PT m x
m m
x x
π
= = =
 
 
⇔ = − ⇔ ⇔
 
= =
− −
 
Vậy để phương trình ban đầu có 4 nghiệm thì (*) phải có 2 nghiệm phân biệt thuộc
khoảng (-π;7π/3).
Nhưng số nghiệm của (*)thuộc khoảng (-π;7π/3) lại chính là số giao điểm của

đường thẳng y=m với đồ thị (C) có phương trình:
( )
2
sinx 7
ê ;
1 cos 3
cos 1
ét àm: ' 0
1 cos
y tr n D
x
x
X h y x D
x
π
π
 
= = −
 ÷

 

= < ∀ ∈

Dựa vào bảng biến thiên ta có:
0
3; 0 ó 4m m PT c ng
≥ ≤

………………….Hết…………………

BT Viên môn Toán hocmai.vn
Trịnh Hào Quang
Page 10 of 10

×