VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
INSTRUCTOR COMMENTS
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
1
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
TEACHERS COMMENTS
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
2
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
ACKNOWLEDGMENTS
Success is not only an individual created but also associated with the support and help of
many others. During the time studying at university, I received much attention and help
from teachers, family and friends around.
The first one, we would like to send to our parent, our family thanks and gratitude
because the encouraging, exhortation of thesis for we to we could comleted this
graduation thesis.
The second, my team would like to the expressed its most sincere thanks to the teachers
of Van Lang University for their enthusiasm in transmitting valuable knowledge, their
was instructed us through every classroom in different lesson, as well as to talk, the
discussion and in the field of science and technology.
Sincere thanks and express my deepest gratitude to TS. Le Hung Tien, Dean of the
Faculty of Thermal Technology, he has dedicated to helping students in the process of
learning and accumulating knowledge, directing us to practical application software,
meeting practical requirements. Create opportunities for us to enjoy our favorite jobs.
At the same time, we would like to thank MSc. Vo Thien My has devotedly instructed
and guided the group each session, each talk and discuss on the research topic: “ Air
conditioning Design in Block A VAN LANG university, campus 3”. Thanks to those
instructions and teachings, this essay of my team has completed in the best way.
Besides, we are also very fortunate to receive enthusiastic help from you at Mars
Company. Thank you to everyone who provided us with practical experience and
provided materials to support the completion of the essay.
Sincerely thank !
3
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
INTRODUCTION
In recent years , economic development, air conditioning industry has also made great
progress, becoming more and more familiar in life and production.
Today, air conditioning and technology air conditioners are indispensable in buildings,
hotels, schools, supermarkets, travel services, culture, health, sports, ... In recent years the
industry Air conditioner (Air Conditioner) has also provided great support for many
economic sectors, contributing to improving product quality and ensuring technological
processes.
With the hot and humid climate like in our country, air conditioning system has become
increasingly important in life and production. Therefore, creating an appropriate
environment according to the needs of the user is in place and that is also the mission of
my team in this graduate thesis. So my team decided to Design an Air conditioner system
for "Van Lang University Block A - Campus 3".
Within the scope of the thesis, the group would like to introduce, calculate and design
electromechanical systems for buildings, including: Air-conditioning, Water supply and
drainage, Fire fighting, Power supply and lighting. And in the process of implementing
the system design, due to limitations of experience as well as personal knowledge, there
are many shortcomings in the implementation process, looking forward to the advice as
well as your valuable advice. This let our gain experience and progress later.
Ho Chi Minh City, January 2020
Students’s team :
Le Phat Manh.
Nguyen Pham Phi Linh.
Truong Nguyen Hoang Vu.
4
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
CONTENTS
INSTRUCTOR COMMENTS.............................................................................................1
TEACHERS COMMENTS................................................................................................. 2
ACKNOWLEDGMENTS................................................................................................... 3
INTRODUCTION............................................................................................................... 4
CHAPTER 1 GENERAL INTRODUCTION TO THE PROJECT................................. 12
1.1
INTRODUCTION.................................................................................................. 12
1.1.1 Location of construction........................................................................................ 12
1.1.2 Purpose:.................................................................................................................. 13
1.2
DESIGN OF THE CONTENTS...........................................................................13
1.2.1 The air conditioning.............................................................................................. 13
1.2.2 Water supply and drainage for construction..................................................... 14
1.3
THE FIRE FIGHTING AND PREVENTION SYSTEM ( FFAP ).................15
1.4
LIGHTING SYSTEM – ELECTRICITY...........................................................16
1.5
AUTOMATIC SYSTEM...................................................................................... 17
CHAPTER 2 COOLING LOAD CALCULATION......................................................... 19
2.1
PARAMETERS CALCULATED..................................................................... 19
2.1.2
Choose the indoor parameters to calculate:...................................................... 19
2.2
COOLING LOAD BY CARRIER METHOD................................................19
2.2.1
Sensible heat transfer in room by heat radiation through glazing Q11..........19
2.2.2
Sensible heat transmitted through the wall Q2................................................. 30
2.2.3
Sensible heat transfer through the floor Q22..................................................... 45
2.2.4
Sensible heat transfer through the roof Q23...................................................... 45
2.2.5
sensible heat by lighting and other electrical equipment Q3.......................... 46
2.2.6
Sensible heat and latent heat from person Q4...................................................52
2.2.7
Sensible heat and latent heat by fresh air provide into room Q5....................58
2.2.8
Sensible heat and latent heat by infiltration Q6................................................63
2.2.9
Specify cooling load..............................................................................................67
2.3
COOLING LOAD BY TRADITIONAL METHOD..................................... 67
5
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
2.3.1
General thermal balance equation..................................................................... 67
2.3.2
Thermal balance calculator................................................................................ 68
2.4
COOLING LOAD BY HAP SOFTWARE.................................................. 104
2.5
TABLE SUMMARY COOLING LOAD BY THREE METHODS.......... 111
CHAPTER 3 ANALYSIS AND SELECTION OF DESIGN PLAN.............................122
3.1
THE AIR-CONDITIONING SYSTEMS........................................................ 122
3.1.1
VRV Air-conditioning system...........................................................................122
3.1.2
Water chiller air-conditioning systems............................................................124
3.1.3
Selection of the air-conditioning system for contruction.............................. 128
CHAPTER 4 ESTABLISHENT AND CALCULATION AIR CONDITIONING
DIAGRAM.......................................................................................................................129
4.1
HEAT FACTORS IN AIR CONDITIONER................................................129
4.1.1
Room sensible heat factor:................................................................................ 129
4.1.2
Grand sensible heat factor:............................................................................... 129
4.1.3
Bypass factor:..................................................................................................... 129
4.1.4
Efective sensible heat factor:............................................................................ 129
4.1.5
Dew point temperature of equipment..............................................................130
4.1.6
Air temperature after indoor unit....................................................................130
4.1.7
Check the room temperature and blow in temperature................................130
4.1.8
Cooling capacity of MVAC system.................................................................. 131
4.1.9
MVAC diagram..................................................................................................131
4.2
DETERMINATION OF PRODUCTIVITY REFRIGERATION, AIR
FLOW COOLER........................................................................................................... 133
4.3
CHOOSE FCU...................................................................................................139
CHAPTER 5 REFRIGERANT CYCLE CALCULATION........................................... 146
5.1
REFRIGERANT CYCLE CALCULATION AND SELECTION............ 146
5.1.1
Refrigerant selection.........................................................................................146
5.1.2
Refrigerant selection......................................................................................... 147
5.2
REFRIGERATION CYCLE CALCULATION.............................................148
6
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
5.2.1
Diagram...............................................................................................................148
5.2.2
Refrigerant temperature................................................................................... 148
5.2.3
Calculate the parameters points of cycle:....................................................... 149
5.3
CALCULATION THERMODYNAMIC COMPRESSOR.......................... 152
CHAPTER 6 CALCULATE THE CONDENSER DESIGN......................................... 155
6.1
ANALYSIS OPTIONS CONDENSERS..........................................................155
6.2
CALCULATION CONDENSER..................................................................... 155
6.2.1
The original figure..............................................................................................155
6.2.2
Calculation.......................................................................................................... 156
6.2.3
Hydrodynamic condenser calculation............................................................. 161
6.2.4
The pipes into the condenser calculation.........................................................162
6.2.5
Calculation for sustainable condenser.............................................................163
CHAPTER 7 CALCULATOR AND DESIGN THE EVAPORATE............................ 169
7.1.
INTRODUCE ABOUT EVAPORATE DEVICE...........................................169
7.1.1. Function...............................................................................................................169
7.1.2. Classify................................................................................................................ 170
7.1.3. Analysis and selection of the evaporator......................................................... 170
7.2.
CALCULATOR DESIGN THE EVAPORATER..........................................171
7.2.1. First parameter...................................................................................................171
7.2.2. Calculation of the water.................................................................................... 173
7.2.3. Calculation of the refrigerant........................................................................... 174
7.3.
CALCULATION FOR THE EVAPORATOR HYDRODYNAMIC.......... 177
7.4.
CALCULATED STRENGTH FOR THE EPOVARATER...............................178
7.4.1. Calculated strength for the evaporater........................................................... 178
7.4.2. Calculate the clinical thickness.........................................................................179
7.4.3. Stress calculation for cap...................................................................................181
7.5.
CALCULATION OF THE PIPES TO COMMENT EVAPORATE...........182
7.5.1. Refrigerant pipe................................................................................................. 182
7
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
7.5.2. Coolant pipeline..................................................................................................184
7.6.
ADDITIONAL EQUIPMENT..........................................................................184
7.6.1. Oil Separator :.................................................................................................... 184
7.6.2. Dehumidifier filter............................................................................................. 185
7.6.3. Types of valves:.................................................................................................. 186
CHAPTER 8 CALCULATION COOLING TOWER....................................................190
8.1
PRINCIPLE OF OPERATION OF COOLING TOWER......................... 190
8.2
COOLING TOWER.......................................................................................... 191
8.3
DYNAMIC FOR COOLNG TOWER.............................................................195
8.4
CHOOSE THE COOLING TOWER PARAMETERS.................................198
CHAPTER 9 CALCULATING AND DESIGNING WATER PIPING SYSTEM........200
9.1
METHOD OF CALCULATING WATER PIPE DISTRIBUTION OF
COOLING WATER...................................................................................................... 200
9.1.1
Calculate the distribution water pipi to the level........................................... 201
9.1.2
Calculation of chilled water inlet and outlet chiller and assembly pipe...... 207
9.1.3
Calculation of cooling water pipes................................................................... 208
9.2
CALCULATION HINDRANCE ON THE PIPE...........................................209
9.2.1 Calculated head for pump.................................................................................. 211
9.2.2
Calculation of selection pump...........................................................................219
CHAPTER 10 CALCULATED AND DESIGN DUCT SYSTEM............................... 223
10.1
GENERAL INTRODUCTION.........................................................................223
10.1.1 Duct......................................................................................................................223
10.1.2 Diffuser, mouth vent.......................................................................................... 224
10.2
METHODS OF CALCULATION DUCT.......................................................224
10.2.1 Deceleration method.......................................................................................... 224
10.2.2 Equal friction method........................................................................................225
10.2.3 Static pressure recovery method...................................................................... 225
10.2.4 T method............................................................................................................. 225
10.2.5 Method constant speed...................................................................................... 225
8
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
10.2.6 Method pressure method...................................................................................226
10.3
CALCULATE OF DUCT SYSTEM................................................................226
10.3.1 Calculation of ventilation toilets.......................................................................227
10.3.2 Calculation of Fresh air.....................................................................................229
10.3.3 Calculation create pressure stairs systems......................................................236
CHAPTER 11 ELECTRIC SUPPLYING SYSTEM......................................................241
11.1
THE PURPOSE AND REQUIREMENTS:.................................................... 241
11.2
LINGTING DESIGN.........................................................................................242
11.3
DETERMINE THE CALCULATION LOAD............................................... 250
11.4
DETERMINED CALCULATION LOAD FOR EACH FLOOR................ 261
11.5
CALCULATION LOAD FOR DISTRIBUTION CABINETS.....................265
11.6
TRANFORMER, DYNAMO AND BLANCING CAPACITOR..................266
11.6.1. Tranformer......................................................................................................... 266
11.6.3. Blancing capacitor..............................................................................................270
11.7 CALCULATION AND SELECTION OF LED LEADS, CALCULATED
SHORT CIRCUIT, CHOOSE PROTECTIVE DEVICE..........................................272
11.7.1. Conductor............................................................................................................ 272
11.7.2.Calculating short circuit..................................................................................... 273
11.8 CHECKING PRESSURE FOR ELECTRICAL CONSUMPTION
DEVICES:....................................................................................................................... 279
11.8.1. Purpose................................................................................................................ 279
11.8.2. Calculate line voltage drop................................................................................279
11.8.3. Calculation voltage drop................................................................................... 280
11.9
SAFETY CALCULATION AND LIGHTNING PROTECTION................284
11.9.1. Purpose................................................................................................................ 284
11.9.2.Calculation of safe grounding............................................................................ 285
CHAPTER 12 PLUMBING SYSTEM............................................................................290
12.1
DESCRIPTION OF SYSTEM........................................................................ 290
12.1.1 Water supply system inside............................................................................. 290
9
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
12.1.2 Water................................................................................................................... 290
12.1.3 Water method..................................................................................................... 290
12.1.4 Water tank.......................................................................................................... 290
12.1.5 Pipes lines............................................................................................................ 291
12.1.6 The sanitary system inside................................................................................ 291
12.1.7 The system of rain water................................................................................... 291
12.1.8 Water tank.......................................................................................................... 291
12.2
WATER SUPPLY SYSTEM............................................................................ 291
12.2.1 Calculation of water demand............................................................................291
12.3
CALCULATION CHOOSE WATERTANK................................................. 293
12.4
CALCULATE AND CHOOSE WATER PUMP........................................... 294
12.5
SANITARY SYSTEM....................................................................................... 296
12.6
RAIN WATER SYSTEM..................................................................................297
CHAPTER 13 FIRE PROTECTION EQUIPMENT AND SYSTEMS.........................299
13.1
GENERAL INTRODUCTION....................................................................... 299
13.2
FIRE PROTECTION SYSTEM REQUIREMENT FOR BUILDING....... 299
13.2.1 Fire protection requirement..............................................................................299
13.2.2 Extinction requirement...................................................................................... 300
13.3
AUTOMATIC FIRE ALARM SYSTEM DESIGN....................................... 300
13.3.1 General description............................................................................................300
13.3.2 Addressable auto fire alarm system.................................................................300
13.3.3 Alternate design..................................................................................................301
13.4 INITIAL EXTINCTION FACILITIES & WATER EXTINGUISHING
SYSTEM.......................................................................................................................... 301
13.4.1 General................................................................................................................ 301
13.4.2 Water extinguishing system................................................................................302
13.4.3 Spinkler extingushing system........................................................................... 303
13.4.4 Water fire-fighting system throat wall.............................................................. 307
10
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
13.4.5 Choose pump for fire.......................................................................................... 309
13.6
SMOKE DETECTOR....................................................................................... 314
13.6.1 Smoke detector point...........................................................................................314
13.6.2 Beam smoke detector.......................................................................................... 314
13.7
HEAT DETECTOR...........................................................................................315
13.7.1 Fixed heat detector.............................................................................................315
13.7.2 Incremental heat detector.................................................................................315
13.8
FIRE DETECTOR.............................................................................................316
13.9
EMERGENCY SWITCH..................................................................................316
13.10 FIRE BELL.........................................................................................................317
13.11 HORN WARNING FIRE.................................................................................... 317
13.12 LAMP.....................................................................................................................317
13.13 EXIT LIGHT........................................................................................................ 318
13.14 CORRIDOR LAMP............................................................................................ 318
CHAPTER 14 BUILDING MANAGEMENT SYSTEM (BMS).................................. 319
14.1
GENERAL INTRODUCTION....................................................................... 319
14.2
FEATURES OF BMS........................................................................................ 320
14.3
DUTY...................................................................................................................320
CHAPTER 15 BILL OF QUANTITY AND ENERGY ECONOMY........................... 321
15.1
CONCEPT.......................................................................................................... 321
15.2
PURPOSE AND MEANING............................................................................ 321
15.3
BILL OF QUANTITY....................................................................................... 322
15.4
ENERGY ECONOMY...................................................................................... 390
CONCLUSION AND RECOMMENDATIONS............................................................392
REFERENCES.................................................................................................................393
11
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
CHAPTER 1
GENERAL INTRODUCTION TO THE PROJECT
1.1 INTRODUCTION
1.1.1 LOCATION OF CONSTRUCTION.
The project “Block A Trường ĐẠI HỌC VĂN LANG CƠ SỞ 3” was built in the
area of 80/68 Duong Quang Ham Street, Ward 5, Go Vap District, Ho Chi Minh City
(toward Go Vap District).
Investor: Van Lang University
12
VAN LANG UNIVERSITY
1.1.2
FACULTY OF ENGINEERING
PURPOSE:
The investment in building Campus 3 aims to create the best conditions for students
to study and entertain, contributing to creating a friendly and harmonious environment.
The Block A is the area that was completed and officially put into operation in April
2018, this is the first study area for students.
The Campus 3 include 12 floors. Classrooms are arranged from 2nd to 12th floor,
including 30 small classrooms (about 50 seats), 25 large classrooms (4 rooms with 84
seats, 21 rooms with 120 seats), 8 large hall rooms (about 300 seats). The large and small
classrooms are arranged alternately with the floors. Particularly large hall rooms are
arranged from the 8th floor to the 11th floor (rooms 8.1, 8.3, 8.4, 9.4, 10.3, 10.4, 11.6).
Table 1.1. The table statistical scale of the block A – Van Lang University
1.2 DESIGN OF THE CONTENTS
1.2.1 THE AIR CONDITIONAL
Meaning and purpose of the air conditioning.
Air conditioning is the process of treating air for the space that needs conditioning, in
which parameters such as temperature, relative humidity, circulation, air distribution
13
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
circulation, cleanliness as well as the the conditions of chemicals and microorganisms of
the air are adjusted to the extent permitted to meet the requirements of the air-conditioned
space.
The benefits of air conditioning are huge, especially in the current market economy
situation when the country needs to make great strides in economy and science.
Therefore, the role of air conditioning is indispensable in the current stage.
The role of air conditing toward humans and productions.
-
Human health is one of the important factors determining labor productivity. For
the process of temperature release to take place, it must create a space with temperature
and humidity suitable for the human body.
-
Currently, most schools, hotels, offices, ... are equipped with air conditioning
systems, to ensure the climate inside the air-conditioned space to suit the hygienic
conditions human needs.
-
The air conditioning systems :
+
Air conditioning one block
+
Split air conditioner
+
Simple air conditioner system (combination)
+
Air conditioner cluster
+
Air conditioner VRV
+
Water-cooled water chiller air conditioner system
1.2.2 WATER SUPPLY AND DRAINAGE FOR CONSTRUCTION
The indoor water supply system is responsible for bringing water from the water supply
network outside the home to any sanitary equipment, tools or machines manufactured in
the house.÷
The factors influnence the selection of diagrams:
Function of the house
Reliable pressure value in the outside water supply pipe
The pressures necessary to bring water to sanitary tools and machines disadvantageously
14
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
The level of comfort of the house.
The distribution devices for water in home appliances concentration or stratification
Basically the indoor water supply system can be divided into the following categories:
+ By function.
+ By pressure water of the outside pipe.
When designing, it is necessary to carefully research and compare the plans (about
economic, technical, comfortable, ...) to get the most appropriate diagram, ensuring the
following conditions :
Use pressures thoroughly of external water supply pipe.
Management economical easy and convenient.
Limiting the use of pumps much because it consumes electricity and labour.
Mix well with the architectural beauty of the building and noise for the home
Convenient for users.
1.3
THE FIRE FIGHTING AND PREVENTION SYSTEM ( FFAP )
Another important aspect of FFAP work is the timely detection of burning fires, and at
the same time alerting people in buildings and fire organizations. This is the important
role of fire detection and alarm systems.
Depending on the method to prevent fires, structure building and purpose of use, the
number and the object resides, limits of content and tasks, these systems can provide a
number of key functions:
Firstly, it provides a means of manually or automatically detecting a burning fire.
Secondly, it warns residents of fire buildings and the need for evacuation.
A common function is to transmit fire notification signals to the fire protection agency or
other emergency response organizations.
They can also interrupt the power supply, control the air handling equipment, or other
special operations (elevators, fire-prevention doors,...). And it can be used to start up the
fire extinguishing system.
Automatic fire alarm system is a system consisting of a set of devices with the mission to
detect and alarm when a fire occurs. The output of the fire signal can be performed
automatically by the probe (smoke, heat, fire,...) or by human (through the emergency
15
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
push button). The system must operate continuously at 24/24 hours even when the power
outage.
1.4
LIGHTING SYSTEM – ELECTRICITY
Power Supply System
Power source: The 24 kV high voltage power supply for the project is taken from the
area's electricity grid. The power supply point will be determined by the City Power
Company.
Electrical capacity: The equipment using electricity in the building includes: lighting
systems, electrical sockets, elevators, water pump and fire fighting, air conditioning
system,...
High-voltage power supply for the project is taken from the regional grid, high-voltage
power connection points, transformer stations, low-voltage cabinets and backup
generators are not covered by this design. This part is shown in another design.
Power supply and distribution net: With the office block, supply 0.4 kV electricity from
the low voltage cabinets of transformers to the floor electrical cabinets using the bar
system (BUS BAR), take the technical box; Power supply from the floor electrical
cabinet to the cabinet room using single-core copper wire along PVC insulated cable tray
above false ceiling; Power supply from the total electrical cabinets to the floor electrical
cabinets using electrical insulated copper core cable XLPE to following the cable ladder
in the technical box; Indoor electric conductors use copper core wire, 0.6 / 1 kV PVC
insulation and are threaded in hard plastic pipes buried underground walls, ceilings or on
fake ceilings.
Lighting System for construction.
Lighting for the works mainly uses fluorescent lamps and compact downlight bulbs.
Garden lighting system using garden lamps, high-pressure mercury ball decorative lamp,
high pressure sodium or compact bulb depending on the type of lamp.
Lighting system in the building is protected by aptomat installed in power distribution
cabinet. Lights are controlled by a switch installed on the wall next to the door, or in the
appropriate positions.
16
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
The indoor lighting system is designed according to the artificial lighting standard in civil
construction ( Building Standars 16:1986); Lighting in the construction mainly using
fluorescent lamps; Lighting stairs using compact ceiling bulb; Hall illumination, corridor
using compact bulb downlight... Minimum illuminance in these areas are as follows:
- Office:
400 ~ 600 lux
- Technical Room, Pump Room: 100 lux
- Corridor, Stairs, WC: 100 lux
Lighting control for classroom areas, faculty offices, corridors, halls, stairs, garages use
switches near the door or convenient location.
1.5
AUTOMATIC SYSTEM
Refrigeration system automation is to equip the refrigeration system with tools that
enable the entire refrigeration system or parts of equipment to be automatically, securely,
safely and reliably high without the direct involvement of the operator
Increasingly, automation equipment is growing and perfected, the operation of the
cooling system manually is replaced with partially or complete automated systems. Small
and medium refrigeration systems are also fully automated, operate automatically
monthly or even annually without operators, large refrigeration systems have control
center, tuning, signaling and protection.
When designing a refrigeration system, always designed according to the largest
refrigerant load in the most unfavorable operating mode such as the largest load, the
highest outside temperature, etc
Summary: during operation of a refrigeration system, the temperature of the object to be
cooled is often fluctuated due to the impact of different heat flows from the outside to or
from within the cooling area. Keeping this temperature constant orvariable within the
permissible range is a task of adjusting the air conditioner.
Sometimes controlling different cold technology processes has to change the temperature,
humidity and other physical quantities according to a certain program.
17
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
The system automatically controls the entire work of air conditioning, maintains the
optimum operational mode and reduces product loss in the cold room. Besides
maintaining automatically parameters (temperature, pressure, humidity, flow, ...) within a
given limit, it is also necessary to protect the equipment system to avoid dangerous
working mode. This is the protection requirement of an automated system.
Automation of the working of the refrigeration system has advantages compared to
manual adjustment is to keep constant and reasonable working mode. This advantage
leads to a series of advantages on increasing storage time, improving product quality,
reducing power consumption, increasing the lifespan and reliability of machines and
equipment, reducing cooling water costs, reducing operating costs, and cooling costs for
a Production units, contributing to lower product costs, ... . The automatic protection is
also made faster, more sensitive, guaranteed and more reliable human manipulation.
18
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
CHAPTER 2
COOLING LOAD CALCULATED
2.1 PARAMETERS CALCULATED
Parameters calculated internal of
TCVN 5687 – 2010.
building use to design air conditioning following
Table 2.1: Parameters for internal calculate. (Appendix A – TCVN 5687-2010)
Winter
No.
Working status
Temp.
RH
t, (°C)
, (%)
Summer
Wind
speed
v, (m/s)
Wind
Temp.
RH
t, (°C)
, (%)
speed
v, (m/s)
1
Rested
22 ÷ 24
70 ÷ 60
0.1 ÷ 0.2
25 ÷ 28
70 ÷ 60 0.5 ÷ 0.6
2
Light work
21 ÷ 23
70 ÷ 60
0.4 ÷ 0.5
23 ÷ 27
70 ÷ 60
3
Medium work
20 ÷ 22
70 ÷ 60
0.8 ÷ 1
22 ÷ 25
70 ÷ 60 1.2 ÷ 1.5
4
Heavy work
18 ÷ 20
70 ÷ 60
1.2 ÷ 1.5
20 ÷ 23
70 ÷
60
0.8 ÷ 1
3 ÷2.5
2.1.1 Parameters calculated internal of building use to design air conditioning
following Table 1.9 [1]
Dry bulb temperature: tdb = 34.6 oC
- Wet bulb temperature: twb = 28.8 oC
- Dew point temperature: tdp = 27.05 oC
2.1.2 Choose the indoor parameters to calculate:
-
-
Room temperature: tdb = 27 oC
Relative Humidity: RH = 60 %
2.2 COOLING LOAD BY CARRIER METHOD
Cooling capacity of air condition system is cooling load Qo in conditioned spaceing.
Following calculation cooling load method Carrier , cooling load Qo is total sensible heat
Qht and total latent heat Qat (refer [1], page 141).
Qo = Qt = Qht + Qat
2.2.1 Sensible heat transfer in room by heat radiation through glazing Q11
19
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
Heat radiation through glass (refer [1], page 143).
Q11 = nt × Q’11 (W)
Where :
nt
- Influence factor immediately of radiation.
Q’11 - Largest radiation through glazing (refer [1], page 143).
Where :
F
Q'11 = F × R × εc × εđs × εmm × εkh × εm × εr
- The surface area of glass window with steel frame (m2)
RT - Solar heat radiation through glazing in room, (W/m2)
R depends on laditude, months, direction glass, hour. (refer [1], table 4-2).
εc
- Influence factor by high H (m) glass location than sea level
εđs
H
× 0.023
1000
- Influence factor of differ dew temperature of calculation air and dew
εc =1 +
temperature of air above sea surface is 20oC, (refer [1], page 144).
εmm
(tdp − 20)
× 0.13
10
- Influence factor of cloudy.
εdp = 1 −
When have not cloudy mm = 1, when have cloudy mm = 0.85
εkh
- Influence factor of glass frame.
If glass frame is wood: kh = 1, glass frame is metal: kh = 1.17
εm
- Glass factor, depend on color, the style of glass is different from the basic glass.
When have not membrane r=1, when have membrane r . following
[refer[1], table 4-4, page 153].
If different basic glass standard and have membrane indoor is solar heat
calculation following formula 4.2 (refer [1], page 143) and influence factor of
glass r = 1 , but R replaced by Rk , following formula:
Where :
Rk
Q'11 = F × Rk × εc × εđs × εmm × εkh × εm × εr
- Solar heat radiation through glazing. (refer [1], page 144)
Rk = [0.4×k + k× (m + m +k×m + 0.4×k×m)] ×Rn
20
VAN LANG UNIVERSITY
Rn
FACULTY OF ENGINEERING
- Solar heat radiation come on outside the glass.
Rn =
R
R
0,88
- Solar heat radiation through glazing to conditioned space.
(refer[1], table 4-2, page 152)
k, k, k – Absorption factor , reflection factor , through factor of glass.
(refer[1], table 4-3, page 153)
m, m, m – absorption factor , reflection factor , through factor of membrane
(refer[1], table 4-4, page 153)
Table 2.2: All factor of glass and curtain.
Absorption
Reflection
Through
factor
factor
factor
k
k
tk
0.74
0.05
0.21
m
m
tm
0.37
0.51
0.12
Glass Antisun
Membrane
Table 2.3: The largest solar radiant heat to the glass.
Direction
R ( W/m2 )
Rk ( W/m2 )
East – North
483
234.5
East – South
514
249.6
West – South
514
249.6
West – North
483
234.5
Immediate effect factor nt:
=
11
㘠11
The value nt depends on the: gs, kg/m2sàn - the average volume of textures covering
Warsawh, ceiling, floor create the harmonic space 1 m²floor.
gs =
㘠
0h
× 㘠㘠
, kg/m²floor
21
VAN LANG UNIVERSITY
FACULTY OF ENGINEERING
Where:
G’ – the volume of the wall has outer surface exposed to solar radiation and on the
ground floor (kg).
G” – the mass of the wall surface is not exposed with solar and on the ground floor
(kg).
Fs – floor area (m²).
Verify (refer[1], table 4-6, table 4-7, page 156&157) specify mmmediate effect factor nt.
Table 2.4: By calculation, heat radiation through glass.
No
EXPOSURE
1ST FLOOR
EN
ES
1
WS
WN
EN
ES
2
WS
WN
2nd FLOOR
EN
ES
1
WS
WN
EN
ES
2
WS
WN
EN
ES
3
WS
WN
EN
ES
4
WS
WN
EN
ES
5
WS
WN
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
ROOM
NAME
AREA
ROOM
(m2)
Gs
Kg/m2
floor
COMP.
93
768.05
MEDI.
12
1041.35
201
CLASS
85
202
CLASS
54
203
CLASS
110
206
CLASS
110
763.42
205
CLASS
54
907.90
nt
0.9
817.52
0.61
902.13
0.61
787.44
22
0.61
0.58
0.64
0.64
Q1
(W)
0
0
0
0
0
0
179.98
0
0
0
0
2132.08
0
0
0
1329.685
0
0
0
2751.074
2027.226
3097.223
0
0
0
1561.410
0
0
Σ Q1
(W)
0.00
179.98
2132.08
1329.69
2751.07
5124.45
1561.41
VAN LANG UNIVERSITY
No
EXPOSURE
EN
ES
6
WS
WN
EN
ES
7
WS
WN
rd
3 FLOOR
EN
ES
1
WS
WN
EN
ES
2
WS
WN
EN
ES
3
WS
WN
EN
ES
4
WS
WN
EN
ES
5
WS
WN
EN
ES
6
WS
WN
EN
ES
7
WS
WN
th
4 FLOOR
EN
ES
1
WS
WN
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
FACULTY OF ENGINEERING
AREA
ROOM
(m2)
Gs
Kg/m2
floor
204
CLASS
110
787.44
Teacher
31
1161.94
ROOM
NAME
301
CLASS
85
302
CLASS
54
303
CLASS
110
307
CLASS
112
763.60
306
CLASS
54
902.30
305
CLASS
110
785.95
304
CLASS
54
1092.83
401
CLASS
nt
0.64
0.67
0.7
817.52
0.61
902.13
0.61
787.44
85
0.61
0.58
0.64
0.64
0.64
0.64
0.7
816.67
0.61
23
Q1
(W)
0
3071.626
0
0
0
111.309
988.495
0
0
0
0
2132
0
0
0
1329
0
0
0
2751
2027
3174
0
0
0
1484
0
0
0
3046
0
0
0
354
387
0
0
0
0
2132
Σ Q1
(W)
3071.63
1099.80
2132.08
1329.69
2751.07
5201.24
1484.62
3046.03
742.06
2132.08
VAN LANG UNIVERSITY
No
2
3
4
5
6
7
5th
1
2
3
4
5
EXPOSURE
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
FLOOR
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
FACULTY OF ENGINEERING
AREA
ROOM
(m2)
Gs
Kg/m2
floor
402
CLASS
54
902.13
403
CLASS
110
406
CLASS
110
765.84
405
CLASS
54
904.00
404
CLASS
110
786.53
Teacher
31
1161.94
501
CLASS
85
816.67294
12
502
CLASS
54
503
CLASS
110
509
CLASS
54
854.40
508
CLASS
54
904.00
ROOM
NAME
nt
0.61
787.44
0.61
0.58
0.64
0.64
0.64
0.67
0.7
0.61
902.13
0.61
787.44
24
0.61
0.58
0.64
0.64
Q1
(W)
0
0
0
1329
0
0
0
2751.074
2027
3148
0
0
0
1510
0
0
0
3046
0
0
0
111
988
0
0
0
0
2132
0
0
0
1329
0
0
0
2751
2027
1510
0
0
0
1510
Σ Q1
(W)
1329.69
2751.07
5175.64
1510.22
3046.03
1099.80
2132.08
1329.69
2751
3537
1510
VAN LANG UNIVERSITY
No
6
7
8
9
6th
1
2
3
4
5
6
EXPOSURE
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
FLOOR
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
WN
EN
ES
WS
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
234.5
234.5
249.6
249.6
FACULTY OF ENGINEERING
AREA
ROOM
(m2)
Gs
Kg/m2
floor
507
CLASS
54
904.00
506
CLASS
54
904
505
CLASS
60
872
504
CLASS
54
1092
ROOM
NAME
601
CLASS
85
602
CLASS
54
603
CLASS
110
609
CLASS
54
854
608
CLASS
54
904
607
CLASS
54
904
nt
0.64
0.64
0.64
0.64
0.7
816
0.61
902
0.61
787
25
0.61
0.58
0.64
0.64
0.64
Q1
(W)
0
0
0
1510
0
0
0
1510
0
0
0
1510
0
0
0
354
387
0
0
0
0
2132
0
0
0
1329
0
0
0
2751
2027
1510
0
0
0
1510
0
0
0
1510
0
Σ Q1
(W)
1510.22
1510
1510
742
2132
1329
2751
3537
1510
1510