Tải bản đầy đủ (.pdf) (102 trang)

Giáo trình giải tích hàm

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (655.65 KB, 102 trang )

ˆ. GIAO
´ DU
` ¯DAO
` TA
BO
. C VA
.O
`’
ˆ` THO’
TRU’ONG
¯DA
. I HO
. C CAN

Gi´
ao tr`ınh

’ T´ICH HAM
`
GIAI
(Functional Analysis)

˜’ Kh´
anh
Biˆ
en soa.n: Ts. Nguyˆ
e˜n Huu
Ts. Lˆ
e Thanh T`
ung
Bˆo. mˆon To´an


Khoa Khoa ho.c Tu.’ nhiˆen
`’ ¯Da.i ho.c Cˆa`n Tho’
Tru’ ong

2013


`’ NOI
`
´ ¯DAU
ˆ
LOI
’ t´ıch h`am d¯u’o.’c viˆe´t cho ho.c viˆen cao ho.c ng`anh To´an. Gi´ao tr`ınh
Gi´ao tr`ınh Giai
´’ co’ ban
’ vˆe` Giai
’ t´ıch h`am nhu’ khˆong gian d¯.inh chuˆa’n, khˆong
cung cˆa´p c´ac kiˆe´n thuc
´’ nhˆa.n d¯u’o.’c, ngu’oi
’’ Tu
`’ c´ac kiˆe´n thuc
`’ d¯o.c c´o thˆe’ tu.’
gian Hilbert v`a l´
y thuyˆe´t to´an tu.
´’ c´ac chuyˆen d¯ˆe`kh´ac cua
’ Giai
’ t´ıch h`am nhu’ khˆong gian vecto’ tˆopˆo, khˆong
nghiˆen cuu
’ t´ıch phi tuyˆe´n... Gi´ao tr`ınh c´o thˆe’ d`
gian Sobolev, d¯a.i sˆo´ Banach, Giai

ung nhu’ t`ai
’ cho sinh viˆen d¯a.i ho.c.
liˆe.u tham khao
´’ vˆe` khˆong gian d¯.inh
Gi´ao tr`ınh gˆo`m 5 chu’ong.
Chu’ong

’ 1 tr`ınh b`ay c´ac kiˆe´n thuc
´’ thiˆe.u c´ac khˆong gian Lp . Chu’ong
chuˆa’n. Chu’ong
y co’
’ 2 gioi
’ 3 d¯ˆe`cˆa.p vˆe`c´ac nguyˆen l´
´’ vˆe` khˆong gian Hilbert. Chu’ong
’ cua
’ Giai
’ t´ıch h`am. Chu’ong
ban
’ 5 x´et
’ 4 nghiˆen cuu
’’

y thuyˆe´t vˆe`c´ac to´an tu.
`’ dˆe˜ d¯ˆe´n kh´o v`a d¯u’o.’c
C´ac vˆa´n d¯ˆe` trong gi´ao tr`ınh d¯u’o.’c tr`ınh b`ay c´o hˆe. thˆo´ng tu
´’ minh d¯u’o.’c tr`ınh b`ay chi tiˆe´t, dˆe˜ hiˆe’u.
minh ho.a ba˘`ng c´ac v´ı du. cu. thˆe’. C´ac chung
´’ vˆa.n du.ng v`ao
`’ ho.c cung


Sau mˆo˜i chu’ong
up ngu’oi
cˆo´ kiˆe´n thuc,
’ c´o hˆe. thˆo´ng b`ai tˆa.p gi´
´’ Mˆo.t sˆo´ hu’ong
´’ dˆa˜n th´ıch ho.’p cho b`ai tˆa.p gi´
`’ d¯o.c d¯.inh
c´ac t`ınh huˆo´ng moi.
up ngu’oi
´’ d¯u’o.’c c´ach giai.

hu’ong
Trong qu´a tr`ınh biˆen soa.n khˆo’ng thˆe’ tr´anh d¯u’o.’c thiˆe´u s´ot. T´ac gia’ rˆa´t mong nhˆa.n
`’ ngu’oi
`’ d¯o.c vˆe`gi´ao tr`ınh n`ay.
d¯u’o.’c y
´ kiˆe´n d¯o´ng g´op qu´
y b´au tu


99

MU
. C LU
.C
`’ n´oi d¯ˆa`u
Loi
Chu’ong
ong gian d
¯.inh chuˆ

a’n
’ 1. Khˆ
§1. Khˆong gian tuyˆe´n t´ınh
§2. ¯Da.i cu’ong
’ vˆe`khˆong gian d¯.inh chuˆa’n
§3. Chuˆo˜i trong khˆong gian d¯.inh chuˆa’n

12

§4. Khˆong gian con

14

§5. Khˆong gian thu’ong


16

§6 T´ıch c´ac khˆong gian d¯.inh chuˆa’n
§7. To´an tu’’ tuyˆe´n t´ınh liˆen tu.c

17

˜’ ha.n chiˆe`u
§8 Khˆong gian d¯i.nh chuˆa’n huu

26

B`ai tˆa.p


28

1
7

19

Chu’ong
ac khˆ
ong gian Lp
’ 2. C´
´’
§1. C´ac bˆa´t d¯a˘’ ng thuc

33

§2. Khˆong gian Lp (X)

35

§3. Khˆong gian lp

38

§4. To´an tu’’ t´ıch phˆan trong khˆong gian LP [a, b]

38

§5. T´ıch chˆa.p


40

B`ai tˆa.p

41
’ giai
’ t´ıch h`
˘’ n cua
Chu’ong
ac nguyˆ
en l´ı co’ ba
am
’ 3. C´

§1. ¯Di.nh l´ı Hanh-Banach
§2. Nguyˆen l´ı bi. ch˘
a.n d¯ˆe`u

43
48

§3. Nguyˆen l´ı ´anh xa. mo’’
§4. ¯Di.nh l´ı d¯ˆo` thi. d¯o´ng

50

B`ai tˆa.p

53


52

Chu’ong
ong gian Hilbert
’ 4. Khˆ
§1. Kh´ai niˆe.m vˆe`khˆong gian Hilbert
§2. T´ınh tru.’c giao v`a h`ınh chiˆe´u

55
60


100

§3. Hˆe. tru.’c chuˆa’n
§4. Phiˆe´m h`am tuyˆe´n t´ınh v`a song tuyˆe´n t´ınh trong khˆong gian Hilbert

65

B`ai tˆa.p

75

72

Chu’ong
y thuyˆ
e´t to´
an tu’’
’ 5. L´

§1. To´an tu’’ liˆen ho.’p
§2. To´an tu’’ tu.’ liˆen ho.’p
§3. To´an tu’’ compact

79

’ to´an tu’’ liˆen tu.c
§4. Phˆo’ cua

85

B`ai tˆa.p

95


T`ai liˆe.u tham khao
Mu.c lu.c

98

81
83

99


Chu’ong
1


ˆ
ˆ’
KHONG
GIAN ¯DI.NH CHUAN
§1.

Khˆ
ong gian tuyˆ
e´n t´ınh

´’ co’ ban
’ vˆe`khˆong gian tuyˆe´n t´ınh.
Phˆa`n n`ay nha˘´c la.i mˆo.t c´ac kiˆe´n thuc

1.1
C.

Kh´
ai niˆ
e.m vˆ
e` khˆ
ong gian tuyˆ
e´n t´ınh

´’
`’ c´ac sˆo´ thu.’c R ho˘
`’ c´ac sˆo´ phuc
Trong gi´ao tr`ınh n`ay ta k´ı hiˆe.u K l`a tru’ong
a.c tru’ong


1.1.1 Khˆ
ong gian tuyˆ
e´n t´ınh
´’ ph´ep cˆo.ng + : X ×X →
`’ K l`a tˆa.p X c`
Khˆong gian tuyˆe´n t´ınh X trˆen tru’ong
ung voi
´
`

X v`a ph´ep nhˆan vˆo hu’ong
’ · : K × X → X thoa c´ac d¯iˆeu kiˆe.n
i) (x + y) + z = x + (y + z), ∀x, y, z ∈ X
ii) x + y = y + x, ∀x, y ∈ X
iii) ∃θ ∈ X : x + θ = x, ∀x ∈ X
iv) ∀x ∈ X, ∃ − x ∈ X : x + (−x) = θ;
v) α(x + y) = αx + αy, ∀α ∈ K, ∀x, y ∈ X
vi) (α + β)x = αx + βx, ∀αβ ∈ K, ∀x ∈ X
vii) (αβ)x = α(βx) ∀αβ ∈ K, ∀x ∈ X
viii) 1.x = x, ∀x ∈ X .
’ khˆong gian tuyˆe´n t´ınh d¯u’o.’c go.i l`a c´ac vecto.’
C´ac phˆa`n tu’’ cua
Nˆe´u K = R th`ı X l`a khˆong gian tuyˆe´n t´ınh thu.’c, nˆe´u K = C th`ı X l`a khˆong gian
´’
tuyˆe´n t´ınh phuc.
1


Chuong
’ ’ 1. Khˆ

ong gian d
¯.inh chuˆ
a’n

2

´’ c´ac ph´ep to´an cˆo.ng v`a nhˆan vˆo hu’ong
´’
• V´ı du. 1 Tˆa.p ho.’p Rn voi
x + y = (x1 + y1 , . . . , xn + yn )
αx = (αx1 , . . . , αxn )
trong d¯o´ α ∈ R, x = (x1 , . . . , xn ), y = (y1 , . . . , yn ) ∈ Rn l`a mˆo.t khˆong gian tuyˆe´n
t´ınh.
´’ hai
• V´ı du. 2 Tˆa.p ho.’p C([a, b]) = { f : [a, b] → R : f liˆen tu.c trˆen [a, b] } c`
ung voi
ph´ep to´an
(f + g)(x) = f (x) + g(x); ∀x ∈ [a, b]
(αf )(x)

= αf (x), ∀α ∈ R, ∀x ∈ [a, b]

trong d¯´o f, g ∈ C([a, b]), l`a mˆo.t khˆong gian tuyˆe´n t´ınh.
• V´ı du. 3 Tˆa.p ho.’p l2 = {x = (x1 , x2 , . . . , xn , . . .) : xn ∈ R,
´’ hai ph´ep to´an
voi

∑∞
n=1


|xn |2 < ∞} c`
ung

(xn ) + (yn ) = (xn + yn ),
α(xn ) = (αxn ),
´’ (xn ), (yn ) ∈ l2 , α ∈ K, l`a mˆo.t khˆong gian tuyˆe´n t´ınh.
voi
´’ ph´ep cˆo.ng d¯a thuc,
´’
´’ mˆo.t biˆe´n thu.’c trˆen R, voi
• V´ı du. 4 Tˆa.p ho.’p P c´ac d¯a thuc
´
´
´
`’ l`a mˆo.t khˆong gian
ph´ep nhˆan mˆo.t sˆo voi’ d¯a thuc
’ x´ac d¯.inh theo c´ach thˆong thu’ong
´
tuyˆen t´ınh.
1.1.2 ¯Dˆ
o.c lˆ
a.p tuyˆ
e´n t´ınh
Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh v`a x1 , x2 , . . . , xn ∈ X.
Tˆo’ng

n


’ c´ac vecto’

αi xi , trong d¯o´ αi ∈ K, d¯u’o.’c go.i l`a mˆo.t tˆo’ ho.’p tuyˆe´n t´ınh cua

i=1

x1 , x2 , . . . , xn .
Hˆe. {x1 , x2 , . . . , xn } d¯u’o.’c go.i l`a d¯ˆo.c lˆa.p tuyˆe´n t´ınh nˆe´u
0, ∀i = 1, n.

n


αi xi = 0 th`ı αi =

i=1

Hˆe. {x1 , x2 , . . . , xn } d¯∑
u’o.’c go.i l`a phu. thuˆ
o.c tuyˆe´n t´ınh nˆe´u hˆe. khˆong d¯oˆ. c lˆa.p tuyˆe´n

n
n
2
´’ l`a ∃α1 , . . . , αn ,
t´ınh (tuc
i=1 αi xi = 0).
i=1 |αi | ̸= 0:
˜’ ha.n c´ac phˆa`n tu’’ cua

Tˆa.p M ⊂ X d¯u’o.’c go.i l`a d¯oˆ. c lˆa.p tuyˆe´n t´ınh nˆe´u mo.i hˆe. huu
´

M d¯ˆe`u d¯ˆo.c lˆa.p tuyˆen t´ınh.


1. Khˆ
ong gian tuyˆ
e´n t´ınh

3

1.1.3 Co’ so’’
Cho X l`a mˆo.t khˆong gian tuyˆe´n t´ınh. Mˆo.t tˆa.p con B ⊂ X d¯u’o.’c go.i l`a mˆo.t co’ so’’
’ X nˆe´u:
cua
B l`a tˆa.p d¯oˆ. c lˆa.p tuyˆe´n t´ınh.
˜’ ha.n c´ac phˆa`n tu’’ cua
’ mˆo.t sˆo´ huu
’ B,
Mo.i x ∈ X d¯ˆe`u l`a tˆo’ ho.’p tuyˆe´n t´ınh cua
nghi˜a l`a
n

∀x ∈ X, ∃α1 , . . . , αn ∈ K, ∃x1 , . . . , xn ∈ B : x =
αi xi .
i=1

’ B d¯u’o.’c go.i l`a sˆo´ chiˆe`u cua
’ khˆong gian tuyˆe´n t´ınh X. K´ı hiˆe.u
Sˆo´ phˆa`n tu’’ cua
´


`
`
˜
˜’
dimX. Nˆeu B gˆom huu
’ ha.n phˆan tu’ th`ı X d¯u’o.’c go.i l`a khˆong gian tuyˆe´n t´ınh huu
ha.n chiˆe`u.
’ khˆong gian tuyˆe´n t´ınh X khi v`a chi’ khi
∆ ¯Di.nh l´
y 1.1 Tˆa.p ∅ ̸= B ⊂ X l`a co’ so’’ cua
´
´
´
B l`
a tˆa.p ho.’p d¯ˆo.c lˆa.p tuyˆen t´ınh tˆoi d¯a.i (tuc
o.c lˆa.p tuyˆe´n t´ınh v`a nˆe´u M ⊃ B,
’ l`a B d¯ˆ
M ̸= B th`ı M phu. thuˆo.c tuyˆe´n t´ınh).
∆ ¯Di.nh l´
y 1.2 Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh n chiˆe`u v`a x1 , x2 , . . . , xn l`a mˆo.t
’ X. Khi d¯´o mo.i x ∈ X d¯ˆe`u d¯u’o.’c biˆe’u diˆe˜n duy nhˆa´t da.ng
co’ so’’ cua
n

x=
αi xi .
i=1

1.2



ac khˆ
ong gian tuyˆ
e´n t´ınh

1.2.1 Khˆ
ong gian con
✷ ¯Di.nh nghi˜a 1 Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh v`a Y ⊂ X. Y d¯u’o.’c go.i l`a khˆong
’ X nˆe´u ∀α, β ∈ K, ∀x, y ∈ Y ta c´o αx + βy ∈ Y .
gian con cua
• V´ı du. 5
i) Ta.p ho.’p l1 gˆo`m tˆa´t ca’ c´ac d˜
ay sˆo´ x = (xn ) sao cho
’ khˆong gian c´ac d˜
khˆong gian con cua
ay sˆo´.

∑∞
n=1

|xn | < ∞ l`a mˆo.t

ii) Tˆa.p ho.’p c´ac h`am sˆo´ liˆen tu.c trˆen d¯oa.n [a, b], k´ı hiˆe.u C[a,b] , l`a mˆo.t khˆong gian
’ khˆong gian c´ac h`am sˆo´ F([a, b]).
con cua
’ X th`ı ∩α Yα c˜
∆ ¯Di.nh l´
y 1.3 Nˆe´u {Yα } l`a ho. c´ac khˆong gian con cua
ung l`a khˆong
’ X.

gian con cua
’ ho. tˆa´t ca’
✷ ¯Di.nh nghi˜a 2 Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh v`a M ⊂ X. Giao cua
´
´
´’ M , d¯u’o.’c
’ X chua
’ X chua
c´ac khˆong gian con cua
’ M l`a khˆong gian con nho’ nhˆat cua
’’ M , k´ı hiˆe.u l`a L(M ) hay span(M ).
go.i l`a khˆong gian con sinh boi
Khi L(M ) = X ta n´oi M sinh ra X v`a M l`a tˆa.p c´ac phˆa`n tu’’ sinh.


4

Chuong
’ ’ 1. Khˆ
ong gian d
¯.inh chuˆ
a’n

˜’ ha.n c´ac phˆa`n tu’’ cua

∆ ¯Di.nh l´
y 1.4 L(M ) l`a tˆa.p tˆa´t ca’ c´ac tˆ
o’ ho.’p tuyˆe´n t´ınh huu
´
M , tuc

’ l`a
n

L(M ) = {
αi xi : αi ∈ K, xi ∈ M, n ∈ N}.
i=1

1.2.2 Khˆ
ong gian thu’ ong

’ X. ¯Di.nh nghi˜a
Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh v`a Y l`a khˆong gian con cua
quan hˆe. ∼ trong X nhu’ sau:
∀x1 , x2 ∈ X, x1 ∼ x2 ⇔ x1 − x2 ∈ Y.
´’ tu’ong
Khi d¯o´ ∼ l`a quan hˆe. tu’ong
Tˆa.p thu’ong
’ d¯u’ong
’ x + Y l`a
’ d¯u’ong.

’ X/Y c´ac lop
´’ hai ph´ep to´an
mˆo.t khˆong gian tuyˆe´n t´ınh voi
(x + Y ) + (y + Y ) = (x + y) + Y
α(x + Y ) = αx + Y
1.2.3 T´ıch Descartes c´
ac khˆ
ong gian tuyˆ
e´n t´ınh

Cho ho. {Xα } c´ac khˆong gian tuyˆe´n t´ınh. ¯Da˘. t X =



Xα . Trong X ta d¯.inh

α

´’ mo.i (xα )α , (yα )α ∈ X
nghi˜a hai ph´ep to´an nhu’ sau: voi
(xα ) + (yα ) = (xα + yα )
λ(xα ) = (λxα )
´’ hai ph´ep to´an l`a khˆong gian tuyˆe´n t´ınh, d¯u’o.’c go.i l`a t´ıch Descartes
X c`
ung voi
’ ho. c´ac khˆong gian Xα .
cua
1.2.4 Tˆ
o’ng c´
ac khˆ
ong gian tuyˆ
e´n t´ınh
✷ ¯Di.nh nghi˜a 3 Gia’ su’’ X l`a mˆo.t khˆong gian tuyˆe´n t´ınh v`a Y1 , Y2 , . . . , Yn l`a c´ac
’ X. Khi d¯o´
khˆong gian con cua
Y ={

n



yi : yi ∈ Yi , i = 1, n}

i=1

´’ c´ac Yi , i = 1, n, d¯u’o.’c go.i l`a tˆo’ng cua
’ c´ac khˆong gian
l`a khˆong gian con nho’ nhˆa´t chua
n

con Yi , i = 1, n. K´ı hiˆe.u Y =
Yi .
i=1

Nˆe´u Yi ∩ Yj = {0}, (i ̸= j) th`ı Y =

n

i=1

’ c´ac khˆong
Yi d¯u’o.’c go.i l`a tˆo’ng tru.’c tiˆe´p cua

gian con Yi , i = 1, n. K´ı hiˆe.u Y = Y1 ⊕ Y2 ⊕ . . . ⊕ Yn .


1. Khˆ
ong gian tuyˆ
e´n t´ınh

5


´’ mo.i y ∈ Y d¯ˆe`u c´o su.’ biˆe’u
∆ ¯Di.nh l´
y 1.5 Y = Y1 ⊕ Y2 ⊕ . . . ⊕ Yn khi v`a chi’ khi voi
´’ yi ∈ Yi , i = 1, n.
diˆe˜n duy nhˆa´t da.ng y = y1 + y2 + . . . + yn voi
’ Z. Nˆe´u dim X < ∞
⊙ Ch´
uy
´ Nˆe´u X = Y ⊕ Z th`ı Y d¯u’o.’c go.i l`a phˆa`n b`
u d¯a.i sˆo´ cua
th`ı dim X = dim Y + dim Z.
˜’ ta c´o X/Y ≃ Z. Sˆo´ chiˆe`u cua
’ X/Y d¯u’o.’c go.i l`a sˆo´ d¯ˆo´i chiˆe`u cua
’ Y , k´ı
Hon
’ nua,
hiˆe.u l`a codim Y . Khi d¯´o ∞ > dim X = dim Y + codim Y .

1.3

’’ tuyˆ
To´
an t u
e´n t´ınh

1.3.1 To´
an tu’’ tuyˆ
e´n t´ınh
´

`’ K. Anh
✷ ¯Di.nh nghi˜a 4 Gia’ su’’ X, Y l`a khˆong gian tuyˆe´n t´ınh trˆen tru’ong
xa.
A : X → Y d¯u’o.’c go.i l`a to´an tu’’ tuyˆe´n t´ınh nˆe´u ∀α1 , α2 ∈ K, ∀x1 , x2 ∈ X ta c´o
A(α1 x1 + α2 x2 ) = α1 Ax1 + α2 Ax2 .
’ A,
KerA = A−1 (0) = {x ∈ X : Ax = 0} l`a ha.t nhˆan (ha.ch) cua
’ cua
’ A.
ImA = {Ax : x ∈ X} l`a anh
Nˆe´u A l`a song ´anh th`ı ta n´oi A l`a ph´ep d¯a˘’ ng cˆa´u tuyˆe´n t´ınh v`a X v`a Y l`a hai
´’ nhau.
khˆong gian tuyˆe´n t´ınh d¯a˘’ ng cˆa´u voi
’’
• V´ı du. 6 X´et A : Rk → Rm x´ac d¯.inh boi
´’ yi =
A(x1 , x2 , . . . , xk ) = (y1 , y2 , . . . , yn ) voi

k


aij xj

(i = 1, . . . , m),

j=1

’ ma trˆa.n
trong d¯´o aij l`a hˆe. sˆo´ cua


a11 a12 . . . a1k
 a21 a22 . . . a2k


am1 am2 . . . amk






`’ Rk v`ao Rm .
Ta thˆa´y A l`a to´an tu’’ tuyˆe´n t´ınh tu
´
• V´ı du. 7 Cho C[a,b] = {x(t) : x(t) liˆen tu.c trˆen [a, b]}. Anh
xa. A : C[a,b] → C[a,b] cho
’’
boi

b

Ax(t) =

K(t, s)x(s)ds,
a

´’ K(t, s) l`am h`am liˆen tu.c trˆen h`ınh vuˆong a ≤ t, s ≤ b, l`a to´an tu’’ tuyˆe´n t´ınh, d¯u’o.’c
voi
´’ ha.ch K(t, s).
go.i l`a to´an tu’’ t´ıch phˆan voi



Chuong
’ ’ 1. Khˆ
ong gian d
¯.inh chuˆ
a’n

6

• V´ı du. 8 Cho X l`a tˆa.p c´ac h`am liˆen tu.c v`a bi. ch˘
a.n trˆen R+ = {t ∈ R : t ≥ 0}.

To´an tu’
∫ ∞
Lx(s) =
e−st x(t)dt
0

l`a to´an tu’’ tuyˆe´n t´ınh, d¯u’o.’c go.i l`a ph´ep biˆe´n d¯ˆ
o’i Laplace.
∆ ¯Di.nh l´
y 1.6 Gia’ su’’ X, Y l`a c´ac khˆong gian tuyˆe´n t´ınh v`a A : X → Y l`a to´an tu’’
tuyˆe´n t´ınh. Nˆe´u A c´o to´an tu’’ ngu’o.’c A−1 th`ı A−1 c˜
ung l`a to´an tu’’ tuyˆe´n t´ınh.
´’ minh
Chung
´’ mo.i y1 , y2 ∈ ImA v`a voi
´’ mo.i α1 , α2 ∈ K. Khi d¯´o tˆo`n ta.i x1 , x2 ∈ X sao cho
Voi

y1 = Ax1 , y2 = Ax2 . Ta c´o
A(α1 x1 + α2 x2 ) = α1 Ax1 + α2 Ax2 = α1 y1 + α2 y2 .
Suy ra
A−1 (α1 y1 + α2 y2 ) = α1 x1 + α2 x2 = α1 A−1 y1 + α2 A−1 y2 .
Vˆa.y A−1 l`a to´an tu’’ tuyˆe´n t´ınh.
∆ ¯Di.nh l´
y 1.7 Gia’ su’’ X, Y l`a hai khˆong gian tuyˆe´n t´ınh v`a A : X → Y l`a to´an tu’’
´
tuyˆen t´ınh. Khi d¯´o
’ X,
i) KerA l`a khˆong gian con cua
’ Y,
ii) ImA l`a khˆong gian con cua
iii) dim X = dim KerA + dim ImA,
iv) X/KerA ≃ ImA.
1.3.2 Khˆ
ong gian c´
ac to´
an tu’’ tuyˆ
e´n t´ınh
Cho hai khˆong gian tuyˆe´n t´ınh X, Y . Go.i L(X, Y ) l`a tˆa.p ho.’p tˆa´t ca’ c´ac to´an
`’ X v`ao Y . X´ac d¯.inh hai ph´ep to´an trˆen L(X, Y ) nhu’ sau: ∀A, B ∈
tu’’ tuyˆe´n t´ınh tu
L(X, Y )
(A + B)x = Ax + Bx,
(αA)x = αAx
´’ hai ph´ep to´an l`a khˆong gian tuyˆe´n t´ınh.
Khi d¯o´ L(X, Y ) c`
ung voi


1.4

Phiˆ
e´m h`
am tuyˆ
e´n t´ınh, khˆ
ong gian liˆ
en ho.’p

To´an tu’’ tuyˆe´n t´ınh A : X → K d¯u’o.’c go.i l`a phiˆe´m h`am tuyˆe´n t´ınh x´ac d¯.inh trˆen
X.
Khˆong gian L(X, K) c´ac phiˆe´m h`am tuyˆe´n t´ınh x´ac d¯.inh trˆen X d¯u’o.’c go.i l`a khˆong
’ X. K´ı hiˆe.u X ∗ = L(X, K).
gian liˆen ho.’p cua
’ X.
Khˆong gian X ∗∗ = L(X ∗ , K) d¯u’o.’c go.i l`a khˆong gian liˆen ho.’p thu´’ hai cua


2. ¯Da.i cu’ong

e` khˆ
ong gian d
¯.inh chuˆ
a’n


§2.
2.1

7



e` khˆ
ong gian d
¯.inh chuˆ
a’ n

¯Da.i cu’ ong
Chuˆ
a’n v`
a khˆ
ong gian d
¯.inh chuˆ
a’n

´’ K = R
`’ vˆo hu’ong
✷ ¯Di.nh nghi˜a 5 Gia’ su’’ X l`a khˆong gian tuyˆe´n t´ınh trˆen tru’ong


(ho˘
a.c K = C). Chuˆan trˆen X l`a mˆo.t h`am (phiˆe´m h`am) ∥. ∥ x´ac d¯.inh trˆen X thoa
`

an c´ac d¯iˆeu kiˆe.n sau:
i) ∥x∥ ≥ 0, ∀x ∈ X,
∥x∥ = 0 ⇔ x = 0,
ii) ∥αx∥ = |α|∥x∥, ∀x ∈ X, ∀α ∈ K,
iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∀x, y ∈ X.
´’ chuˆa’n ∥ . ∥ x´ac d¯.inh trˆen X d¯u’o.’c go.i l`a khˆong

Khˆong gian tuyˆe´n t´ınh X c`
ung voi
gian d¯i.nh chuˆa’n. K´ı hiˆe.u (X, ∥.∥).
`’ K = R (hay K = C) th`ı ta go.i (X, ∥.∥) l`a khˆong gian d¯.inh chuˆa’n thu.’c
Nˆe´u tru’ong
´’
(hay phuc).
´’ hai ph´ep to´an cˆo.ng v`a
• V´ı du. 9 Tˆa.p Rn c´ac bˆo. n sˆo´ thu.’c x = (x1 , x2 , . . . , xn ) voi

´’ l`a khˆong gian tuyˆe´n t´ınh. X´et chuˆan
nhˆan vˆo hu’ong
∥x∥ =

n


|xi |2 ,

(x1 , x2 , . . . , xn ) ∈ Rn .

i=1

Chuˆa’n n`ay d¯u’o.’c go.i l`a chuˆa’n Euclide trong Rn . Khi d¯o´ (Rn , ∥.∥) l`a khˆong gian
d¯.inh chuˆa’n, d¯u’o.’c go.i l`a khˆong gian Euclide n chiˆe`u.
´’ c´ac ph´ep to´an cˆo.ng v`a
• V´ı du. 10 Tˆa.p ho.’p C[a,b] c´ac h`am sˆo´ liˆen tu.c trˆen [a, b] voi
´’ mˆo.t sˆo´ l`a mˆo.t khˆong gian tuyˆe´n t´ınh. Hon
´’ chuˆa’n
˜’ voi

nhˆan voi
’ nua,
∥x∥ = max |x(t)|
t∈[a,b]

th`ı C[a,b] l`a khˆong gian d¯.inh chuˆa’n.
´’ hai ph´ep to´an cˆo.ng v`a
ay sˆo´ thu.’c bi. ch˘
a.n c`
ung voi
• V´ı du. 11 Tˆa.p ho.’p tˆa´t ca’ c´ac d˜


´
´
nhˆan vˆo hu’ong
’ l`a mˆo.t khˆong gian d¯.inh chuˆan voi’ chuˆan
∥x∥ = sup |xn |.
n



Khˆong gian n`ay d¯u’o.’c k´ı hiˆe.u l`a l .
ay sˆo´ thu.’c x = (xn )n sao cho
• V´ı du. 12 K´ı hiˆe.u l2 l`a tˆa.p ho.’p c´ac d˜



n=1


´’ trˆen c´ac d˜
X´et hai ph´ep cˆo.ng v`a nhˆan vˆo hu’ong
ay. ¯Da˘. t

x2n hˆo.i tu..


Chuong
’ ’ 1. Khˆ
ong gian d
¯.inh chuˆ
a’n

8

(
∥x∥ =




) 12
x2n

,

n=1

th`ı l2 l`a mˆo.t khˆong gian d¯.inh chuˆa’n.
• V´ı du. 13 Gia’ su’’ 1 ≤ p < ∞. Go.i Lp ([a, b]) l`a tˆa.p ho.’p c´ac h`am f : [a, b] → R (hay

∫b
C) sao cho f d¯o d¯u’o.’c v`a a |f (x)|p dx < ∞. Ta d¯.inh nghi˜a
f = g trˆen [a, b] ⇔ f (x) = g(x) h.k.n trˆen [a, b]
´’ trˆen c´ac h`am.
v`a x´et hai ph´ep cˆo.ng v`a nhˆan vˆo hu’ong
p

¯Di.nh nghi˜a chuˆan trˆen L ([a, b]) nhu’ sau:
 b
1/p

∥f ∥p =  |f (x)|p dx .
a

´’ chuˆa’n trˆen l`a khˆong gian d¯.inh chuˆa’n.
Khi d¯o´ Lp ([a, b]) c`
ung voi
´’ mo.i x, y ∈ X, d¯a˘. t
⊕ Nhˆ
a.n x´
et Gia’ su’’ X l`a khˆong gian d¯.inh chuˆa’n. Voi
d(x, y) = ∥x − y∥
th`ı d l`a mˆo.t metric trˆen X. Khi d¯´o (X, d) l`a mˆo.t khˆong gian metric.
Ta c´o
´’ ph´ep ti.nh tiˆe´n),
i) d(x + z, y + z) = d(x, y) (d bˆa´t biˆe´n d¯ˆo´i voi
ii) d(αx, αy) = |α|d(x, y),
iii) d(x, y) = ∥x − y∥ = ∥(x − y) − 0∥ = d(x − y, 0).
´’ metric
Theo trˆen ta thˆa´y mo.i khˆong gian d¯.inh chuˆa’n d¯ˆe`u l`a khˆong gian metric voi

`
d¯u’o.’c x´ac d¯.inh nhu’ trˆen. Do d¯´o mo.i kh´ai niˆe.m, mˆe.nh d¯ˆe d¯u
´ng cho khˆong gian metric

`
d¯ˆeu d¯u
´ng cho khˆong gian d¯.inh chuˆan.

2.2

Chuˆ
a’n tu’ ong
d
¯u’ ong



✷ ¯Di.nh nghi˜a 6 Gia’ su’’ ∥.∥1 , ∥.∥2 l`a hai chuˆa’n x´ac d¯.inh trˆen X. Go.i τ1 , τ2 l`a hai
’’ ∥.∥1 , ∥.∥2 .
tˆopˆo gˆay nˆen boi
Chuˆa’n ∥.∥1 d¯u’o.’c go.i l`a ma.nh hon
’ ∥.∥2 nˆe´u τ1 ⊃ τ2 .
Chuˆa’n ∥.∥1 v`a ∥.∥2 tu’ong
’ d¯u’ong
’ nˆe´u τ1 = τ2 .
∆ ¯Di.nh l´
y 1.8 Chuˆa’n ∥.∥1 ma.nh hon
’ chuˆa’n ∥.∥2 khi v`a chi’ khi ∃c > 0 sao cho
´’ minh.
Chung


∥x∥2 ≤ c.∥x∥1 ,

∀x ∈ X.


2. ¯Da.i cu’ong

e` khˆ
ong gian d
¯.inh chuˆ
a’n


9

Go.i
S1 (x0 , r) = {x ∈ X : ∥x − x0 ∥1 < r},
S2 (x0 , r) = {x ∈ X : ∥x − x0 ∥2 < r}
´’ ∥.∥1 , ∥.∥2 .
lˆa`n lu’o.’t l`a h`ınh cˆa`u mo’’ tˆam x0 , b´an k´ınh r d¯ˆo´i voi
’’ Ta thˆa´y 0 ∈ S2 (0, 1)
(⇒) Gia’ su’’ τ1 ⊃ τ2 . V`ı S2 (0, 1) l`a τ2 mo’’ nˆen S2 (0, 1) l`a τ1 mo.
’ S2 (0, 1). Do d¯o´ tˆo`n ta.i r > 0 sao cho S1 (0, r) ⊂ S2 (0, 1).
nˆen 0 l`a τ1 d¯iˆe’m trong cua
rx
Khi d¯o´ ∀x ∈ X, x ̸= 0 d¯a˘. t u = 2∥x∥
th`ı ∥u∥1 =
1
S2 (0, 1). Do d¯o´

rx
= ∥u∥2 < 1.
2∥x∥1 2

r
2

< r. Suy ra u ∈ S1 (0, r) ⊂

Dˆa˜n d¯ˆe´n ∥x∥2 < 2r ∥x∥ = c∥x∥1 .
´’ xay
’ ra.
Khi x = 0 th`ı d¯a˘’ ng thuc
Vˆa.y ∥x∥2 ≤ c∥x∥1 (c = 2r ), ∀x ∈ X.
´’ minh τ2 ⊂ τ1 .
(⇐) Ta chung
´’ mo.i G ∈ τ2 th`ı G l`a τ2 -mo.
’’ Lˆa´y bˆa´t k`

Voi
y x0 ∈ G. V`ı x0 l`a τ2 -¯
diˆe’m trong cua
´
`
G nˆen tˆon ta.i r > 0 sao cho S2 (x0 , r) ⊂ G. Ta s˜
e chung
’ minh
r
S1 (x0 , ) ⊂ S2 (x0 , r) ⊂ G.
c

´’ mo.i x ∈ S1 (x0 , r ) ta c´o ∥x − x0 ∥1 < r . Tu
`’ d¯o´
Thˆa.t vˆa.y, voi
c
c
r
∥x − x0 ∥2 ≤ c∥x − x0 ∥1 < c. = r.
c
’ G. Do x0 t`
Do d¯o´ x0 l`a τ1 -¯
diˆe’m trong cua
uy y
´ nˆen G l`a τ1 -mo’’ hay G ⊂ τ1 .
△ Hˆ
e. qua’ 1 Chuˆa’n ∥.∥1 v`a ∥.∥2 tu’ong
’ d¯u’ong
’ khi v`a chi’ khi ∃c1 , c2 , 0 < c1 < c2 sao
cho c1 .∥x∥1 ≤ ∥x∥2 ≤ c2 .∥x∥1 , ∀x ∈ X.

2.3

Su.’ hˆ
o.i tu. trong khˆ
ong gian d
¯.inh chuˆ
a’n

✷ ¯Di.nh nghi˜a 7 D˜
ay {xn } hˆo.i tu. d¯ˆe´n x trong khˆong gian d¯.inh chuˆa’n X nˆe´u
lim ∥xn − x∥ = 0. K´ı hiˆe.u lim xn = x hay xn → x (n → ∞).

n→∞
n→∞
´’ chuˆa’n ∥x∥ = max |x(t)|, x´et d˜
• V´ı du. 14 Trong khˆong gian d¯.inh chuˆa’n C[0,1] voi
ay
t∈[0,1]

xn (t) =

sin(2πnt)
.
n2


Chu’ong
ong gian d
¯.inh chuˆ
a’n
’ 1. Khˆ

10

x
1
x1

0.75
0.5

x2


0.25
0.2

0.4

0.6

x3
0.8

1

t

-0.25
-0.5
-0.75
-1

’ d˜
H1. Ba sˆo´ ha.ng d¯ˆa`u tiˆen cua
ay {xn }.

´’ h`am ha˘`ng 0. Thˆa.t vˆa.y, ta c´o
`’ h`ınh trˆen ta thˆa´y h`ınh nhu’ d˜
Tu
ay hˆo.i tu. toi
∥xn − 0∥ =


1
1
∥ sin(2πnt)∥ ≤ 2 → 0.
2
n
n

✸ T´ınh chˆ
a´t
i) Nˆe´u xn → x th`ı ∥xn ∥ → ∥x∥ (Chuˆa’n l`a h`am liˆen tu.c trˆen X).
Thˆa.t vˆa.y, ta c´o
∥xn ∥ = ∥(xn − x) + x∥ ≤ ∥xn − x∥ + ∥x∥
hay
Tu’ong
’ tu.’, ta c´o

∥xn ∥ − ∥x∥ ≤ ∥xn − x∥.

(1.1)

∥x∥ − ∥xn ∥ ≤ ∥xn − x∥.

(1.2)

`’ 1.1 v`a 1.2, ta suy ra
Tu
| ∥xn ∥ − ∥x∥ | ≤ ∥xn − x∥ → 0.
ii) Nˆe´u d˜
ay {xn } hˆo.i tu. th`ı ∃K sao cho ∥xn ∥ ≤ K, ∀n.
Thˆa.t vˆa.y, nˆe´u d˜

ay (xn ) hˆo.i tu. th`ı d˜
ay sˆo´ {∥xn ∥} hˆo.i tu.. Nˆen d˜
ay sˆo´ {∥xn ∥} bi.
ch˘
a.n. Do d¯o´ ∃K: ∥xn ∥ ≤ K, ∀n.
iii) Nˆe´u xn → x, yn → y th`ı xn + yn → x + y. Nˆe´u xn → x, αn → α th`ı
´’ l`a c´ac ph´ep to´an x + y v`
αn xn → αx ( tuc
a αx liˆen tu.c).
Thˆa.t vˆa.y, ta c´o
∥(xn + yn ) − (x + y)∥ ≤ ∥xn − x∥ + ∥yn − y∥ → 0,
∥αn xn − αx∥ = ∥αn (xn − x) + x(αn − α)∥ ≤ |αn |∥xn − x∥ + |αn − α|∥x∥ → 0.
`’
• Hˆ
o.i tu. d
¯ˆ
e`u v`
a hˆ
o.i tu. tung
d
¯iˆ
e’m
´’ chuˆa’n
X´et khˆong gian C[a,b] tˆa´t ca’ c´ac h`am liˆen tu.c trˆen d¯oa.n [a, b] voi
∥f ∥ = max |f (t)|, f ∈ C[a,b]
t∈[a,b]


2. ¯Da.i cu’ong


e` khˆ
ong gian d
¯i.nh chuˆ
a’n


11

v`a d˜
ay {fn } ∈ C[a,b] .
`’ d¯iˆe’m d¯ˆe´n f nˆe´u lim |fn (t)−f (t)| = 0, ∀t ∈ [a, b].

ay {fn } d¯u’o.’c go.i l`a hˆo.i tu. tung
n→∞


ay {fn } d¯u’o.’c go.i l`a hˆo.i tu. d¯ˆe`u d¯ˆe´n f nˆe´u lim ∥fn − f ∥ = 0.
n→∞
`’ d¯iˆe’m. Tuy nhiˆen, d¯iˆe`u
’ d˜
Ta thˆa´y su.’ hˆo.i tu. d¯ˆe`u cua
ay h`am k´eo theo hˆo.i tu. tung
ngu’o.’c la.i khˆong d¯u
´ng. Cha˘’ ng ha.n trong khˆong gian C[0,1] , x´et d˜
ay h`am {gn } x´ac d¯.inh
nhu’ sau:
 n
nˆe´u 0 ≤ t ≤ 2−n
 2 t
gn (t) =

2 − 2n t nˆe´u 2−n ≤ t ≤ 21−n

´’ t kh´ac
0
voi
´’ mˆo˜i t ∈ [0, 1].
V`ı gn ̸= 0, ta c´o ∥gn ∥ ̸= 0. ¯Da˘. t fn = ∥ggnn ∥ . Ta dˆe˜ thˆa´y fn (t) → 0 voi
´’ mo.i n ∈ N nˆen d˜
Tuy nhiˆen, v`ı ∥fn ∥ = 1 voi
ay {fn } khˆong hˆo.i tu. vˆe`0 theo chuˆa’n.
1

g (t)
n

0

2.4

1−n

2

1

t

Khˆ
ong gian Banach


ay trong khˆong gian d¯.inh chuˆa’n. D˜
ay {xn }n
✷ ¯Di.nh nghi˜a 8 Cho {xn }n l`a mˆo.t d˜
’ (hay d˜
d¯u’o.’c go.i l`a d˜
ay co’ ban
ay Cauchy) nˆe´u ∥xm − xn ∥ → 0 khi m, n → ∞.
⊕ Nhˆ
a.n x´
et

Nˆe´u d˜
ay {xn }n hˆo.i tu. th`ı {xn }n l`a d˜
ay co’ ban.
’ mˆe.nh d¯ˆe`trˆen n´oi chung khˆong d¯u
´ng. Cha˘’ ng ha.n, x´et P([0, 1])
¯Diˆe`u ngu’o.’c la.i cua
´’ x´ac d¯.inh trˆen [0, 1] voi
´’ chuˆa’n ∥P ∥ = maxx∈[0,1] |P (x)|,
l`a khˆong gian c´ac d¯a thuc
P (x) ∈ P([0, 1]). ¯Da˘. t
xn
x2
+ . . . + , n = 1, 2, . . .
Pn (x) = 1 + x +
2!
n!
´’ ha.n cua
’ nhung


Ta thˆa´y {Pn } l`a d˜
ay co’ ban
’ n´o khˆong hˆo.i tu. trong P([0, 1]) v`ı gioi
´’
n´o khˆong l`a d¯a thuc.
✷ ¯Di.nh nghi˜a 9 Khˆong gian d¯.inh chuˆa’n X d¯u’o.’c go.i l`a khˆong gian Banach
1

1

nˆe´u X

`’ d¯ˆa`u tiˆen d¯ua
Stephan Banach (1892-1945), nh`a to´an ho.c Balan, ngu’oi
y thuyˆe´t tˆo’ng qu´at vˆe`
’ ra l´


Chu’ong
ong gian d
¯.inh chuˆ
a’n
’ 1. Khˆ

12

´’ metric d(x, y) = ∥x − y∥, tuc
´’ l`a mo.i d˜
’ trong
ay co’ ban

l`a khˆong gian metric d¯ˆa`y voi
`
X d¯ˆeu hˆo.i tu..

Stefan Banach
• V´ı du. 15 C´ac khˆong gian d¯.inh chuˆa’n Rn , Cn , C([a, b]), lp , l∞ l`a c´ac khˆong gian
Banach.
am d¯^
a`y kh^
ong gian) Gia’ su’’ X l`a khˆong gian d¯.inh chuˆa’n khˆong
∆ ¯Di.nh l´
y 1.9 (L`
´’ X sao cho X tr`
d¯ˆ
a`y. Khi d¯´o tˆo`n ta.i mˆo.t khˆong gian Banach X ∗ chua
u mˆa.t trong

X .
´’ minh
Chung
´’ d(x, y) = ∥x − y∥. Ba˘`ng c´ach l`am d¯ˆa`y khˆong
X´et khˆong gian metric (X, d), voi
gian n`ay ta d¯u’o.’c khˆong gian metric d¯ˆa`y X ∗ . Ta cˆa`n xˆay du.’ng c´ac ph´ep to´an d¯ˆe’ n´o
tro’’ th`anh khˆong gian d¯.inh chuˆan nhˆa.n X l`am khˆong gian con.
Lˆa´y x, y ∈ X ∗ . V`ı X = X ∗ nˆen tˆo`n ta.i c´ac d˜
ay (xn ), (yn ) trong X hˆo.i tu. lˆa`n lu’o.’t
’ trong X ⊂ X ∗ nˆen ta d¯.inh nghi˜a
d¯ˆe´n x, y. Dˆe˜ thˆa´y (xn + yn ), (λxn ) l`a c´ac d˜
ay co’ ban
λx = lim λxn , x + y = lim (xn + yn ).

n→∞

n→∞

Ta kiˆe’m tra thˆa´y c´ac d¯.inh nghi˜a n`ay x´ac d¯.inh c´ac ph´ep to´an d¯ˆe’ X ∗ l`a mˆo.t
´’ chuˆa’n trˆen X ∗ d¯u’o.’c cho boi
’’
khˆong gian d¯.inh chuˆa’n nhˆa.n X l`am khˆong gian con voi



∥x∥ = d (x, 0), trong d¯´o d l`a metric trˆen X .

§3.

Chuˆ
o˜i trong khˆ
ong gian d
¯.inh chuˆ
a’ n

✷ ¯Di.nh nghi˜a 10 Gia’ su’’ {xn }n l`a mˆo.t d˜
ay trong khˆong gian d¯.inh chuˆa’n.
Tˆo’ng vˆo ha.n x1 + x2 + . . . + xn + . . . d¯u’o.’c go.i l`a mˆo.t chuˆo˜i trong khˆong gian d¯.inh



chuˆan X. K´ı hiˆe.u
xn .
n=1


’ ˆong n˘
khˆong gian d¯.inh chuˆa’n d¯ˆ
a`y trong luˆa.n ´an tiˆe´n si˜ cua
am 1920


3. Chuˆ
o˜i trong khˆ
ong gian d
¯.inh chuˆ
a’n

13

’ chuˆo˜i.
Phˆa`n tu’’ sn = x1 + x2 + . . . + xn d¯u’o.’c go.i l`a tˆo’ng riˆeng thu´’ n cua
Nˆe´u d˜
ay {sn }n hˆo.i tu. vˆe´ phˆa`n tu’’ s th`ı ta n´oi chuˆo˜i hˆo.i tu. v`a c´o tˆo’ng l`a s. K´ı hiˆe.u


s=
xn .
n=1

Chuˆo˜i





xn d¯u’o.’c go.i l`a hˆo.i tu. tuyˆe.t d¯ˆo´i nˆe´u chuˆo˜i sˆo´




∥xn ∥ hˆo.i tu..

n=1

n=1

´’ minh d¯u’o.’c d¯.inh l´ı sau d¯ˆay:
Ta dˆe˜ d`ang chung




∆ ¯Di.nh l´
y 1.10 Nˆe´u c´ac chuˆo˜i
xn ,
yn hˆo.i tu. v`a c´o tˆ
o’ng l`a x, y th`ı c´ac chuˆo˜i


n=1

(xn + yn ),





n=1

n=1

αxn c˜
ung hˆo.i ty. v`a c´o tˆo’ng l`a x + y, αx.

n=1

∆ ¯Di.nh l´
y 1.11 Gia’ su’’ X l`a khˆong gian Banach. Khi d¯´
o chuˆ
o˜i




xn hˆ
o.i tu. khi

n=1

v`a chi’ khi ∀ε > 0, ∃N > 0 sao cho ∀n > N , ∀p ta c´o
∥xn+1 + xn+2 + . . . + xn+p ∥ < ε.
´’ mimh
Chung
∑∞
o.i tu. ⇔
n=1 xn hˆ


{sn =

∑n
k=1

xk } hˆo.i tu.



’ (do X Banach)
{sn } l`a d˜
ay co’ ban



∀ε > 0, ∃N > 0: ∀n > N, ∀p ta c´o
∥sn+p − sn ∥ = ∥xn+1 + xn+2 + . . . + xn+p ∥ < ε.


∆ ¯Di.nh l´
y 1.12 Nˆe´u X l`a khˆong gian Banach v`a ∞
a chuˆo˜i hˆo.i tu. tuyˆe.t d¯ˆo´i
n=1 xn l`







trong X th`ı chuˆo˜i
xn hˆo.i tu. v`
a c´o ∥
xn ∥ ≤
∥xn ∥.
n=1

´’ minh
Chung
V`ı chuˆo˜i sˆo´

∑∞
n=1

n=1

n=1

∥xn ∥ hˆo.i tu. nˆen ∀ε > 0, ∃N sao cho ∀n > N , ∀p ta c´o

∥xn+1 + xn+2 + . . . + xn+p ∥ ≤ ∥xn+1 ∥ + ∥xn+2 ∥ + . . . + ∥xn+p ∥ < ε.
Theo d¯.inh l´
y (1.11) ta suy ra chuˆo˜i




xn hˆo.i tu.. M˘
a.t kh´ac, ∀n ta c´o


n=1

∥x1 + x2 + . . . + xn ∥ ≤ ∥x1 ∥ + ∥x2 ∥ + . . . + ∥xn ∥ ≤



n=1

∥xn ∥.


Chu’ong
ong gian d
¯.inh chuˆ
a’n
’ 1. Khˆ

14

Cho n → ∞ ta d¯u’o.’c




n=1

xn ∥ ≤





∥xn ∥.

n=1

∆ ¯Di.nh l´
y 1.13 Khˆong gian d¯.inh chuˆa’n X l`a khˆong gian Banach khi v`a chi’ khi mo.i
chuˆo˜i hˆo.i tu. tuyˆe.t d¯ˆo´i trong X d¯ˆe`u hˆo.i tu..
´’ minh
Chung
´’ minh nˆe´u mo.i chuˆo˜i hˆo.i tu. tuyˆe.t d¯ˆo´i l`a
’ chung
Theo d¯.inh l´
y trˆen, ta chi c`on phai
`

hˆo.i tu. th`ı X l`a d¯ˆay d¯u.
´’ mo.i sˆo´ tu.’ nhiˆen k tˆo`n ta.i sˆo´ tu.’
’ trong X. Khi d¯´o voi
Gia’ su’’ {xn }n l`a d˜
ay co’ ban
´
nhiˆen nk (xnk > xk−1 ) sao cho voi’ mo.i n, m ≥ nk ta c´o ∥xm − xn ∥ < 21k .
1
¯Da˘. c biˆe.t ∥xnk+1 − xnk ∥ < 2k .
X´et chuˆo˜i (*): xn1 + (xn2 − xn1 ) + (xn3 − xn2 ) + . . .

V`ı chuˆo˜i ∞
o.i tu. nˆen chuˆo˜i (*) hˆo.i tu. vˆe` phˆa`n tu’’ x ∈ X. Khi
k=1 ∥xnk+1 − xnk ∥ hˆ


d¯´o
x = lim sk = lim [xn1 + (xn2 − xn1 ) + . . . + (xnk − xnk−1 )] = lim xnk ∈ X.
k→∞

k→∞

k→∞

Ta c´o
∥xn − x∥ ≤ ∥xn − xnk ∥ + ∥xnk − x∥.
Cho n → ∞ th`ı nk → ∞, ta c´o limn→∞ xn = x ∈ X.
Vˆa.y X l`a khˆong gian Banach.

§4.

Khˆ
ong gian con

✷ ¯Di.nh nghi˜a 11 Gia’ su’’ X l`a khˆong gian d¯i.nh chuˆa’n v`a Y l`a khˆong gian con tuyˆe´n
´’ chuˆa’n d¯o´
’ X. Khi d¯o´ chuˆa’n trˆen X ha.n chˆe´ trˆen Y c˜
t´ınh cua
ung l`a chuˆa’n trˆen Y , voi

’ khˆong gian d¯.inh chuˆa’n
Y l`a khˆong gian d¯.inh chuˆan d¯u’o.’c go.i l`a khˆong gian con cua
X.
’ X.
Nˆe´u Y d¯o´ng th`ı ta n´oi Y l`a khˆong gian con d¯´ong cua

’’ Y .
span(Y ) = L(Y ) d¯u’o.’c go.i l`a khˆong gian con d¯´ong sinh boi
’ khˆong gian d¯.inh chuˆ
∆ ¯Di.nh l´
y 1.14 Nˆe´u Y l`a khˆong gian con cua
a’n X th`ı Y l`a
’ X.
khˆ
ong gian con d¯´ong cua
´’ minh
Chung
´’ minh Y l`a khˆong gian con cua
’ X.
Hiˆe’n nhiˆen Y d¯´ong. Ta chi’ cˆa`n chung


15

4. Khˆ
ong gian con

∀x, y ∈ Y , tˆo`n ta.i c´ac d˜
ay {xn }, {yn } trong Y sao cho xn → x, yn → y.
’ X nˆen αxn +βyn ∈ Y , ∀α, β ∈ K. Khi d¯´o αxn +βyn →
V`ı Y l`a khˆong gian con cua
αx + βy. Do d¯´o αx + βy ∈ Y .
’ khˆong gian d¯.inh chuˆa’n
∆ ¯Di.nh l´
y 1.15 (Riesz) Nˆe´u Y l`a khˆong gian con d¯´
ong cua

’’ Y v`a z sao
X th`ı ∀z ∈
/ Y , ∀ε > 0, ∃x0 thuˆ
o.c khˆong gian con tuyˆe´n t´ınh gˆay nˆen boi
cho ∥x0 ∥ = 1 v`a ∥x0 − y∥ > 1 − ε, ∀y ∈ Y .
´’ minh
Chung
V`ı z ∈
/ Y v`a Y d¯´ong nˆen
d = d(z, Y ) = inf ∥z − y∥ > 0.
y∈Y

´’ δ =
∀ε > 0 d¯u’ b´e (c´o thˆe’ chon 0 < ε < 1), voi
∃y0 ∈ Y : d ≤ ∥z − y0 ∥ < d + δ.
¯Da˘. t x0 =
∥x0 ∥ = 1.

z−y0
∥z−y0 ∥

εd
1−ε

> 0, theo d¯.inh nghi˜a inf

’’ Y v`a z v`a
th`ı x0 thuˆo.c khˆong gian con tuyˆe´n t´ınh gˆay nˆen boi

Khi d¯o´ ∀y ∈ Y , ta c´o

∥x0 − y∥ =

z − y0
1
−y =
∥z − (y0 + ∥z − y0 ∥y)∥
∥z − y0 ∥
∥z − y0 ∥

V`ı Y l`a khˆong gian con v`a y0 , y ∈ Y nˆen y0 + ∥z − y0 ∥y ∈ Y . Do d¯´o ∥z − (y0 +
∥z − y0 ∥y)∥ > d.

a.t kh´ac,
∥z − y0 ∥ < d + δ ⇒

1
1
>
∥z − y0 ∥
d+δ

Do d¯´o
∥x0 − y∥ >

d
δ
=1−
=1−ε
d+δ
d+δ


’ khˆong gian d¯.inh chuˆ
△ Hˆ
e. qua’ 2 Nˆe´u Y l`a khˆong gian con d¯´
ong cua
a’n X, Y ̸= X
th`ı ∀ε > 0, ∃x0 ∈
/ Y , ∥x0 ∥ = 1 sao cho ∥x0 − y∥ > 1 − ε, ∀y ∈ Y .
´’ minh
Chung
´’ minh cua
’ d¯.inh l´ı
V`ı Y ̸= X nˆen tˆo`n ta.i z ∈ X sao cho z ∈
/ Y . Theo c´ach chung
z−y0
´
`

˘
1.15, d¯a.t x0 = ∥z−y0 ∥ ta d¯u’o.’c d¯iˆeu phai chung
’ minh.


Chuong
ong gian d
.inh chu
an
1. Kh

16


Đ5.

Kh
ong gian thu ong


ã B
o d
¯ˆ
e`
Gia’ su’’ X l`a khˆong gian d¯.inh chuˆa’n, x0 ∈ X v`
a Y ⊂ X. Nˆe´u Y d¯´
ong th`ı x0 + Y
d¯´
ong.
ong gian thu’ ong
• Xˆ
ay du.’ ng khˆ

’ X.
Gia’ su’’ X l`a khˆong gian d¯.inh chuˆa’n v`a Y l`a khˆong gian con d¯´ong cua
Ta c´o khˆong gian thu’ong
’ tuyˆe´n t´ınh X/Y . Trang bi. cho X/Y mˆo.t chuˆa’n nhu’
sau:
∥˜
x∥ = inf ∥z∥ = inf ∥x + y∥, (˜
x ∈ X/Y ).
z∈˜
x


y∈Y

Ta c´o
i) ∥˜
x∥ = inf z∈˜x ∥z∥ ≥ 0, ∀˜
x ∈ X/Y .
* x˜ = ˜0 ⇒ ∥˜
x∥ = 0 (v`ı 0 ∈ x˜),
* Nˆe´u ∥˜
x∥ = 0 th`ı ∀n, ∃xn ∈ x˜ : 0 ≤ ∥xn ∥ < n1 .
Ta d¯u’o.’c d˜
ay {xn } ⊂ x˜ v`a xn → 0. V`ı x˜ d¯o´ng (do Y d¯´ong) nˆen 0 ∈ x˜. Do d¯´o
˜
x˜ = 0 ∈ X/Y .
ii) ∥α˜
x∥ = inf ∥αz∥ = |α| inf ∥z∥ = |α|∥˜
x∥.
z∈˜
x

z∈˜
x

iii) Cho x˜, y˜ ∈ X/Y , ∀n, ∃xn ∈ x˜, ∃yn ∈ y˜ sao cho
∥xn ∥ < ∥˜
x∥ +

1
,

2n

∥yn ∥ < ∥˜
y∥ +

1
2n

⇒ ∥˜
x + y˜∥ ≤ ∥xn + yn ∥ ≤ ∥xn ∥ + ∥yn ∥ < ∥˜
x∥ + ∥˜
y∥ +

1
n

Cho n → ∞ ta d¯u’o.’c ∥˜
x + y˜∥ ≤ ∥˜
x∥ + ∥˜
y ∥.
Vˆa.y X/Y l`a khˆong gian d¯.inh chuˆa’n. Khˆong gian n`ay d¯u’o.’c go.i l`a khˆong gian d¯.inh
’ khˆong gian d¯i.nh chuˆa’n X theo khˆong gian con d¯o´ng Y .
chuˆa’n thu’ong
’ cua
’ X
∆ ¯Di.nh l´
y 1.16 Nˆe´u X l`
a khˆong gian Banach v`a Y l`a khˆong gian con d¯o´ng cua
th`ı X/Y l`a mˆo.t khˆong gian Banach.
´’ minh

Chung
´’ minh mo.i chuˆo˜i hˆo.i tu. tuyˆe.t d¯ˆo´i trong X/Y d¯ˆe`u hˆo.i tu..
Ta chung




´

˜
˜
˜

Gia su’ chuˆoi
x˜n hˆo.i tu. tuyˆe.t d¯ˆoi trong X/Y , nghia l`a chuˆoi
∥˜
xn ∥ hˆo.i tu..
n=1

n=1

´’ mˆo˜i sˆo´ tu.’ nhiˆen n, tˆo`n ta.i
’ chuˆa’n trong khˆong gian thu’ong,
Theo d¯.inh nghi˜a cua
voi

un ∈ x˜n sao cho


6. T´ıch c´

ac khˆ
ong gian d
¯i.nh chuˆ
a’n

17





1

∥u

<
∥x˜n ∥ + 1.
n
2n
n=1
n=1




Do d¯o´
un hˆo.i tu.. Go.i x =
un . Ta c´o x˜ ∈ X/Y . V`ı x−(u1 +u2 +. . .+un ) ∈

∥un ∥ < ∥x˜n ∥ +


n=1

n=1

x˜ − (x˜1 + x˜2 + . . . + x˜n ) nˆen

∥˜
x − (x˜1 + x˜2 + . . . + x˜n )∥ ≤ ∥x − (u1 + u2 + . . . + un )∥ → 0.
Vˆa.y chuˆo˜i




x˜n hˆo.i tu..

n=1

§6.

T´ıch c´
ac khˆ
ong gian d
¯i.nh chuˆ
a’ n

• Xˆ
ay du.’ ng khˆ
ong gian t´ıch
Gia’ su’’ (X1 , ∥.∥1 ), (X2 , ∥.∥2 ), . . . , (Xn , ∥.∥n ) l`a c´ac khˆong gian d¯.inh chuˆa’n. Ta c´o

n

´
khˆong tuyˆen t´ınh t´ıch X =
Xi . ¯Da˘. t
1=1

∥x∥ =

n


∥xi ∥i ,

x = (x1 , x2 , . . . , xn ) ∈ X.

i=1

´’ minh ∥ . ∥ l`a chuˆa’n trˆen X.
Ta chung
i) ∥x∥ > 0 (Hiˆe’n nhiˆen).

∥x∥ = 0 ⇔ ni=1 ∥xi ∥i = 0 ⇔ xi = 0 ∀i = 1, n ⇔ x = (0, . . . , 0).
ii) ∀x ∈ X, ∀α ∈ K ta c´o
∥αx∥ =

n


∥αxi ∥i = |α|


i=1

n


∥xi ∥i = |α|∥x∥.

i=1

iii) ∀x = (x1 , x2 , . . . , xn ), (y1 , y2 , . . . , yn ) ∈ X
∥x + y∥ =

n


∥xi + yi ∥i ≤

i=1

=

n

i=1

∥xi ∥i +

n



(∥xi ∥i + ∥yi ∥i )

i=1
n


∥yi ∥i = ∥x∥ + ∥y∥.

i=1

’ c´ac
Khi d¯o´ (X, ∥.∥) l`a khˆong gian d¯.inh chuˆa’n, d¯u’o.’c go.i l`a t´ıch Descartes cua
khˆong gian d¯.inh chuˆa’n (Xi , ∥.∥i ).
a’n, X =
∆ ¯Di.nh l´
y 1.17 Gia’ su’’ (Xi , ∥.∥i ) (i = 1, . . . , n) l`a c´ac khˆong gian d¯.inh chuˆ


Chu’ong
ong gian d
¯.inh chuˆ
a’n
’ 1. Khˆ

18

n



Xi , xk = (xk1 , . . . , xkn )), x0 = (x01 , . . . , x0n ) ∈ X. Khi d¯´
o xk → x0 (k → ∞) khi v`a

i=1

chi’ khi xki → x0i (k → ∞), (i = 1, . . . , n).
∆ ¯Di.nh l´
y 1.18 Gia’ su’’ {(Xi , ∥.∥i )}i (i = 1, n) l`a c´ac khˆong gian d¯.inh chuˆ
a’n. Khi
n

d¯´
o X =
Xi l`a khˆong gian Banach khi v`a chi’ khi Xi (i=1,. . . , n) l`a khˆong gian
i=1

Banach.
´’ minh
Chung
’ trong Xi (i = 1, . . . , n). X´et d˜
(⇒) Gia’ su’’ {xki }k l`a d˜
ay co’ ban
ay
{xk = (x1 , . . . , xi−1 , xki , xi+1 , . . . , xn )}k
´’ xj cˆo´ d¯.inh trong Xj (j ̸= i). Ta c´o
voi
k
∥xm − xk ∥ = ∥xm
i − xi ∥i → 0 (k, m → ∞).


´’ to’ {xk }k l`a d˜
’ trong X. V`ı X l`a khˆong gian Banach nˆen xk → x0 ∈ X.
ay co’ ban
Chung


Gia su’ x0 = (x1 , . . . , xi−1 , x0i , xi+1 , . . . , xn ). Khi d¯o´
∥xki − x0i ∥i ≤

n


∥xki − x0i ∥i = ∥xk − x0 ∥ → 0.

i=1

Do d¯´o d˜
ay {xki } hˆo.i tu. trong Xi . Vˆa.y Xi (i = 1, . . . , n) l`a khˆong gian Banach.
’ trong X. Khi d¯o´ ∀i = 1, n ta c´o
(⇐) Gia’ su’’ {xk = (x1 ,k , x2 , . . . , xkn )}k l`a d˜
ay co’ ban
k
∥xm
i − xi ∥i ≤

n


k
∥xm

i − xi ∥i = ∥xm − xk ∥ → 0,

(m, k → 0).

i=1

’ trong Xi . V`ı Xi l`a khˆong gian Banach nˆen xki → x0i ,
ay co’ ban
Suy ra {xki }k l`a d˜
0
0
i = 1, n. ¯Da˘. t x0 = (x1 , x2 , . . . , x0n ) th`ı x0 ∈ X v`a
∥xk − x0 ∥ =

n


∥xki − x0i ∥i → 0,

(k → ∞).

i=1

Do d¯´o xk → x0 ∈ X. Vˆa.y X l`a khˆong gian Banach.
⊕ Nhˆ
a.n x´
et V`ı R l`a khˆong gian Banach nˆen theo d¯.inh l´ı 1.18 ta c´o Rn l`a khˆong
gian Banach.



7. To´
an tu’’ tuyˆ
e´n t´ınh liˆ
en tu.c

§7.
7.1

19

’ tuyˆ
To´
an tu
e´n t´ınh liˆ
en tu.c
’’ tuyˆ
To´
an t u
e´n t´ınh liˆ
en tu.c

✷ ¯Di.nh nghi˜a 12 Cho hai khˆong gian d¯.inh chuˆa’n X, Y v`a to´an tu’’ tuyˆe´n t´ınh
A : X → Y . Ta n´oi
A liˆen tu.c ta.i x0 ∈ X nˆe´u xn → x0 th`ı Axn → Ax0 .
A liˆen tu.c trˆen X nˆe´u A liˆen tu.c ta.i mo.i x ∈ X.
A bi. ch˘
a.n nˆe´u tˆo`n ta.i M > 0 sao cho ∥Ax∥Y ≤ M ∥x∥X ∀x ∈ X.
∆ ¯Di.nh l´
y 1.19 Gia’ su’’ X, Y l`
a hai khˆong gian d¯.inh chuˆ

a’n v`a A : X → Y l`
a to´an
´


tu’ tuyˆen t´ınh. Khi d¯´o A liˆen tu.c khi v`a chi khi A bi. ch˘
a.n.
´’ minh
Chung
´’ mo.i x ∈ X,
´’ hˆe´t ta chung
´’ minh tˆo`n ta.i sˆo´ M ≥ 0 sao cho ∥Ax∥ ≤ M , voi
(⇒) Tru’oc
∥x∥ = 1.
´’ mo.i n ∈ N, tˆo`n ta.i xn ∈ X, ∥xn ∥ = 1 sao cho ∥Axn ∥ > n.
Gia’ su’’ ngu’o.’c la.i, voi
∥Axn ∥
xn
1
xn
¯Da˘. t xn′ = n th`ı ∥xn ∥ = n v`a ∥Axn ∥ = ∥A( n )∥ = n > 1. Ta c´o xn → 0
nhung
0 = A(0). Do d¯o´ A khˆong liˆen tu.c ta.i x = 0 (Vˆo l´ı).
’ Axn
´’ minh tˆo`n ta.i M ≥ 0 sao cho ∥Ax∥ ≤ M ∥x∥, ∀x ∈ X.
Tiˆe´p d¯ˆe´n ta chung









´’ mo.i x ∈ X, x ̸= 0, theo trˆen ta c´o
Voi
x
∥Ax∥
M ≥ ∥A(
)∥ =
,
∥x∥
∥x∥
hay
∥Ax∥ ≤ M ∥x∥, x ̸= 0.
´’ xay
’ ra.
Ta thˆa´y khi x = 0 th`ı d¯a˘’ ng thuc
Vˆa.y A bi. ch˘
a.n.
(⇐) Gia’ su’’ A bi. ch˘
a.n. Khi d¯o´ tˆo`n ta.i sˆo´ M ≥ 0 sao cho ∥Ax∥ ≤ M ∥x∥, ∀x ∈ X.
Lˆa´y x ∈ X t`
uy y
´ v`a xn → x. Ta c´o
∥Axn − Ax∥ = ∥A(xn − x)∥ ≤ M.∥xn − x∥ → 0.
Suy ra Axn → Ax. Do d¯´o A liˆen tu.c ta.i x.
Vˆa.y A liˆen tu.c trˆen X.
∆ ¯Di.nh l´
y 1.20 Gia’ su’’ X, Y l`

a hai khˆong gian d¯.inh chuˆ
a’n v`a A : X → Y l`
a to´an
´


tu’ tuyˆen t´ınh. Khi d¯´o A liˆen tu.c trˆen X khi v`a chi khi A liˆen tu.c ta.i 0.
´’ minh
Chung


Chu’ong
ong gian d
¯.inh chuˆ
a’n
’ 1. Khˆ

20

(⇒) Hiˆe’n nhiˆen.
(⇐) Gia’ su’’ A liˆen tu.c ta.i 0. Lˆa´y t`
uy y
´ x ∈ X v`a gia’ su’’ xn → x. Ta c´o xn − x → 0
nˆen
lim Axn − Ax = lim A(xn − x) = A(0) = 0
n→∞

n→∞

Suy ra lim Axn = Ax.

n→∞

Do d¯o´ A liˆen tu.c ta.i x. Vˆa.y A liˆen tu.c trˆen X.
• V´ı du. 16 Cho
T :

R2 → R3
.
(x, y) → (3x + y, x − 3y, 4y)

´’ mo.i (x, y) ∈ R2 ta c´o
Dˆe˜ d`ang ta thˆa´y T l`a to´an tu’’ tuyˆe´n t´ınh. Ngo`ai ra, voi
∥T (x, y)∥ = ∥(3x + y, x − 3y, 4y)∥
= [(3x + y)2 + (x − 3y)2 + (4y)2 ]1/2
= (10x2 + 26y 2 )1/2

26(x2 + y 2 )1/2


=
26∥(x, y)∥.
Do d¯o´ ph´ep biˆe´n d¯ˆo’i tuyˆe´n t´ınh T bi. ch˘
a.n.
• V´ı du. 17 X´et X = Rk v`a Y = Rm . Go.i {e1 , e2 , . . . , ek } v`a {u1 , u2 , . . . , um } l`a c´ac
´’ mo.i x = (ξ1 , . . . , ξk ) ∈ Rk v`a y = (η1 , . . . , ηm ) ∈ Rm ta c´o
’ Rk v`a Rm th`ı voi
co’ so’’ cua
x=

k



ξ j ej ,

y=

j=1

m


ηi ui .

i=1

X´et to´an tu’’ A : Rk → Rm x´ac d¯.inh nhu’ sau:
A(ξ1 , . . . , ξk ) = (η1 , . . . , ηm )
´’
voi
ηi =

k


aij ξj

(i = 1, 2, . . . , m)

j=1


trong d¯´o Aej = (a1j , . . . , amj ), j = 1, . . . , k. Ma

a11 a12 . . .
 a21 a22 . . .

 ... ... ...
am1 am2 . . .
’ to´an tu’’ A.
go.i l`a ma trˆa.n cua

trˆa.n

a1k
a2k 

... 
amk


7. To´
an tu’’ tuyˆ
e´n t´ınh liˆ
en tu.c

21

Ta thˆa´y A l`a to´an tu’’ tuyˆe´n t´ınh.
(n)

(n)


(0)

(0)

Nˆe´u xn = (ξ1 , . . . , ξk ) → x0 = (ξ1 , . . . , ξk ) th`ı do su.’ hˆo.i tu. trong Rk l`a hˆo.i
(n)
(0)
tu. theo to.a d¯oˆ. nˆen ξj → ξj (j = 1, . . . , k). Do d¯´o


(n)
(0)
(0)
ηi (n) = kj=1 aij ξj → kj=1 aij ξj = ηi
´’ l`a Axn → Ax0 .
tuc
Vˆa.y A liˆen tu.c.
`’ khˆong gian d¯.inh chuˆa’n
✷ ¯Di.nh nghi˜a 13 Gia’ su’’ A l`a to´an tu’’ tuyˆe´n t´ınh liˆen tu.c tu
X v`ao khˆong gian d¯.inh chuˆa’n Y . Khi d¯o´ tˆo`n ta.i sˆo´ M ≥ 0 sao cho
∥Ax∥ ≤ M ∥x∥ , ∀x ∈ X.
’ m˜
’ to´an tu’’ tuyˆe´n
Sˆo´ M ≥ 0 nho’ nhˆa´t thoa
an d¯iˆe`u kiˆe.n trˆen d¯u’o.’c go.i l`a chuˆa’n cua
t´ınh liˆen tu.c A. K´ı hiˆe.u ∥A∥. Ta c´o
i) ∥Ax∥ ≤ ∥A∥.∥x∥, ∀x ∈ X
ii) Nˆe´u ∥Ax∥ ≤ M.∥x∥, ∀x ∈ X th`ı ∥A∥ ≤ M .
∆ ¯Di.nh l´

y 1.21
∥A∥ =

∥Ax∥
= sup ∥Ax∥.
x∈X,x̸=0 ∥x∥
x∈X,∥x∥=1
sup

´’ minh
Chung
Ta c´o
∥Ax∥ ≤ M ∥x∥, ∀x ∈ X



Do d¯o´
∥Ax∥
∥A∥ = sup
= sup A
x∈X,x̸=0 ∥x∥
x∈X,x̸=0

∥Ax∥
≤ M, ∀x ∈ X, x ̸= 0.
∥x∥
(

x
∥x∥


)
=

sup

∥Az∥.

z∈X,∥z∥=1

´’ chuˆa’n ∥x∥ =
• V´ı du. 18 Cho khˆong gian C[a,b] c´ac h`am liˆen tu.c trˆen [a, b] voi
max |x(t)|.
a≤t≤b

X´et to´an tu’’ t´ıch phˆan Ax(t) =

∫b

K(t, s).x(s)ds.

a

´’ mˆo˜i x ∈ C[a,b] ta c´o
Voi
∥Ax(t)∥ = maxa≤t≤b

∫b

K(t, s)s(s)ds


a

≤ max |x(s)| max
a≤s≤b

∫b

a≤t≤b a

|K(t, s)|ds = ∥x∥ max

∫b

a≤t≤b a

|K(t, s)|ds.


×