Tải bản đầy đủ (.docx) (33 trang)

đồ án xử lý cấp nước

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (340.41 KB, 33 trang )

ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Đồ Án
Xử lý cấp nước
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 1
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Contents
Chương 1: TỔNG QUÁT
Tổng quan về nguồn nước dùng để cấp nước
Nước biển
Nước biển thường có độ mặn rất cao. Hàm lượng muối trong nước biển thay
đổi tùy theo vị trí địa lý như: cửa sông, gần hay xa bờ. ngoài ra trong nước biển
thường có nhiều chất lơ lửng, càng gần bờ nồng độ càng tăng, chủ yếu là các phiêu
sinh động thực vật.
1.1. Nước mưa
Nước mưa có thể được xem như nước cất tự nhiên nhưng không hoàn toàn tinh
khiết bởi vì nước mưa có thể bị ô nhiễm bởi khí, bụi, và thậm chí cả vi khuẩn có trong
không khí. Khi rơi xuống, nước mưa tiếp tục bị ô nhiễm do tiếp xúc với các vật thể
khác nhau. Hơi nước gặp không khí chứa nhiều oxit nitơ hay oxit lưu huỳnh sẽ tạo nên
các trận mưa axit.
Hệ thống thu gom nước mưa dùng cho mục đích sinh hoạt gồm hệ thống mái,
máng gom dẫn về bể chứa. Nước mưa có thể dự trữ trong các bể chứa có mái che để
dùng quanh năm.
1.2. Nước mặt
Thuật ngữ nước mặt dùng để chỉ các loại nước lưu thông hoặc chứa trên bề mặt
lục địa, nước tiếp xúc với không khí: nước sông, suối, ao hồ, kênh rạch…
Việt Nam nằm trong vùng nhiệt đới gió mùa nên có lượng mưa khá cao. Lượng
mưa trung bình trong nhiều năm trên toàn lãnh thổ Việt Nam vào khoảng 1.960 mm.
Lượng mưa này, ngoài phần bốc hơi (trung bình nhiều năm khoảng 953 mm/năm –
chiếm khoảng 48,6%) sẽ là nguồn cung cấp cho nước ngầm và hình thành dòng chảy
bề mặt của các sông, suối.


 Đặc trưng của nước mặt
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 2
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Trong nước mặt thường xuyên có mặt các chất khí hòa tan, chủ yếu là oxy. Oxy
hòa tan trong nguồn nước có ý nghĩa quan trọng đối với đời sống của các thủy sinh
vật.
Nước mặt thường chứa hàm lượng chất lơ lửng đáng kể với các kích thước khác
nhau, một số trong chúng có khả năng lắng tự nhiên. Chất lơ lửng thường gây ra độ
đục của nước sông hồ.
Có mặt các chất hữu cơ có nguồn gốc tự nhiên ở nguồn nước được hình thành
từ thực vật và động vật phân hủy sau khi chết. Các chất hữu cơ có trong nguồn nước
mặt còn do xả các loại nước thải chưa xử lý làm cho nguồn nước bị ô nhiễm hữu cơ.
Sinh vật nổi trôi cũng thường có trong nguồn nước mặt, nhất là rong tảo và
động vật nổi.
Chất lượng nước mặt chịu ảnh hưởng và thay đổi theo mùa, có khi bị ô nhiễm nặng do
các yếu tố tự nhiên (mưa, lũ…) và các yếu tố nhân tạo (xả nước thải sinh hoạt, nước
thải công nghiệp chưa xử lý vào nguồn nước, sự cố tràn dầu trên sông…)
Nước ngầm
Nước ngầm được hình thành do nước mưa thấm qua các lớp đất đá trong lòng
đất và được giữ lại ở các tầng chứa nước bên dưới bề mặt đất ở các độ sâu khác nhau.
Tùy thuộc vào vị trí, độ sâu và áp suất mà nước ngầm được phân loại thành các dạng:
 Nước ngầm tầng nông: có độ sâu từ 3 đến 10m, nằm trong các tầng đất thổ
nhưỡng và thường là nước ngầm không có áp. Nước ngầm tầng nông thường có
trữ lượng nhỏ và có khả năng bị nhiễm bẩn lớn bởi các chất ô nhiễm từ trên bề
mặt thấm xuống.
 Nước ngầm tầng sâu: chứa trong các tầng chứa nước ở độ sâu trên 40m. Nước
ngầm tầng sâu thường có chất lượng tốt hơn, trữ lượng phong phú hơn và ít
chịu ảnh hưởng của các mùa trong năm. Một số dạng nước ngầm tầng sâu là
nước ngầm có áp, có thể phun lên bề mặt khi sử dụng các giếng khoan.

1.2.1. Các ion có thể có trong nước ngầm
 Ion canxi Ca
2+
Nước ngầm có thể chứa Ca
2+
với nồng độ cao. Trong đất thường chứa nhiều
CO
2
do quá trình trao đổi chất của rễ cây và quy trình thủy phân các tạp chất hữu cơ
dưới tác động của vi sinh vật. Khí CO
2
hòa tan trong nước mưa theo phản ứng sau:
CO
2
+ H
2
O → H
2
CO
3
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 3
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Axit yếu sẽ thấm sâu xuống đất và hòa tan canxi cacbonat tạo ra ion Ca
2+
2H
2
CO
3
+ 2CaCO

3
→ Ca(HCO
3
)
2
+ Ca
2+
+ 2HCO
3
-
 Ion magie Mg
2+
Nguồn gốc của các ion Mg
2+
trong nước ngầm chủ yếu từ các muối magie
silicat và CaMg(CO
3
)
2
, chúng hòa tan chậm trong nước chứa khí CO
2
. Sự có mặt Ca
2+
và Mg
2+
tạo nên độ cứng của nước.
 Ion natri Na
+
Sự hình thành của Na
+

trong nước chủ yếu theo phương trình phản ứng sau:
2NaAlSi
3
O
3
+ 10H
2
O → Al
2
Si
2
(OH)
4
+ 2Na
+
+ 4H
4
SiO
3
Na
+
cũng có thể có nguồn gốc từ NaCl, Na
2
SO
4
là những muối có độ hòa tan
lớn trong nước biển.
 Ion NH
4
+

Các ion NH
4
+
có trong nước ngầm có nguồn gốc từ các chất thải rắn và nước
sinh hoạt, nước thải công nghiệp, chất thải chăn nuôi, phân bón hóa học và quá trình
vận động của nitơ.
 Ion bicacbonat HCO
3
-
Được tạo ra trong nước nhờ quá trình hòa tan đá vôi khi có mặt khí CO
2
CaCO
3
+ CO
2
+ H
2
O → Ca
2+
+ 2HCO
3
-
 Ion sunfat SO
4
2-
Có nguồn gốc từ muối CaSO
4
.7H
2
O hoặc do quá trình oxy hóa FeS

2
trong điều
kiện ẩm với sự có mặt của O
2
2FeS
2
+ 2H
2
O + 7O
2
→ 2Fe
2+
+ 4SO
4
2-
+ 4H
+
 Ion Clorua Cl
-
Có nguồn gốc từ quá trình phân ly muối NaCl hoặc nước thải sinh hoạt.
 Ion Sắt
Sắt trong nước ngầm thường tồn tại dưới dạng ion Fe
2+
, kết hợp với gốc
bicacbonat, sunfat, clorua; đôi khi tồn tại dưới keo của axit humic hoặc keo silic. Các
ion Fe
2+
từ các lớp đất đá được hòa tan trong nước trong điều kiện yếm khí sau:
4Fe(OH)
3

+ 8H
+
→ 4Fe
2+
+ O
2
+ 10H
2
O
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 4
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Khi tiếp xúc với oxy hoặc các tác nhân oxy hóa, ion Fe
2+
bị oxy hóa thành ion
Fe
3+
và kết tủa thành các bông cặn Fe(OH)
3
có màu nâu đỏ.Vì vậy, khi vừa bơm ra
khỏi giếng, nước thường trong và không màu, nhưng sau một thời gian để lắng trong
chậu và cho tiếp xúc với không khí, nước trở nên đục dần và đáy chậu xuất hiện cặn
lắng màu đỏ hung.
Trong các nguồn nước mặt sắt thường tồn tại thành phần của các hợp chất hữu
cơ. Nước ngầm trong các giếng sâu có thể chứa sắt ở dạng hóa trị II của các hợp chất
sunfat và clorua. Nếu trong nước tồn tại đồng thời đihyđrosunfua (H
2
S) và sắt thì sẽ
tạo ra cặn hòa tan sunfua sắt FeS. Khi làm thoáng khử khí CO
2

, hyđrocacbonat sắt hóa
trị II sẽ dễ dàng bị thủy phân và bị oxy hóa để tạo thành hyđroxit sắt hóa trị III.
4Fe
2+
+ 8HCO
3
-
+ O
2
+ 2H
2
O → 4Fe(OH)
3
↓ + 8CO
2

Trong quy trình xử lý sắt trong nước ngầm, điều quan trọng là biết được điều
kiện để chuyển sắt hóa trị II thành sắt hóa trị III và hyđroxit sắt (II) và hydroxit sắt
(III) được tạo thành từ trạng thi hòa tan sang cặn lắng.
Với hàm lượng sắt cao hơn 0,5 mg/l, nước có mùi tanh khó chịu, làm vàng quần
áo khi giặt, làm hỏng sản phẩm của các ngành dệt may, giấy, phim ảnh, đồ hộp. Trên
dàn làm nguội, trong các bể chứa, sắt hóa trị II bị oxy hóa thành sắt hóa trị III, tạo
thành bông cặn, các cặn sắt kết tủa có thể làm tắc hoặc giảm khả năng vận chuyển của
các ống dẫn nước. Đặc biệt là có thể gây nổ nếu nước được dùng làm nước cấp cho
các nồi hơi. Một số ngành công nghiệp có yêu cầu nghiêm ngặt đối với hàm lượng sắt
như dệt, giấy, sản xuất phim ảnh….
Nước có chứa ion sắt, khi trị số pH < 7,5 là điều kiện thuận lợi để vi khuẩn sắt
phát triển trong các đường ống dẫn, tạo ra cặn lắng gồ ghề bám vào thành ống làm
giảm khả năng vận chuyển và tăng sức cản thủy lực của ống.
 Ion mangan

Mangan thường tồn tại song song với sắt ở dạng ion hóa trị II trong nước ngầm
và dạng keo hữu cơ trong nước mặt. Do vậy việc khử mangan thường được tiến hành
đồng thời với khử sắt. Các ion mangan cũng được hòa tan trong nước từ các tầng đất
đá ở điều kiện yếm khí như sau
6MnO
2
+ 12H
+
→ 6Mn
2+
+ 3O
2
+ 6H
2
O
Mangan II hòa tan khi bị oxy hóa sẽ chuyển dần thành mangan IV ở dạng
hyđroxit kết tủa, quá trình oxy hóa diễn ra như sau:
2Mn(HCO
3
)
2
+ O
2
+ 6H
2
O → 2Mn(OH)
4
↓ + 4H
+
+ 4HCO

3
-
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 5
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Khi nước ngầm tiếp xúc với không khí trong nước xuất hiện cặn hyđroxit sắt
sớm hơn vì sắt dễ bị oxy hóa hơn mangan và phản ứng oxy hóa sắt bằng oxy hòa tan
trong nước xảy ra ở trị số pH thấp hơn so với mangan. Để oxy hóa mangan trị số pH
cần thiết > 9,5. Cặn mangan hóa trị cao là chất xúc tác rất tốt trong quá trình oxy hóa
khử mangan cũng như khử sắt. Cặn hyđroxit mangan hóa trị IV Mn(OH)
4
có màu hung
đen.
Trong thực tế cặn và chất lắng đọng trong đường ống, trên các công trình là do
hợp chất sắt và mangan tạo nên, vì vậy, tùy thuộc vào tỷ số của chúng, cặn có thể có
màu từ hung đỏ đến màu nâu đen. Quá trình oxy hóa diễn ra ngay với các chất dễ oxy
hóa, do vậy , để oxy hóa hàm lượng mangan xuống đến 0,2 mg/l, pH của nước phải có
giá trị xấp xỉ bằng 9.
Kết quả thực nghiệm cho thấy khi pH < 8 và không có chất xúc tác thì quá trình
oxy hóa mangan (II) thành (IV) diễn ra rất chậm, độ pH tối tưu thường trong khoảng
từ 8,5 đến 9,5.
Với hàm lượng tương đối thấp, ít khi vượt quá 5 mg/l. Tuy nhiên, với hàm
lượng mangan trong nước lớn hơn 0,1 mg/l sẽ gây nhiều nguy hại trong việc sử dụng
giống như trường hợp nước chứa sắt với hàm lượng cao
1.2.2. Đặc tính của nước ngầm
Những đặc tính cơ bản của nước ngầm thường thấy là pH thấp, hàm lượng Sắt,
hàm lượng Mangan và hàm lượng CO
2
cao. Độ khoáng hóa, độ đục, độ màu ít hoặc
không thay đổi. Một số nơi, nước ngầm có độ cứng khá cao, đôi khi bị nhiễm nitrat,

nhiễm mặn, silic, asen, E.coli, Coliform….
1.2.3. Ưu-nhược điểm của việc lựa chọn nước ngầm cho mục đích cấp
nước
 Ưu điểm:
- Nước ngầm là một tài nguyên thường xuyên, ít chịu ảnh hưởng của
những yếu tố khí hậu như hạn hán. Chất lượng nước tương đối ổn định,
ít bị biến động theo mùa như nước mặt.
- Chủ động trong vấn đề cấp nước cho các vùng hẻo lánh, dân cư thưa vì
nước ngầm có thể khai thác với nhiều công suất khác nhau. Nước ngầm
còn có thể khai thác tấp trung như các nhà máy nước ngầm, các xí
nghiệp, hoặc khai thác phân tán ở các hộ dân cư. Đây chính là ưu điểm
nổi bật của nước ngầm trong vấn đề cấp nước nông thôn.
- Giá thành xử lý nước ngầm nhìn chung rẻ hơn so với xử lý nước mặt.
 Nhược điểm:
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 6
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
- Khai thác nước ngầm với nhịp độ cao sẽ làm cho mực nước ngầm hạ
thấp xuống, một mặt việc này dẫn đến quá trình xâm nhập mặn, mặt
khác làm cho nền đất bị võng xuống gây hư hại cho các công trình xây
dựng và đó cũng là một trong những nguyên nhân của hiện tượng sụt lún
đất.
- Việc khai thác nước ngầm với quy mô và nhịp độ quá cao sẽ làm cho
hàm lượng muối trong nước tăng lên và dẫn đến tăng chi phí xử lý cho
việc xử lý nước trước khi đi vào sử dụng.
- Khai thác nước ngầm một cách bừa bãi cũng dẫn đến tình trạng ô nhiễm
nguồn nước ngầm.
Các chỉ tiêu về chất lượng nước
1.3. Các chỉ tiêu lý học
Nhiệt độ: nhiệt độ nước là một đại lượng phụ thuộc vào điều kiện môi trường và

khí hậu. Nhiệt độ có ảnh hưởng không nhỏ đến các quá trình xử lý nước và nhu cầu
tiêu thụ.
Độ màu: độ màu thường là do các chất bẩn trong nước tạo nên. Các hợp chất
sắt, mangan không hòa tan làm nước có màu nâu đỏ. Các chất mùn humic gây ra màu
vàng. Còn các loại thủy sinh tạo cho nước màu xanh lá cây. Nước bị nhiễm bẩn bởi
nước thải sinh hoạt hay công nghiệp thường có màu xanh đậm hoặc đen.
Độ đục: Nước là một môi trường truyền ánh sáng tốt, khi trong nước có các vật
lạ như các chất huyền phù, các hạt cặn đất cát, các vi sinh vật…thì khả năng truyền
ánh sáng bị giảm đi. Nước có độ đục lớn chứng tỏ có chứa nhiều cặn bẩn. Hàm lượng
chất rắn lơ lửng cũng là một đại lượng tương quan đến độ đục của nước.
Mùi vị: Mùi trong nước thường do các hợp chất hóa học, chủ yếu là các hợp
chất hữu cơ hay các sản phẩm từ các các quá trình phân hủy vật chất gây nên. Nước
thiên nhiên có thể có mùi đất, mùi tanh, mùi hôi. Nước sau khi khử trùng với các hợp
chất clo có thể bị nhiễm mùi clo hay clophenol.
Tùy theo thành phần và hàm lượng các muối khoáng hòa tan nước có thể có các vị
mặn, ngọt, đắng, chát…
Độ nhớt: độ nhớt là đại lượng biểu thị lực ma sát nội, sinh ra trong quá trình
dịch chuyển giữa các lớp chất lỏng với nhau. Độ nhớt tăng khi hàm lượng các muối
hòa tan trong nước tăng, giảm khi nhiệt độ tăng.
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 7
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Độ dẫn điện: độ dẫn điện của nước tăng theo hàm lượng của các chất khoáng
hòa tan trong nước, và dao động theo nhiệt độ.
Tính phóng xạ: Tính phóng xạ của nước là do sự phân hủy các chất phóng xạ có
trong nước tạo nên. Nước ngầm thường nhiễm các chất phóng xạ tự nhiên, các chất
này có thời gian bán phân hủy rất ngắn nên nước thường vô hại. Tuy nhiên khi bị
nhiễm bẩn phóng xạ từ nước thải và không khí thì tính phóng xạ của nước có thể vượt
quá giới hạn cho phép.
1.4. Các chỉ tiêu hóa học

Thành phần ion của nước thiên nhiên: Trong đại đa số các trường hợp thành
phần ion của nước thiên nhiên được xác định bởi các ion: Ca
2+
, Mg
2+,
K
+
, HCO
3
-
, SO
4
2-
,
Cl
-
. Các ion còn lại chiếm số lượng rất bé, tuy đôi khi chúng có ảnh hưởng rất lớn đến
chất lượng nước.
Hàm lượng oxi hòa tan(DO): oxi hòa tan trong nước phụ thuộc vào áp suất,
nhiệt độ, thành phần, tính chất nguồn nước. Áp suất tăng, độ hòa tan của oxi của nước
tăng, ngược lại khi nhiệt độ tăng độ hòa tan của oxi vào nước giảm. Hàm lượng oxi
hòa tan trong nước tuân theo định luật Henry. Thông thường, nồng độ oxi hòa tan ở
thời điểm tới hạn là 8mg/l.
Độ pH: Đặc trưng bởi nồng độ ion H
+
trong nước (pH = -log(H
+
), phản ánh tính
chất của nước là axit, trung tính hay kiềm.
Độ kiềm: đặc trưng bởi các muối của axit hữu cơ như bicacbonat, cacbonat,

hydrat… Người ta cũng phân biệt độ kiềm theo tên gọi của các muối. Độ kiềm có ảnh
hưởng trực tiếp đến tốc độ và hiệu quả xử lý nước. Trong một số trường hợp, khi độ
kiềm thấp, cần thiết phải bổ sung hóa chất để kiềm hóa nước.
Độ oxi hóa: (BOD) thường tính bằng mg/l O
2
, đặc trưng bởi nồng độ các chất
hữu cơ hòa tan và một số chất vô cơ dễ oxi hóa.
Hàm lượng Sắt: nước ngầm ở nước ta thường có hàm lượng sắt lớn.
Hàm lượng Mangan: thường gặp trong nước ngầm cùng với sắt ở dạng
bicacbonat Mn
2+
.
Axit Silic: trong nước ngầm thường gặp nồng độ silic cao, khi 6,5≤pH≤7,5 gây
khó khăn cho việc khử sắt. Nồng độ axit silic lớn cản trở việc sử dụng nước cho nồi
hơi áp lực cao.
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 8
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Các hợp chất của Nitơ : các hợp chất hữu cơ có trong nước thường tồn tại dưới
dạng amoniac, nitrit, nitrat và nito tự do. Tồn tại những hợp chất này chứng tỏ nguồn
nước bị nhiễm bẩn bởi nước thải. Có NH
3
chứng tỏ nước đang bị nhiễm bẩn rất nguy
hiểm đặc biệt cho cá; có HNO
2
, HNO
3
chứng tỏ nước nhiễm bẩn đã lâu, các quá trình
oxi hóa đã kết thúc.
Clorua và Sunfat: có trong nước thiên nhiên thường dưới dạng các muối nitrit,

canxi và magie. Ion Cl
-
có trong nước tự do hòa tan các muối khoáng hoặc do quá
trình phân hủy các hợp chất hữu cơ. Nước chứa ion Cl
-
có tính xâm thực đối với
bêtông.
Các hợp chất phốt phát: trong nước hàm lượng phốt pho cao sẽ thúc đẩy quá
trình phú dưỡng hóa.
Iot và Florua: có trong nước thiên nhiên dưới dạng ion, chúng có ảnh hưởng
trực tiếp đến sức khỏe con người. Florua cho phép tới 1mg/l. Thiếu florua sinh bệnh
đau răng, thừa gây hỏng men răng. Iot cho phép 0,005÷0,007 mg/l. Thiếu lượng iot
sinh bệnh bưới cổ.
Các chất khí hòa tan: các chất khí O
2
, H
2
S, CO
2
, trong nước thiên nhiên dao
động rất lớn. Chúng làm cho nước có mùi và ăn mòn kim loại.
Các chỉ tiêu vi sinh
Vi trùng và vi khuẩn: trong nước có nhiều loại vi trùng và siêu vi trùng gây
bệnh và truyền bệnh nguy hiểm như kiết lị thương hàn, dịch tả…
Phù du rong tảo: trong các nguồn nước mặt và nhất là trong các ao hồ thường
có các loại phù du rong tảo. Chúng ở dạng lơ lửng hay bám vào đáy hồ làm cho chất
lượng nước nguồn kém đi và khó xử lý. Ví dụ: nhóm tảo diệp lục và tảo đơn bào
thường đi qua bể lắng và đọng lại trên bề mặt vật liệu lọc làm tăng tổn thất áp lực.
Trong đường ống, tảo có thể làm tắc đường ống, đồng thời làm cho nước có tính ăn
mòn do quá trình quang hợp hô hấp của rong tảo thải ra khí CO

2
. Tảo còn gây nên tình
trạng thừa thiếu oxi trong nước, tạo ra các hợp chất có mùi, tăng nồng độ các chất hữu
cơ và tạo ra các chất độc hại trong nước
Một số quá trình cơ bản xử lý nước ngầm
STT QUÁ TRÌNH XỬ LÝ MỤC ĐÍCH
1 Làm thoáng Khử khí CO
2
nâng cao pH của nước để đẩy nhanh
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 9
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
quá trình oxy hóa và thủy phân Sắt và Mangan trong
dây chuyền công nghệ khử Sắt và Mangan.
Lấy oxy từ không khí để oxy hóa Sắt và Mangan hóa
trị II hòa tan trong nước
Làm giàu oxy để tăng thế oxy hóa khử của nước, khử
các chất bẩn ở dạng khí hòa tan trong nước.
2 Clo hóa sơ bộ Oxy hóa Sắt và Mangan ở các dạng phức chất hữu cơ
Loại trừ rong, rêu, tảo phát triển trên các thành bể
trộn, tạo bông cặn và bể lắng, bể lọc.
Trung hòa lượng Amoniac dư, diệt các vi khuẩn tiết
ra chất nhầy trên mặt các lớp lọc.
3 Quá trình khuấy trộn
hóa chất
Phân tán nhanh, đều phèn và các hóa chất khác vào
nước cần xử lý.
4 Quá trình keo tụ và
phản ứng tạo bông
cặn

Tạo điều kiện và thực hiện quá trình kết dính các hạt
cặn keo phân tán thành bông cặn có khả năng lắng và
lọc
5 Quá trình lắng Loại trừ ra khỏi nước các hạt cặn và bông cặn có khả
năng lắng, làm giảm vi trùng và vi khuẩn
6 Quá trình lọc Loại trừ các hạt cặn nhỏ không lắng được trong bể
lắng nhưng có khả năng kết dính trên bề mặt vật liệu
lọc
7 Hấp thụ và hấp phụ
bằng than hoạt tính
Khử mùi, vị, màu của nước sau khi dùng phương
pháp xử lý truyền thống không đạt yêu cầu.
8 Khử trùng nước Tiêu diệt vi khuẩn và vi trùng còn sót lại trong nước
sau bể lọc.
9 Ổn định nước Khử tính xâm thực và tạo ra màng bảo vệ cách ly
không cho nước tiếp xúc trực tiếp với vật liệu mặt
trong thành ống dẫn để bảo vệ ống và phụ tùng trên
ống.
10 Làm mềm nước Khử khỏi nước các ion Ca
2+
và Mg
2+
đến nồng độ yêu
cầu
11 Khử muối Khử ra khỏi nước các cation và anion của các muối
hòa tan đến nồng độ yêu cầu
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 10
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Chương 2: ĐỀ XUẤT QUY TRÌNH CÔNG NGHỆ

Tổng quan về nước ngầm ở huyện Nhà Bè
Nhà Bè là huyện ngoại thành nằm về phía Đông Nam của thành phố Hồ Chí
Minh. Phía Bắc giáp quận 7. Phía Nam giáp huyện Cần Giuộc, tỉnh Long An. Phía
Đông giáp sông Nhà Bè, ngăn cách với huyện Nhơn Trạch, tỉnh Đồng Nai; sông Soài
Rạp, ngăn cách với huyện Cần Giờ. Phía Tây giáp huyện Bình Chánh.
Huyện Nhà Bè có một hệ thống sông ngòi thuận lợi cho việc mở rộng mạng
lưới giao thông đường thủy đi khắp nơi, có điều kiện xây dựng các cảng nước sâu đủ
sức tiếp nhận các tàu có trọng tải lớn cập cảng. Với điều kiện tự nhiên thuận lợi và
nguồn nhân lực dồi dào, Nhà Bè đóng một vai trò quan trọng về mặt kinh tế.
Tuy nhiên, bên cạnh đó, thiên nhiên cũng đem lại cho Nhà Bè nhiều khó khăn.
Do ở gần cửa sông, tiếp giáp với biển, nên nguồn nước ngọt dành cho sinh hoạt và sản
xuất của huyện rất khó khăn, vào mùa khô thường xuyên thiếu nước.
Nguồn nước ngầm thành phố: Tập trung ở phía bắc Củ Chi, Hóc Môn, nơi có
tầng nước ngầm dồi dào nhất, phẩm chất cũng tốt nhất, ở độ sâu 60 ÷ 90 m. Ngoài ra
còn có ở các quận: 3, 5, 11, Bình Thạnh, Tân Bình, Tân Phú, Gò Vấp nhưng phẩm
chất không tốt bằng. Càng về phía Nam (Nhà Bè, Bình Chánh, Cần Giờ nguồn nước
ngầm thường bị nhiễm mặn nặng.
Khảo sát của Liên đoàn địa chất thủy văn và địa chất công trình miền Nam cho
thấy, hệ thống nước ngầm TP HCM có 4 tầng chứa nước là Holocen, Pleistocen,
Pliocen trên và Pliocen dưới. Tầng Holocen có bề dày lớn, phân bổ ở khu vực huyện
Nhà Bè, Cần Giờ, Bình Chánh và phần thung lũng phía nam sông Sài Gòn. Tầng này
nhiễm mặn, vì thế ở các khu vực trên hầu như không thể khoan giếng được và dân cư
chủ yếu là mua nước ngọt để sử dụng trong sinh hoạt. (Nguồn Vietbao.vn Thứ sáu,
ngày 8 tháng 4 năm 2005)
Tầng Hologen nhiễm mặn sâu và lan tỏa, tác động đến các tầng khác theo
hướng thu hẹp dần khối nước sạch. 3 tầng chứa nước còn lại hiện cung cấp chính cho
thành phố, trong đó tầng Pleistocen và Pliocen trên được khai thác nhiều nhất do hai
tầng này có trữ lượng lớn. Riêng tầng Pliocen dưới phân bổ ở khu vực Phú Mỹ Hưng,
quận 8, Tân Quy Đông, Bình Hưng, Phong Phú, Đa Phước và Hóc Môn, có đặc điểm
dễ nhiễm phèn, mặn.

SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 11
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Bên cạnh vấn đề chất lượng nước bị nhiễm phèn, nhiễm mặn ở Tp.HCM nói
chung và huyện Nhà Bè nói riêng , còn tồn tại vấn đề ô nhiễm vi sinh trên địa bàn 1 số
quận huyện.
Trung tâm Nước sinh hoạt và Vệ sinh môi trường nông thôn TPHCM cũng có
một khảo sát khác tại các quận 9, Thủ Đức và 4 huyện Hóc Môn, Củ Chi, Nhà Bè,
Bình Chánh cho thấy nước ngầm tại một số khu vực trên địa bàn các quận huyện này
bị nhiễm vi sinh nặng.
Đặc biệt tại khu vực các xã Hiệp Phước, Phước Kiển, Long Thới (Nhà Bè);
Phong Phú (Bình Chánh) có tồn tại vi sinh như Coliform, E.coli Trong khi theo quy
định Việt Nam thì các thành phần trên không được có trong nước sinh họat.
Để bảo vệ nguồn nước nhằm đáp ứng nhu cầu hiện tại và cho tương lai,
công cuộc quản lý nguồn nước ngoài sự nỗ lực của các cơ quan quản lý chuyên
ngành còn là trách nhiệm của toàn thể xã hội. Nước là cuộc sống để cuộc sống
được trong xanh chúng ta phải bảo vệ nguồn nước.
Số liệu thực tế
Địa điểm: xã Nhơn Đức – huyện Nhà Bè.
Ngày: 5/2009
ST
T
Chỉ tiêu Đơn vị Nồng độ TC 1329-2002 BYT
1 pH 6,1 6,5 – 8,5
2 Độ cứng mg/l 114 300
3 Cl- mg/l 79 250
4 SO
4
2-
mg/l 7,2 250

5 NO
2
-
mg/l < 0,05 3
6 NO
3
-
mg/l < 0,05 50
7 PO
4
3-
mg/l KPH
8 NH
4
+
mg/l KPH 1,5
9 Fe tổng mg/l 9,4 0,5
10 Kiềm tổng mg/l as CaCO
3
82 200
11 Chất hữu cơ KPH
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 12
Nước ngầm
Bể chứa
Làm thoáng bằng giàn mưa
Bể lắng ngang
Bồn lọc áp lực
Bể chứa nước sạch
Hệ thống phân phối

Lắng nước rửa lọc
Hóa chất khử trùng
Bể nén bùn
Đem di xử lý
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
(KmnO
4
)
Theo số liệu cho thấy nguồn nước ngầm ở xã Nhơn Đức huyện Nhà Bè có nồng độ Fe
tổng vượt TC 1329-2002 BYT về tiêu chuẩn vệ sinh nước ăn uống sinh hoạt. Vì vậy
phải xây dựng quy trình công nghệ khử sắt đến giá trị đạt tiêu chuẩn (0,5 mg/L).
Đề xuất quy trình công nghệ
 Thuyết minh sơ đồ công nghệ
Đầu tiên, nước ngầm được hút từ dưới đất lên dẫn vào bể chứa. Nước từ bể
chứa được dẫn vào công trình làm thoáng, với mục đích chính là khử CO
2
, hòa tan oxi
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 13
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
từ không khí vào nước để oxy hóa Fe
2+
thành Fe
3+
, Mn
2+
thành Mn
4+
(nếu có) để dể
dàng kết tủa, dể dàng lắng đọng để khử ra khỏi nước nâng cao năng suất của các công

trình lắng và lọc.
Sau khi làm thoáng nước tiếp tục sẽ qua bể lắng ngang, bể lắng ngang được
thiết kế để loại trừ ra khỏi nước các hạt cặn lơ lửng có khả năng lắng xuống dưới đáy
bể bằng trọng lực. Nhiệm vụ của bể lắng là tạo điều kiện tốt để lắng các hạt có kích
thước lớn (≥ 0,2mm) để loại trừ hiện tượng bào mòn các cơ cấu chuyển động cơ khí và
giảm lượng cặn nặng tụ lại trong bể.
Sau đó nước được đưa qua bể lọc áp lực. Tại đây, không chỉ giữ lại các hạt cặn
lơ lửng trong nước có kích thước lớn hơn kích thước các lỗ rỗng tạo ra giữa các hạt lọc
mà còn giữ lại keo sắt, keo hữu cơ gây độ đục, độ màu.
Sau đó nước được dẫn vào bể khử trùng, với hóa chất khử trùng là dung dịch
Clo để loại trừ vi sinh vật tồn tại trong nước ngầm.
Nước qua bể khử trùng được đưa vào bể chứa. Sau đó được bơm phân phối cho
người dân sử dụng.
Các quy trình đơn vị
Giàn mưa
Nhiệm vụ của giàn mưa là:
Hòa tan oxy từ không khí vào nước để oxy hóa Fe
2+
thành Fe
3+
, Mn
2+
thành
Mn
4+
để dễ dàng kết tủa, dễ lắng đọng.
Khử khí CO
2
, H
2

S có trong nước, làm tăng pH của nước, tạo điều kiện thuận
lợi và đẩy nhanh quá trình oxy hóa và thủy phân Sắt và Mangan, nâng cao năng suất
của các công trình lắng và lọc.
Tăng lượng oxy hòa tan trong nước, nâng cao thế oxy hóa khử của nước để thực
hiện dễ dàng các quá trình oxy hóa.
Bể lắng ngang
Lắng là khâu quan trọng trong dây chuyền công nghệ xử lý nước. Các loại bể
lắng được thiết kế để loại trừ ra khỏi nước các hạt cặn lơ lửng có khả năng lắng xuống
dưới đáy bể bằng trọng lực. Nhiệm vụ của bể lắng là tạo điều kiện tốt để lắng các hạt
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 14
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
cát kích thước lớn hơn hoặc bằng 0,2 mm và tỷ trọng lớn hơn hoặc bằng 2,6 để loại trừ
hiện tượng bào mòn các cơ cấu chuyển động cơ khí và giảm lượng cặn nặng tụ lại
trong bể lắng.
Bồn lọc áp lực
Lọc là quá trình không chỉ giữ lại các hạt cặn lơ lửng trong nước có kích thước
lớn hơn kích thước các lỗ rỗng tạo ra giữa các hạt lọc mà còn giữ lại keo sắt, keo hữu
cơ gây độ đục độ màu. Bể lọc thường được dùng để lọc một phần hay toàn bộ cặn bẩn
có trong nước tùy thuộc vào yêu cầu đối với chất lượng nước. Bể lọc này được thiết kế
gồm hai lớp: lớp thạch anh và lớp cát sỏi.
Nước cấp khi qua bể lắng hầu hết các cặn lơ lửng đều được giữ lại, chỉ còn
khoảng 20% căn lơ lửng không lắng được ở bể lắng mà tiếp tục đi vào bể lọc. Bể lọc
có nhiệm vụ lọc tất cả các cặn không thể lắng được.
Bể chứa nước sạch
Nhiệm vụ của bể chứa là chứa nước sạch sau quá trình lọc. Đặt cạnh bể chứa là
hệ thống bơm cung phân phối nước ra mạng tiêu thụ, bơm nước rửa lọc…trạm bơm
phải đảm bảo việc phân phối nước theo yêu cầu về công suất và độ tin cậy.
Khử trùng bằng hóa chất (Clo và các hợp chất của Clo)
Clo là một chất oxy hóa mạnh, ở bất cứ dạng nào nguyên chất hay hợp chất khi

tác dụng với nước đều tạo ra phân tử axit hypoclorit HOCl có tác dụng khử trùng rất
mạnh. Quá trình diệt vi sinh vật xảy ra theo hai giai đoạn. Đầu tiên chất khử trùng
khuếch tán xuyên qua vỏ tế bào vi sinh, sau đó phản ứng với men bên trong tế bào và
phá hoại quá trình trao đổi chất dẫn đến sự diệt vong của tế bào.
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 15
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
CHƯƠNG III: TÍNH TOÁN CÔNG TRÌNH ĐƠN VỊ
TÍNH TOÁN BỂ LẮNG NGANG
Tính toán kích thước bể
Với lưu lượng nước vào bể Q = 2000 m
3
/ngày.đêm = 83,333 m
3
/h = 0,02315 m
3
/s.
Theo tài liệu tham khảo “Tính toán thiết kế các công trình trong hệ thống cấp
nước sạch” của TS Trịnh Xuân Lai trang 153 chỉ rẳng khi tính toán bể lắng mà cặn
không keo tụ thì chọn công thức của Liên Xô trước đây.
Diện tích bể lắng tính theo công thức:
0
U
Q
F α=
Trong đó:
Q : lưu lượng nước vào bể (m
3
/h)
U

0
: tải trọng bề mặt hay tốc độ lắng của hạt cặn (m/h)
α : hệ số kể đến ảnh hưởng của dòng chảy rối trong vùng lắng
30
K
1
1


Hệ số K phụ thuộc vào tỉ số L/H theo bảng sau:
L/H 10 15 20 25
K 7,5 10 12 13,5
α 1,33 1,5 1,67 1,82
Chọn U
0
= 0,7 mm/s = 7
×
10
-4
m/s. (Ứng với hiệu quả lắng R = 60%)
Chọn tỉ số L/H=15, ta có α = 1,5
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 16
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG

m 6,49
107
0,02315
5,1
U

Q
F
4
0
=
×
×=α=

. Làm tròn F = 50 m
2
Tỉ số
5m
B
L

(theo “Xử lý nước cấp cho sinh hoạt và công nghiệp” của
TS.Trịnh Xuân Lai ).
Chọn L = 5B →
m 2,3
5
50
5
F
B ===
. Làm tròn B = 3 m
Chiều dài của bể lắng là:
m 7,16
3
50
B

F
L ===
. Làm tròn L = 17m.
Chọn chiều cao vùng lắng H = 2,5 m (H = 2÷3,5m, theo “Tính toán thiết kế các
công trình trong hệ thống cấp nước sạch” của TS.Trịnh Xuân Lai)
Vận tốc nước chảy trong bể (V
0
):
mm/s 16,3mm/s 3,09m/s 1009,3
5,23
02315,0
BH
Q
V
3
0
<=×=
×
==

(vận tốc xói cặn)
Thời gian lưu (T)
(h) 5,1(s) 5400
02315,0
505,2
Q
HF
T ==
×
==

(T = 1,5÷3h, theo “Xử lý nước cấp cho
sinh hoạt và công nghiệp” của TS.Trịnh Xuân Lai).
1.1. Thiết kế ngăn phân phối
Để phân phối đều trên toàn bộ mặt cắt ngang của bể cần đặt các vách ngăn ở đầu
mỗi bể, cách tường 1÷2m. Vận tốc nước qua lổ vách ngăn lấy bằng 0,5 m/s. Đoạn
dưới của vách ngăn trong phạm vi chiều cao 0,3÷0,5m kề từ mặt trên của vùng chứa
cặn nén không cần phải khoan lỗ. (Theo khoản 6.77 TCXD 33:2006).
Chọn độ cao làm việc thấp nhất của vách ngăn so với mặt trên của vùng lắng cặn
là 0,5 m. Khi đó, diện tích công tác của vách ngăn phân phối nước vào bể là:
2
n
m 6)5,05,2(3)5,0H(BF =−×=−×=
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 17
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Lưu lượng nước tính toán qua bể:
2000Qq
n
==
m
3
/ngày đêm = 0,02315 m
3
/s
Diện tích cần thiết của các lỗ ở vách ngăn phân phối nước vào là:

=


v

Q
F
Theo khoản 6.77 TCXDVN 33:2006, vận tốc nước qua lỗ vách ngăn phân phối lấy
bằng 0,5m/s. Do đó:
2


m 0463,0
5,0
02315,0
v
Q
F ===

Lấy đường kính lỗ ở vách ngăn phân phối là d
1
=0,05m (d
1
=0,05÷0,15 m theo trang 73-
Xử lý nước cấp-TS.Nguyễn Ngọc Dung)
→ diện tích 1 lỗ
23
2
2
1
lô 1
m 109625,1
4
05,0
4

d
F

×=
×π
=
π
=
Tổng số lỗ ở vách ngăn phân phối là:
59,23
109625,1
0463,0
F
F
n
3
lô1

1
=
×
==


lỗ
Chọn n
1
= 24 lỗ
Bố trí: ta bố trí 6 hàng dọc và 4 hàng ngang, với tổng số lỗ đục là 6
×

4=24 lỗ.
Khoảng cách giữa trục các lỗ theo hàng dọc là: (2,5 – 0,5)/4=0,5 m
Khoảng cách giữa trục các lỗ theo hàng ngang là: 3/6=0,5m
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 18
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
1.2. Thiết kế ngăn thu nước:
Thiết kế ngăn thu nước tương tự như ngăn phân phối, thiết kế vách ngăn thu
nước ở cuối bể, trên vách ngăn được đục lỗ hình tròn cho nước đi qua. Đường kính lỗ
trên vách ngăn thu nước chọn d
2
= 0,05 m.
Tốc độ nước chảy qua lỗ: 0,5 m/s (theo TCXD 33-2006)
Khoảng cách tới tường bể 0,5m ≤ x ≤ 1,5m (TCXD 33-2006)
Chọn độ cao làm việc thấp nhất của vách ngăn thu nước so với mặt trên của vùng
lắng cặn là 1,5 m. Khi đó, diện tích công tác của vách ngăn phân phối nước vào bể là:
2
n
m 3)5,15,2(3)5,1H(BF =−×=−×=
Diện tích cần thiết của các lỗ ở vách ngăn thu nước ở cuối bể
0463,0
5,0
02315,0
V
Q
F
thu
thu
===


(m
2
)
Diện tích 1 lỗ:
23
2
2
1
lô 1
m 109625,1
4
05,0
4
d
F

×=
×π
=
π
=
Tổng số lỗ ở vách ngăn phân phối là:
59,23
109625,1
0463,0
F
F
n
3
lô1


2
=
×
==


lỗ
Chọn n
2
= 24 lỗ
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 19
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Cách bố trí: bố trí 6 hàng dọc và 4 hàng ngang với tổng số lỗ đục là 6
×
4=24 lỗ.
Khoảng cách giữa trục các lỗ theo hàng dọc là: (2,5 – 1,5)/4=0,25 m
Khoảng cách giữa trục các lỗ theo hàng ngang là: 3/6=0,5 m
1.3. Thiết kế vùng xả cặn:
Việc xả cặn dự kiến tiến hành theo chu kỳ với thời gian giữa hai lần xả cặn T =
24h (T = 6h÷24h theo TCXD 33:2006)
Thể tích phần chứa cặn của bể: (trang 36/TCXD33-2006)
σ×
−××
=
N
)mC(QT
V
C

Trong đó:
T : thời gian giữa hai lần xả cặn. Chọn T= 24h
Q : lưu lượng tính toán. Q=2000 m
3
/day = 83,333 m
3
/h
N : số lượng bể lắng ngang = 1 bể
σ : nồng độ trung bình của cặn đã nén chặt (g/m
3
), σ lấy theo bảng 6.8 trang 36
TCXD 33:2006 . Theo bảng 6.8 thì σ = 15000 g/m
3
Trích bảng 6.8 trang 36 TCXD 33:2006
Hàm lượng cặn trong nước nguồn Nồng độ trung bình của cặn đã nén tính
bằng g/m
3
sau thời gian
6h 12h 24h
Đến 50
Trên 50 đến 100
Trên 100 đến 400
Trên 400 đến 1000
Trên 1000 đến 1500
(Khi xử lý không dùng phèn)
Khi làm mềm nước (có độ cứng Magie
nhỏ hơn 25% độ cứng toàn phần) bằng
voi hoặc vôi với sôđa
Như trên, nước có độ cứng Magie lớn hơn
75% độ cứng toàn phần

9000
12000
20000
35000
80000
200000
28000
12000
16000
32000
50000
100000
250000
32000
15000
20000
40000
60000
120000
300000
35000
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 20
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
C : hàm lượng cặn trong nước đưa vào bể lắng (mg/l)
46,17104
56
4,9
M
56

C
C
3
)OH(Fe
Fe
=×=×=
mg/l
m : hàm lượng cặn sau khi lắng
Với hiệu quả lắng 60%, ta có m được tính như sau:
mg/l 984,6)6,046,1746,17(m =×−=
Tính thể tích phần chứa cặn:
397,1
15000
)984,646,17(333,8324
V
C
=
−××
=
m
3
Chiều cao trung bình của vùng chứa nén cặn:
mm 28 m 028,0
50
397,1
F
V
H
C
C

====
Tính lượng nước dùng cho việc xả cặn bể lắng:
Lượng nước dùng cho việc xả cặn bể lắng tính bằng phần trăm lưu lượng nước
xử lý, được xác định theo công thức:

%100
TQ
NVK
P
CP
×
×
××
=

Trong đó:
Kp: hệ số pha loãng cặn, bằng 1,2÷1,5
%105,0%100
2433,83
1397,15,1
%100
TQ
NVK
P
CP

×
××

×

××
=⇒
Tính toán máng thu cặn:
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 21
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Hệ thống xả cặn thủy lực bằng máng hình tam giác có đặt ống thu dọc theo trục
máng và xả cặn theo ống thu đó. Thời gian xả cặn quy định t = 10÷20 phút, chọn thời
gian xả cặn t = 15 phút đểt tính toán. Tốc độ nước chảy ở cuối máng không nhỏ hơn
1m/s.
Lưu lượng cặn khi xả là:
3
C
c
10552,1
6015
397,1
t
V
q

×=
×
==
m
3
/s
Chọn chiều rộng xây dựng của mỗi máng xả cặn là B
m
= 1,4 m

Khoảng cách giữa 2 mép máng thu = 0,1m
Tường máng nghiêng 45
0
so với phương thẳng đứng, suy ra chiều cao của máng
là H
m
= 0,7 (m)
Chiều rộng của máng + mép máng là: 1,5 (m)
Chiều dài máng xả cặn bằng chiều rộng của bể: 3 (m)
Chiều dài bể lắng là: 17(m). Suy ra sẽ bố trí:

3,11
5,1
17
=
chọn bằng 11 máng
thu.
11 x 1,5 = 16,5 (m). Vậy sẽ bố trí khoảng cách giữa 2 mép máng thu là 0,1 m
còn 2 mép máng thu giáp tường bể sẽ có khoảng cách là 0,3 m.
Chọn ống thu cặn đặt trong máng thu cặn có đường kính D = 0,1 (m)
Diện tích của ống thu:
F
ống
2
2
ông
3
D
0,1
7,85 10

4 4

π
π×
= = = ×
(m
2
)
Tốc độ trung bình của cặn chảy qua ống phải lấy không nhỏ hơn 1m/s. Chọn
1m/s (theo mục 6.96 TCXD 33-2006)
Chọn đường kính lỗ để thu cặn vào ống là: D
lỗ
= 25 (mm) (D
lỗ
≥ 25 mm theo
TCXD 33:2006)
F
lỗ
4
2

109,4
4
025,0
4
D

×=
×π
=

π
=
m
2
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 22
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Số lỗ cần đục trên ống thu cặn:
16
109,4
1085,7
F
F
n
4
3

ông
=
×
×
==


lỗ.
Với số lỗ cần đục là 16, ta đục trên ống thu cặn hai hàng lỗ, mỗi hàng 8 lỗ, bố
trí 2 hàng lỗ so le nhau 1 góc 45
0
.
Kích thước xây dựng của bể:

 Chiều cao xây dựng bể:
Chiều cao bể có tính đến chiều cao bảo vệ là:
m 35,05,2HHH
BVB
=+=+=
Đáy bể được đổ bê tông với chiều dày 120 mm, suy ra tổng chiều cao xây dựng
của bể lắng (bao gồm cả chiều cao máng xả cặn) là:
XD BV M
H H H H 0,12 2,5 0,5 0,7 0,12 3,82 m= + + + = + + + =
 Chiều dài xây dựng bể:
Xây dựng bể bằng bê tông, tường dày 200 mm, suy ra tổng chiều dài bể lắng kể
cả 2 ngăn phân phối và thu nước:
m 4,19217)12()2,02(LL
B
=+=×+×+=
Tổng chiều dài của toàn bể lắng là:
m 8,194,04,19)2,02(LL
BXD
=+=×+=
 Chiều rộng xây dựng bể:
m 4,34,03)2,02(BB
XD
=+=×+=
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 23
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
2. TÍNH TOÁN BỒN LỌC ÁP LỰC
Nhiệm vụ:
Sử dụng các vật liệu lọc than Anthracite và cát thạch anh kết hợp với máy nén
khí tạo áp lực cho nước để giữ lại các cặn còn lại sau các công trình trước đảm bảo tiêu

chuẩn nước ăn uống và sinh hoạt.
2.1. Tính toán kích thước bể
Bể lọc áp lực mà nhóm chọn tính toán thiết kế sử dụng hai lớp vật liệu lọc là cát
thạch anh và than antraxit có các thông số lấy theo bảng các chỉ tiêu về vật liệu lọc và
tốc độ lọc của bể lọc áp lực sau đây: (trích từ bảng 4.10 trang 153- Xử Lý Nước Cấp-
TS.Nguyễn Ngọc Dung)
Loại bể
lọc
Đặc điểm lớp vật liệu lọc Tốc độ lọc (m/h)
d
min
(mm)
d
max
(mm)
d
td
(mm) K L (mm) Bình
thường
V
Tăng
cường
V
tc
Lọc 1
lớp
0,5
0,7
1,2
1,5

0,7÷0,75
0,9÷1,0
2,0÷2,2
1,8÷2,0
700÷800
1200÷1300
10
15
15
20
Lọc 2
lớp
0,5 1,2 0,7÷0,75 2
Cát thạch
anh
400÷500
15 20
0,8 1,8 1,1÷1,2 2
Than
antraxit
400÷500
Chọn:
Chiều cao lớp cát thạch anh h
1
= 500 mm, đường kính hiệu quả d
td
= 0,7 mm,
hệ số đồng nhất K = 2.
Chiều cao lớp than antraxit h
2

= 500 mm, đường kính hiệu quả d
td
= 1,1 mm, hệ
số đồng nhất K = 2.
Tốc độ lọc ở chế độ bình thường V = 15 m/h.
Tổng diện tích bề mặt bể lọc áp lực:
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 24
ĐỒ ÁN XỬ LÝ NƯỚC CẤP GVHD: TS ĐẶNG VIẾT HÙNG
Tổng diện tích bề mặt bồn lọc áp lực được tính theo công thức:
V
Q
F =

Trong đó:
Q : lưu lượng nước đi vào các bể, Q = 2000 m
3
/ngày.đêm = 83,333 m
3
/h
V : tốc độ lọc tính toán khi bể lọc làm việc bình thường (m/h), chọn V
tb
= 15
m/h
2
Q 2000
F 5,556 m
V 24 15
⇒ = = =
×

Số bể lọc tính theo công thức:
N 0,5 F 0,5 5,556 1,18= = × =
Chọn N bằng 2 bể
Kiểm tra lại tốc độ lọc tăng cường với điều kiện đóng 1 bể để rửa:
tc tb
1
N 2
V V 15 30 m/h > 20 m/h
N N 2 1
= × = × =
− −
(không an toàn). Vì vậy, ta phải thiết
kế thêm 1 bể lọc để dự phòng. Hai bể vận hành, 1 bể dự phòng.
→Diện tích 1 bể:
2
F 5,556
f 2,778 m
N 2
= = =
Đường kính 1 bể:

4f 4 2,278
D 1,88 m
3,14
×
= = =
π
Chọn D = 1,9 m
Lưu lượng nước qua mỗi bể :
3

Q 2000
q 11,574 10
2 2 24 3600

= = = ×
× ×
m
3
/s
SVTH: Nguyễn Thanh Sơn 06115026
Thân Thị Tứ 06115038 25

×