Luận văn
Ứng dụng mơ hình Barra cho
thị trường chứng khốn
Việt Nam
MỤC LỤC
DANH MỤC TỪ VIẾT TẮT
Trang
PHẦN MỞ ĐẦU ---------------------------------------------------------------------------------------- 1
Lý do chọn đề tài ------------------------------------------------------------------------------------ 1
Mục tiêu nghiên cứu --------------------------------------------------------------------------------- 2
Phương pháp nghiên cứu ---------------------------------------------------------------------------- 2
Kết cấu đề tài ----------------------------------------------------------------------------------------- 2
PHẦN I: CƠ SỞ LÝ LUẬN CƠ BẢN MƠ HÌNH ĐA NHÂN TỐ
1.1. Khái quát về rủi ro và tỷ suất sinh lợi ( TSSL) --------------------------------------------------- 3
1.1.1. Khái quát về rủi ro ---------------------------------------------------------------------------- 3
Cái nhìn tổng quan ---------------------------------------------------------------------------- 3
Đo lường rủi ro -------------------------------------------------------------------------------- 3
1.1.2. Tỷ suất sinh lợi và phân tích tỷ suất sinh lợi ----------------------------------------------- 4
Sơ lược về mơ hình cấu trúc rủi ro ---------------------------------------------------------------- 7
1.2.1. Ý tưởng ---------------------------------------------------------------------------------------- 7
1.2.2. Động lực thúc đẩy ---------------------------------------------------------------------------- 8
1.2.3. Tỷ suất sinh lợi hệ thống và việc đa dang hoá --------------------------------------------- 8
1.2.4. Những nền tảng của các mơ hình đa nhân tố ---------------------------------------------- 9
1.3. Các mơ hình cấu trúc rủi ro ---------------------------------------------------------------------- 10
1.3.1. Mơ hình định giá tài sản vốn -------------------------------------------------------------- 10
1.3.2. Lý thuyết kinh doanh chênh lệch giá ---------------------------------------------------- 12
1.3.3. Các mơ hình đa nhân tố -------------------------------------------------------------------- 12
Mơ hình đa nhân tố là gì? ------------------------------------------------------------------ 12
Các mơ hình đa nhân tố hoạt động như thế nào? ---------------------------------------- 13
Ưu và nhược điểm cuả các mơ hình đa nhân tố ----------------------------------------- 13
Những cơng thức tính tốn mơ hình ------------------------------------------------------- 14
Dự báo rủi ro bằng các mơ hình đa nhân tố ---------------------------------------------- 15
1.4. Mơ hình GEM ------------------------------------------------------------------------------------- 18
1.4.1. Phát triển mơ hình (Mơ hình Barra) ------------------------------------------------------ 18
Các chỉ số rủi ro ----------------------------------------------------------------------------- 19
Các thị trường nội địa ----------------------------------------------------------------------- 19
Các ngành ------------------------------------------------------------------------------------ 21
Các loại Tiền tệ ------------------------------------------------------------------------------ 23
1.4.2. Ước tính mơ hình ------------------------------------------------------------------------------- 24
Một cái nhìn tổng quan --------------------------------------------------------------------- 24
Việc lựa chọn chỉ số rủi ro ----------------------------------------------------------------- 25
Sự bình thường hóa ------------------------------------------------------------------------- 26
Lựa chọn và tiêu chuẩn hóa chỉ số rủi ro ------------------------------------------------- 26
Xác định ngành ------------------------------------------------------------------------------ 27
Ước tính tỷ suất sinh lợi nhân tố ----------------------------------------------------------- 28
Tính tốn ma trận hiệp phương sai -------------------------------------------------------- 28
Tỷ trọng theo số mũ ------------------------------------------------------------------------- 29
Tính tốn độ biến động thị trường (Các mơ hình GARCH) ---------------------------- 30
Các quốc gia trong GEM ------------------------------------------------------------------- 31
Ước tính rủi ro tiền tệ ----------------------------------------------------------------------- 31
1.4.3. Cập nhật mơ hình ------------------------------------------------------------------------------- 31
PHẦN II: ỨNG DỤNG MƠ HÌNH ĐA NHÂN TỐ TRÊN TTCK VIỆT NAM ------------ 33
2.1. Ước lượng và kiểm định mối quan hệ giữa các nhân tố vĩ mô với Vnindex --------------- 33
2.2. Kiểm định Giá trị giao dịch của nhà đầu tư nước ngoài với Vnindex ----------------------- 38
2.3. Kiểm định mối quan hệ CPI của các ngành với Vnidex ------------------------------------- 39
2.4. Kiểm định mối quan hệ giữa GDP các ngành với Vnindex ---------------------------------- 41
2.5. Kiểm định mối quan hệ của từng nhân tố đối với Vnindex ----------------------------------- 42
2.5.1. Mối quan hệ của các yếu tố vĩ mô:
CPI, GDP, cung tiền, lãi suất, tỉ giá và Vn-Index ---------------------------------------------- 42
2.5.2. CPI của các ngành và Vnindex ----------------------------------------------------------- 43
2.5.3. Kiểm định mối quan hệ giữa GDP các ngành và Vnindex ---------------------------- 45
PHẦN III: KIẾN NGHỊ CHO THỊ TRƯỜNG CHỨNG KHOÁN VIỆT NAM ----------- 47
PHỤ LỤC ------------------------------------------------------------------------------------------------- i
DANH MỤC TÀI LIỆU THAM KHẢO ---------------------------------------------------------- xv
DANH MỤC CÁC TỪ VIẾT TẮT
TSSL
Tỷ suất sinh lợi
TTCK
Thị trường chứng khoán
NĐT
Nhà đầu tư
DMĐT
Danh mục đầu tư
DM
Danh mục
NĐT
Nhà đầu tư
GPD
Tổng sản phẩm quốc nội
CPI
Chỉ số giá tiêu dùng
CK
Chứng khoán
R-squared
Hệ số xác định R2
F-statistic
Thống kê F
Β
Độ nhạy cảm chứng khoán với biến động thị trường
N
Số quan sát mẫu
K
Số lần
Α
Mức ý nghĩa
F
Phân phối F hay phân phối Fisher
P
Giá trị xác suất ,mức ý nghĩa quan sát,.
t-Statistic
Thống kê t
Variable
Biến số
Coeffcient
Hệ số
n1,n2
Các bậc tự do
MSIC
Phân ngành chuẩn của Malaysia (là phân loại các hoạt động kinh tế
do tổ chức Thống kê xây dựng cho các cơ sở hoạt động.
FT
Thời báo Tài chính (Financial Times – FT), tờ báo uy tín của giới tài
chính Anh nói riêng và thế giới nói chung.
PHẦN MỞ ĐẦU
Lý do chọn đề tài
Trong đầu tư, tỷ suất sinh lợi và rủi ro luôn là một cặp “bài trùng”. Các nhà đầu tư nói chung,
nhà đầu tư trên thị trường chứng khốn nói riêng, ln thấu hiểu điều này. Họ chấp nhận lý
thuyết đánh đổi giữa rủi ro và TSSL như một điều hiển nhiên. Tuy vậy, với tâm lý của những
NĐT “bình thường” thì đa dạng hố đầu tư là nhu cầu của họ. Vì trong thực tế, có trường hợp
giá cả chứng khốn được định giá đúng, nhưng mỗi chứng khoán vẫn chứa đựng rủi ro.
Những rủi ro này có thể san sẻ thơng qua việc đa dạng hố DMĐT. Bên cạnh đó, quản lý
DMĐT cịn đáp ứng sở thích, nhu cầu, lứa tuổi của NĐT trong chính sách lựa chọn DMĐT
và liên quan đến rủi ro. Như vậy, việc ứng dụng mơ hình đa nhân tố trong quản lý DMĐT
như là một nghiệp vụ quan trọng trong kinh doanh chứng khốn và là cơng cụ hữu hiệu để
kiểm soát rủi ro và đáp ứng nhu cầu tối đa hóa TSSL của NĐT.
Trên thực tế, những mơ hình đã ra đời trước đây, như lý thuyết danh mục do Harry Markowit
đề xướng vào năm 1960. Đây là một khám phá đầu tiên về việc đa dạng hóa làm giảm thiểu
rủi ro như thế nào và đề xuất sử dụng độ lệch chuẩn và phương sai để đo lường rủi ro của
từng chứng khoán và DMĐT. Lý thuyết thị trường vốn đã mở rộng lý thuyết danh mục và
phát triển một mơ hình định giá các tài sản rủi ro. Kết quả là mơ hình định giá tài sản vốn
CAPM (Capital Asset Pricing Model) có một số hạn chế về mặt kỹ thuật. Đó là mơ hình này
dựa trên ý tưởng danh mục thị trường là danh mục khơng chỉ có giá trị trung bình / phương
sai hiệu quả mà còn là một danh mục được đầu tư hoàn toàn với tỷ số của TSSL vượt trội
mong đợi so với độ lệch chuẩn là lớn nhất. Sau đó, vào giữa những năm 1970, Ross đã đề
xuất một cách khác để xem xét các TSSL của cổ phiếu đó là mơ hình chênh lệch giá APT
(Arbitrage Pricing Theory) nhưng APT cũng có những giới hạn của nó. Trong khi diễn tả
một mơ hình phân tích rủi ro đa nhân tố nhưng lại không chỉ rõ những nhân tố được sử dụng.
Hơn nữa, APT không xác định được tỷ trọng của những nhân tố khác nhau hoặc không đưa
ra được phương pháp để tính tốn những biểu hiện. Chính vì điều đó mà các nhà đầu tư phải
dựa vào một mơ hình đa nhân tố thiết thực và phải thuộc về trực giác.
Và đề tài nhằm giới thiệu một mô hình tiến bộ hơn và có thể cũng giống như những mơ hình
đa nhân tố khác là phân tích biểu hiện của rủi ro dựa trên các nhân tố được nhận biết bởi
BARRA. Chính vì vậy mà mơ hình được lấy tên là mơ hình BARRA. Những nhân tố chung
này phân loại các biểu hiện của một danh mục thông qua những nhân tố thuộc về “phong
cách” (như quy mơ và thành cơng) hay cịn gọi là nhân tố trực giác, thị trường nội địa và
phân loại ngành. Chúng cung cấp những thông tin hữu dụng về cơ cấu của danh mục. Tuy
nhiên, mơ hình cũng có nét riêng biệt là phân tích rủi ro theo nhân tố tiền tệ. Mơ hình rủi ro
đa nhân tố dựa trên ý tưởng rằng TSSL của một cổ phiếu có thể được giải thích bởi một tập
hợp nhiều nhân tố chung cộng với một nhân tố đặc trưng gắn với cổ phiếu đó. Các nhân tố có
thể là những nhân tố tác động ảnh hưởng đến tồn bộ nhóm cổ phiếu. Đi vào phân tích từng
nhóm nhân tố sẽ cho ta thấy được ảnh hưởng của từng nhân tố đến TSSL của các cổ phiếu.
Tuy nhiên, việc khó khăn hiện nay là những nhân tố được chọn như đã trình bày ở trên có
thật sự được đưa vào mơ hình khi ứng dụng tại Việt Nam hay khơng và những nhân tố này
tại Việt Nam có thực sự giải thích được mơ hình hay khơng? Như vậy, đề tài ra đời cũng
khơng nằm ngồi mục đích đó.
Mục tiêu nghiên cứu
a. Hệ thống hóa các lý luận cơ bản về mơ hình đa nhân tố, từ đó đưa tới mơ hình thiết thực
và tiên tiến hơn, đó là mơ hình Barra
b. Lượng hóa mối quan hệ giữa chỉ số VN-Index và các nhân tố kinh tế vi mô (nhân tố thị
trường), nhân tố vĩ mô, các chỉ số kinh tế. Từ đó, có thể đưa ra những phân tích cũng như
những dự báo về diễn biến của thị trường thông qua các nhân tố.
c. Đề xuất kiến nghị đối với thị trường chứng khốn Việt Nam để có thể ứng dụng tốt mơ
hình Barra.
Phương pháp nghiên cứu
Đề tài sử dụng phương pháp phân tích tổng hợp, thống kê mơ tả đóng vai trị chủ đạo trong
suốt q trình nghiên cứu. Đồng thời dùng phương pháp hồi quy để đưa đến kết quả thơng
qua mơ hình Eviews. Đồng thời sử dụng các phương pháp kiểm định kết quả của mơ hình để
xem xét có hay khơng có mối tương quan giữa VN-Index và các nhân tố kinh tế vi mô, nhân
tố vĩ mô, các chỉ số kinh tế.
Kết cấu đề tài
Đề tài gồm có 3 phần:
Phần 1: Lý luận cơ bản về mơ hình Barra.
Phần 2: Ứng dụng mơ hình Barra cho thị trường chứng khoán Việt Nam.
Phần 3: Kiến nghị đối với thị trường chứng khoán Việt Nam.
PHẦN 1: LÝ LUẬN CƠ BẢN VỀ MƠ HÌNH BARRA
1.1. Khái quát về rủi ro và tỷ suất sinh lợi ( TSSL)
Những khái niệm về rủi ro và TSSL là trọng tâm của việc thảo luận về vấn đề đầu tư tài
chính. Đó là mối quan tâm hàng đầu của các NĐT. Để đổi lấy việc phải sống chung với rủi
ro, các NĐT đòi hỏi một TSSL cao hơn. Trong lĩnh vực tài chính, điều này được gọi là sự
đánh đổi giữa rủi ro và TSSL và các nhà đầu tư lựa chọn sự kết hợp giữa rủi ro và TSSL dựa
trên thái độ của họ đối với rủi ro.
1.1.1. Khái qt về rủi ro
Cái nhìn tổng quan
Trong một mơi trường đầu tư không ổn định, các NĐT thường không sống chung với rủi ro
Theo quan điểm truyền thống
Rủi ro làm cho kết quả đạt được thấp hơn so với mong đợi. Tuy nhiên, trong quá trình đầu tư,
chúng là cơng cụ để đo lường sự bất ổn. Nó mơ tả TSSL của kết quả theo hai hướng: tích cực
và tiêu cực cũng giống như tính chất của sự khơng chắc chắn. Chúng ta thấy vấn đề này tuy
nhỏ nhưng lại là một đặc điểm rất quan trọng. Khoản đầu tư tốt nhất và có mức độ rủi ro
thích hợp phụ thuộc vào khẩu vị của NĐT đối với rủi ro như thế nào, đặc biệt là tổng thể về
rủi ro và lợi nhuận.
Theo quan điểm hiện đại
Rủi ro được xem như là độ biến động hoặc sự bất ổn về TSSL của một CK hoặc một danh
mục. Thêm vào đó, rủi ro phản ánh một sự khơng chắc chắn trong tương lai.
Đo lường rủi ro
Trong quá trình đầu tư, rủi ro được đo lường nhiều hơn là các thành quả đạt được. Nó mơ tả
TSSL của thành quả theo hai hướng, tốt và xấu cũng như tính chất của sự khơng chắc chắn.
Điều này khơng lớn nhưng nó là điểm quan trọng. Các NĐT với mức độ rủi ro thích hợp nhất
là những NĐT có cái nhìn phụ thuộc vào khẩu vị của NĐT đối với rủi ro như thế nào, đặc
biệt là toàn bộ tài sản của NĐT.
Một thước đo rủi ro thuộc về trực giác chính là độ lệch chuẩn của tỷ suất sinh lợi. Độ lệch
chuẩn là một khái niệm về giá trị trung bình hoặc giá trị mong đợi mà các kết quả có khuynh
Std[r˜]=
~
Var[r ]
Var[r˜]=E[(r˜- r )]
hướng rơi vào với xác suất là 2/3. Một thước đo liên quan là phương sai tức độ lệch chuẩn
bình phương. Cơng thức là:
Trong đó:
r˜
: tỷ suất sinh lợi
r
: tỷ suất sinh lợi mong đợi hoặc trung bình
Std[x] : Độ lệch chuẩn của x
Var[x]: Phương sai của x
E[x] : Giá trị mong đợi của x
Độ lệch chuẩn: là thước đo rủi ro phổ biến vì nó được đo lường dựa trên cùng các đơn vị như
TSSL. Đương nhiên, nếu biết được độ lệch chuẩn thì phương sai sẽ được tính toán một cách
dễ dàng và ngược lại.
Độ lệch chuẩn cân xứng vì nó phản ánh cả những TSSL mong đợi và khơng mong đợi. (Hình
1-1). Các nhà phê bình cho rằng, sự cân xứng này đã khơng đo lường chính xác được những
tác động khơng chắc chắn - đó cũng chính là điều mà các NĐT thua lỗ muốn tránh. Ví dụ,
TSSL mong đợi và TSSL khơng mong đợi đều được quan tâm như nhau. Tuy nhiên, độ lệch
chuẩn rất hữu dụng, vì nó cung cấp một thước đo tương đối về biểu hiện của rủi ro.
Hình 1-1:
Ri ro: S
Giá tr
i
-1Std.dev
mong
+1 Std.dev
phân tán TSSL
l ch chu n là m t
th
c
o th ng kê v
s
phân tán xung quanh m t giá
tr
trung bình – trong
- 2%
1/6
Độ lệch chuẩn có một vài đặc điểm cần xem xét, đó là:
2/3
1/6
Độ lệch chuẩn khơng có thuộc tính danh mục
Độ lệch chuẩn DMĐT khơng phải là bình quân gia quyền của các thành phần hợp lại vì ta
có độ lệch chuẩn chính là phương sai của TSSL.
Rủi ro TSSL vượt trội = rủi ro của TSSL tổng thể.
1.1.2. Tỷ suất sinh lợi và phân tích tỷ suất sinh lợi
TSSL là phần thưởng đối với NĐT. TSSL bao gồm những khoản thanh toán nhận được bằng
tiền mặt (cổ tức) và những thay đổi về giá trị của một q trình đầu tư (lãi hoặc lỗ vốn). Nói
một cách đơn giản thì TSSL chính là một phần bù phần rủi ro được tạo ra bởi một chứng
khoán hoặc một danh mục, TSSL thặng dư cộng với mức lãi suất phi rủi ro.
Mỗi nguồn của rủi ro thì tương đương với một tỷ lệ của toàn bộ TSSL. Những thành phần
chính của TSSL (xem hình 1-2) là:
TSSL phi rủi ro là TSSL chắc chắn nhận được trong quá trình đầu tư hồn tồn khơng có
rủi ro, thường là TSSL Trái phiếu chính phủ ngắn hạn (được xem như một sự đầu tư phi
rủi ro).
TSSL vượt trội cho một danh mục đa quốc gia, là TSSL vượt trội hơn so với TSSL phi
rủi ro theo đồng bản tệ, theo cách, tổng TSSL của đồng bản tệ trừ đi TSSL phi rủi ro.
Lợi nhuận theo đồng bản tệ: là viễn cảnh về tiền tệ của NĐT. Trong hầu hết các trường hợp
thì nó là đồng bản tệ của NĐT. Ví dụ, lợi nhuận theo đồng bản tệ của một NĐT Mỹ là đôla
Mỹ.
Mặc dù TSSL phi rủi ro bị tác động bởi toàn bộ hành vi của các NĐT, nhưng các nhà quản trị
danh mục riêng lẻ vẫn kiểm soát tốt mức TSSL vượt trội so với mong đợi của một danh mục.
Các NĐT có thể điều chỉnh chiến lược đầu tư hoặc cơ cấu danh mục của mình để thay đổi rủi
ro của một danh mục và cả TSSL của nó. Với những tài sản khơng có ở thị trường nội địa
hoặc nằm ngồi mong đợi của NĐT thì TSSL vượt trội sẽ bao gồm TSSL vượt trội nội địa và
TSSL tiền tệ. Sơ đồ phân chia TSSL: (Hình 1-2)
T ng TSSL
TSSL phi r i ro
TSSL v
a
TSSL
tr ng
c
TSSL v
t tr i
t tr i n i
TSSL ti n
t
TSSL nhân t
chung
Tổng TSSL = TSSL vượt trội + TSSL phi rủi ro.
TSSL vượt trội = TSSL vượt trội nội địa + TSSL tiền tệ; một vài TSSL được tính tốn từ
lợi nhuận theo đồng bản tệ của NĐT (Lợi nhuận theo đồng bản tệ).
TSSL vượt trội nội địa được tính tốn bằng cách sử dụng cơng thức mơ hình vốn tồn
cầu(GEM) như sau:
TSSL vượt trội nội địa = TSSL quốc gia + TSSL ngành + TSSL chỉ số rủi ro + TSSL đặc
trưng. Trong đó:
TSSL vượt trội nội địa: là TSSL tăng thêm so với TSSL phi rủi ro nội địa của một quá
trình đầu tư, được trình bày trong những khoản mục tiền tệ nội địa. Nó được phân chia thành
TSSL đặc trưng và TSSL nhân tố chung.
TSSL đặc trưng: là TSSL của một tài sản riêng lẻ một phần của TSSL vượt trội khơng được
giải thích bởi các nhân tố chung và TSSL đặc trưng của các tài sản khác.
TSSL nhân tố chung: bao gồm những TSSL mà liên quan đến các đặc tính của chứng
khốn. Trong mơ hình vốn toàn cầu, những nhân tố chung này bao gồm ngành, thị trường nội
địa, và chỉ số rủi ro.
Ngoài ra: Mơ hình vốn tồn cầu phân biệt TSSL tiền tệ với các TSSL nội địa.
TSSL tiền tệ: là TSSL thị trường phi rủi ro cộng với những thay đổi trong tỷ giá hối đoái.
Mặc dù đã phân biệt như vậy nhưng TSSL tiền tệ lại phụ thuộc vào TSSL vượt trội nội địa,
vì chắc chắn các sự kiện nổi bật của quốc gia sẽ tác động đến cả tỷ giá hối đối và tình hình
của thị trường nội địa.
Sự lựa chọn lợi nhuận theo đồng bản tệ của NĐT sẽ cung cấp nền tảng cho việc đánh giá
TSSL tiền tệ. Lợi nhuận theo đồng bản tệ là viễn cảnh mà theo đó các NĐT đánh giá DM.
Thường thì lợi nhuận của NĐT được phản ánh theo đồng bản tệ.
Cơng thức TSSL vượt trội đã được đơn giản hóa này sẽ trình bày TSSL tiền tệ liên quan đến
TSSL hối đoái và TSSL vượt trội nội địa như thế nào:
r
rx
: TSSL tỷ giá hối đoái
rl
: TSSL tài sản nội địa
rle
: TSSL vượt trội tài sản nội địa
rc
: TSSL tiền tệ
rfl
Trong đó:
1+r = [1+rx]*[1+r]
1+r = 1 + rx + ( rx *rl ) + rl
1+r = 1+rx + rl
Và
rl = rle + rfl
rc = rfl + rx + (rfl * rx)
1+r = 1 + rle + rc
: Tỷ suất sinh lợi
: TSSL phi rủi ro nội địa
Để tuyến tính hóa những chức năng này cho các mục đích tính tốn, Mơ hình vốn tồn cầu
loại trừ các sản phẩm thuộc tính (rx*rl) và (rfl*rx) vì trong hầu hết các trường hợp, những
khoản mục này thì khơng đáng kể.
Sơ lược về mơ hình cấu trúc rủi ro
Trải qua một thời gian dài từ lý thuyết đầu tư cổ điển nhất cho đến những phân tích quan
trọng với kỹ thuật tính tốn phức tạp về những cơng cụ tài chính hiện đại. Với những khái
niệm chính xác hơn về rủi ro và TSSL, các mơ hình đã thay đổi để phản ứng với những thay
đổi của môi trường đầu tư.
1.2.1. Ý tưởng
Mô hình rủi ro cấu trúc xuất phát từ việc phân chia TSSL của một tài sản. Mơ hình rủi ro đa
nhân tố dựa trên ý tưởng rằng TSSL của một cổ phiếu có thể được giải thích bởi một tập hợp
nhiều nhân tố chung cộng với một nhân tố đặc trưng gắn với cổ phiếu đó. Chúng ta có thể
hiểu những nhân tố chung này như là những nhân tố tác động ảnh hưởng đến cả nhóm cổ
phiếu. Các cổ phần này có thể là tất cả các cổ phiếu trong ngành ngân hàng, các cổ phiều có
địn bẩy cao và cả những cổ phiếu có tỷ lệ vốn hóa nhỏ hơn …Sau đây chúng ta sẽ đề cập
một cách chi tiết những loại nhân tố có thể xảy ra.
Bằng cách xác định những nhân tố quan trọng, chúng ta có thể xác định được bình diện của
vấn đề. Thay vì đề cập đến 6000 cổ phiếu thì chúng ta giải quyết 68 nhân tố. Các cổ phiếu
thay đổi nhưng nhân tố thì khơng. Tình huống sẽ đơn giản hơn nhiều khi chúng ta tập trung
vào một số lượng nhỏ những nhân tố và cho phép những cổ phiếu thay đổi độ nhạy cảm theo
những nhân tố này.
Một mơ hình rủi ro cấu trúc bắt đầu bằng cách phân tích TSSL theo cấu trúc tuyến tính đơn
giản với 4 thành phần: TSSL vượt trội của cổ phiếu, độ nhạy cảm của cổ phiếu theo những
nhân tố này, TSSL nhân tố thuộc tính và TSSL đặc trưng. Cấu trúc đó là:
r (t )
k
( t ). b k ( t ) u n ( t )
X
n ,k
Rn (t) : là TSSL vượt trội (TSSL vượt trên TSSL phi rủi ro) của cổ phiếu n trong giai
đoạn t đến (t+1).
Xn-n (t): là độ nhạy cảm của cổ phiếu n theo nhân tố k được ước tính trong thời kỳ t.
Độ nhạy cảm thường được gọi là tải trọng nhân tố. Đối với nhân tố ngành thì độ nhạy cảm
này hoặc bằng 0 hoặc bằng 1, điều này cho thấy cổ phiếu này có thuộc về ngành đó hay
khơng. Đối với những nhân tố chung khác, độ nhạy cảm được chuẩn hố để độ nhạy cảm
trung bình của tất cả các cổ phiếu bằng 0 và độ lệch chuẩn của các cổ phiếu bằng 1.
Bk(t): là TSSL nhân tố theo nhân tố k trong suốt thời kỳ t đến (t+1).
Un(t): là TSSL đặc trưng của cổ phiếu n k trong suốt thời kỳ t đến (t+1). Đôi khi TSSL
đặc trưng của cổ phiếu này được gọi là TSSL đặc tính đối với cổ phiếu: TSSL này khơng thể
giải thích bằng mơ hình rủi ro hình. Tuy nhiên mơ hình rủi ro sẽ giải thích rủi ro đặc trưng.
Vì vậy việc dự đoán rủi ro sẽ được xem xét rõ ràng rủi ro TSSL đặc trưng (Un).
1.2.2. Động lực thúc đẩy
Tối ưu hố DMĐT địi hỏi rủi ro phải thấp nhất với TSSL mong đợi chắc chắn. Cấu trúc rủi
ro của các CK như là những biểu hiện của chúng đối với các nhân tố ngành, hoặc hàng hoá
/nhân tố ... phải được phân loại và sau đó cơ cấu của DM tối ưu được đưa ra để tối thiểu hoá
bất kỳ nhân tố rủi ro đặc trưng nào trong DM.
Điển hình, những nhân tố rủi ro phụ thuộc nhau, ví dụ như: ngành y tế và ngành dược có mối
tương quan với nhau. Ngoài ra TSSL mong đợi của một CK thì cũng liên quan đến những tổn
thất của chúng với những nhân tố rủi ro chắc chắn. Vì vậy tối ưu hố DMĐT, hoặc quản trị
rủi ro khơng thể nào thực hiện được bằng việc giảm tổn thất của DM đối với từng nhân tố rủi
ro đơn lẻ một cách độc lập. Thay vào đó, một danh mục hiệu quả có thể xây dựng dựa trên lý
thuyết Markowit. Mặc dù vậy, những đòi hỏi số liệu được lý thuyết Markovit áp dụng trong
một DMĐT lớn là cần thiết. Đặc biệt là, chúng ta chỉ ước lượng TSSL mong đợi và ma trận
hiệp phương sai, điều này thật sự rất khó cho một danh mục lớn hoặc mơ hình đa nhân tố và
cũng là cái rất cần thiết để đạt đến mục tiêu này. Vì thế, những mục tiêu của việc phát triển
các mơ hình nhân tố rủi ro gồm 2 phần:
Giúp chúng ta hiểu và kiểm soát được những tổn thất của danh mục đối với bất cứ nhân
tố rủi ro đặc trưng nào.
Phương thức tối ưu hoá danh mục hoặc quản trị rủi ro.
1.2.3. Tỷ suất sinh lợi hệ thống và việc đa dang hoá
Trước những năm 50, khơng hề có khái niệm về TSSL hệ thống. TSSL là một sự tăng lên về
giá trị của CK và rủi ro thì ngựợc lại là một sự giảm xuống. Cơng cụ đầu tư chính của NĐT
là trực giác và phân tích tài chính là theo tầm nhìn. Việc lựa chọn danh mục đơn giản chỉ là
việc tập hợp một nhóm các chứng khốn “tốt” lại với nhau.
a d ng hóa và r i ro:
Khi m t nhà qu n tr danh m c t ng s
ch ng khốn trong danh m c lên thì r i ro
th nh d hay r i ro phi th tr ng
c a d ng hóa.
Hình 2-1
Rủi ro
danh
mục
(Độ
lệch
chuẩn )
và
TSSL
Rủi ro thặng dư
Tổng rủi ro
Rủi ro hệ thống
Số chứng khoán trong danh mục
“ Mua một chứng khốn. Nếu nó lên thì hãy bán nó. Nếu nó xuống thì đừng nên mua nó”
Will Rogers, 1931. “Đa dạng hóa là tốt”, Harry Markowitz, 1952.
Những lý thuyết của các nhà lý luận tài chính mang tính khoa học và thống kê hơn vào đầu
những năm 50. Cũng vào lúc đó, chiến lược đầu tư được xem như là vấn đề nan giải. Để hạn
chế những TSSL không mong đợi, các nhà đầu tư đã đa dạng hố DMĐT của mình bằng
cách dùng những tài sản có TSSL cao để bù trừ cho những tài sản có TSSL thấp.
Chúng ta biết đa dạng hóa tác động đến biểu hiện của rủi ro như thế nào. Nó tính tốn mức
trung bình của rủi ro liên quan đến nhân tố và giảm đáng kể rủi ro đặc trưng của CK. Tuy
nhiên, việc đa dạng hóa khơng loại bỏ hồn tồn rủi ro, vì các CK có khuynh hướng lên
xuống cùng với thị trường. Do đó, rủi ro thị trường hoặc rủi ro hệ thống không thể được loại
bỏ bằng việc đa dạng hóa.
1.2.4. Những nền tảng của các mơ hình đa nhân tố
CAPM giả định rằng chỉ có một nhân tố rủi ro từ nhiều phía khác nhau trong TSSL của CK
và phân loại nguồn của sự bất ổn thành những nhân tố hệ thống, không hệ thống của CK và
những nhân tố đặc trưng. Một danh mục thị trường đại diện có thể hồn tồn loại trừ được
những đặc tính của rủi ro trong các CK riêng lẻ. Do đó, chỉ có rủi ro hệ thống của một CK
riêng lẻ là có thể tác động đến tồn bộ rủi ro của danh mục. Vì vậy chi phí rủi ro của một CK
riêng lẻ có thể xác định độc lập bởi hệ số Beta của nó trên danh mục thị trường. Nhưng trong
thực tế, quan điểm của rủi ro đơn giản hố q mức khơng thể nắm bắt được sự dịch chuyển
của thị trường vốn. Ví dụ, qui mô của công ty là một nhân tố quan trọng của cơng ty đó.
Những NĐT đầu tư vào những cơng ty nhỏ, thì sẽ đa dạng hố danh mục của họ bằng cách
đầu tư thêm cổ phiếu vào doanh nghiệp lớn và ngược lại. Giả định rằng tồn tại một chênh
lệch kỳ hạn giữa những nhu cầu của các cổ phiếu nhỏ và lớn, điều này sẽ làm cho CK và
TSSL mong đợi lệch so với những dự đoán của CAPM.
Metron đã phát triển CAPM đa nhân tố xuất phát từ nhu cầu của các CK liên quan đến vịng
đời của nó. Trong khi đó CAPM đơn nhân tố chỉ có dự báo rủi ro thị trường mới tác động
tới TSSL. Những nguồn chung của rủi ro có thể ảnh hưởng đến TSSL của CK như qui mô,
giá trị hay sự bất ổn của công ty và nền công nghiệp của quốc gia đó. Theo kinh nghiệm,
kiểm định hiệp phương sai của mơ hình đơn nhân tố đo lường nhân tố trong TSSL của CK có
thể qui cho sự biến đổi trong TSSL thị trường. Vì vậy, từ kinh nghiệm nghiên cứu, một mơ
hình đa nhân tố được ưa chuộng hơn mơ hình đơn nhân tố.
1.3. Các mơ hình cấu trúc rủi ro
1.3.1. Mơ hình định giá tài sản vốn
Trước tiên, ta sẽ nói sơ qua về Mơ hình chéo nhân tố đơn: là mơ hình ấn định mỗi cổ phiếu
có hai thành phần rủi ro rủi ro thị trường và rủi ro thặng dư.
Đây là mơ hình tiền thân của CAPM. Mơ hình này bắt đầu phân tích TSSL như sau:
Mơ hình này giả định rằng TSSL khơng tương quan với nhau, và vì thế hiệp phương sai sẽ:
rn
n
cov rn , rm
2
n
.rM
n
2
n m . M
2
n
.
2
M
2
n
Trong đó: n : TSSL thặng dư của cổ phiếu n
n : Rủi ro thặng dư của cổ phiếu n
n : beta của cổ phiếu n
m : beta của cổ phiếu m
r n :TSSL của cổ phiếu n
rm : TSSL của cổ phiếu m
Khi nhà quản trị đầu tư vào tiền tệ hiểu biết hơn, điều này sẽ dẫn đến việc nhận biết được
những khái niệm cơ bản của q trình phân tích đầu tư. Mơ hình định giá tài sản vốn
(CAPM) là phương pháp mô tả mối quan hệ cân bằng giữa rủi ro TSSL và rủi ro hệ thống.
Giả định cơ bản của CAPM là các NĐT sẽ không được đền bù bằng việc thực hiện đa dạng
hóa rủi ro (thặng dư). CAPM giả định rằng TSSL thặng dư mong đợi là bằng 0, trong khi
TSSL hệ thống mong đợi thì lớn hơn hoặc gần bằng 0.
“Chỉ có những rủi khơng đa dạng hóa mới tạo ra khoảng chênh lệch”.(William F. Sharpe,
1964). Mơ hình định giá tài sản vốn:
Hình 3-1
TSSL
TSSL
thị trường
DM thị trường
TSSL
Phi rủi ro
0
1
Beta
2
Mơ hình định giá tài sản vốn: Giả định rằng TSSL vượt trội mong đợi của các CK tỷ lệ với
hệ số rủi ro hệ thống, hay Beta. Danh mục thị trường được mô tả bởi Beta đơn nhất.
Thước đo biểu hiện rủi ro hệ thống của danh mục được gọi là Beta (β). Beta là độ biến động
hay độ nhạy cảm của một CK hay danh mục đối với những biến động của thị trường. Đơn
giản hơn, Beta là một khái niệm quan trọng được dùng để đánh giá rủi ro hệ thống của một
tài sản. TSSL và những chi phí cho rủi ro của bất kỳ một CK hoặc một danh mục nào cũng
đều liên quan đến Beta, biểu hiện rủi ro không hệ thống do không đa dạng hóa được.
E(ri˜) – rf = i *E [rm˜-rf]
Trong đó :
r˜ i : Tỷ suất sinh lợi trên tài sản i
rf : Tỷ suất sinh lợi phi rủi ro
rm : Tỷ suất sinh lợi của danh mục thị trường
i=
Cov(ri˜, rm˜)
Var (rm˜)
CAPM dễ sử dụng và bắt đầu phân chia thành những thành phần của rủi ro. Tuy nhiên, mơ
hình đơn nhân tố đơn giản này khơng hồn chỉnh. Nó loại trừ rủi ro mà phát sinh từ những
nguồn nhân tố chung.
1.3.2. Lý thuyết kinh doanh chênh lệch giá
Trước những năm 70, các NĐT nhận ra rằng những tài sản có những đặc tính tương tự nhau
thì có khuynh hướng phản ứng theo những cách giống nhau. Nhận xét này được tìm thấy
trong Lý thuyết kinh doanh chênh lệch giá (APT). APT giả định rằng TSSL mong đợi của
CK và danh mục gần như liên quan đến những TSSL của một số các nhân tố hệ thống cơ sở
chưa biết .
APT có những giới hạn của riêng. Trong khi nó diễn tả một mơ hình phân tích rủi ro đa nhân
tố nhưng lại không chỉ rõ những nhân tố được sử dụng. Hơn nữa, APT không xác định được
tỷ trọng của những nhân tố khác nhau hoặc không đưa ra được phương pháp để tính tốn
những biểu hiện. Chính vì điều đó mà các NĐT phải dựa vào một mơ hìmh đa nhân tố thiết
thực và thuộc về trực giác.
“Mơ hình chênh lệch giá đưa ra một sự thay thế đối với biến đổi trung bình của mơ hình
định giá tài sản vốn”. (Stephen A. Ross, 1976 Arbitrage Pricing Theory).
Các cơng ty có những đặc tính tương tự nhau trong thời gian 1 tháng tạo ra những TSSL khác
hẳn với các công ty khác. Nền tảng của sự khác nhau này cho thấy sự liên quan đến các nhân
tố Barra Rosenberg, 1974 Multiple Factor Models.
1.3.3. Các mơ hình đa nhân tố
Mơ hình đa nhân tố là gì?
Sự phát triển của mơ hình đa nhân tố song song cùng với sự phát triển của lý thuyết APT.
Các mơ hình đa nhân tố giúp chia rủi ro thặng dư thành rủi ro đặc trưng và rủi ro nhân tố
chung, phát triển theo hướng chọn và ước tính những nhân tố mà tác động đến các TSSL
mong đợi và rủi ro của một CK hoặc danh mục, điều này APT không mô tả được. Những mơ
hình này cung cấp một sơ đồ để phát triển các công cụ đo lường rủi ro, cơ cấu danh mục và
những thuộc tính biểu hiện.
Các mơ hình đa nhân tố trình bày rõ ràng về những mối quan hệ giữa các TSSL CK trong
một danh mục. Nền tảng cơ bản của các mơ hình đa nhân tố là những CK tương tự nhau nên
thể hiện những thuộc tính giống nhau. “Sự tương tự” này được định nghĩa là những thuộc
tính của tài sản mà dựa trên những thông tin của thị trường, như giá cả và số lượng hoặc dữ
liệu cơ bản có nguồn gốc từ bảng cân đối kế toán và báo cáo thu nhập.
Các mơ hình đa nhân tố xác định được các nhân tố chung và đưa ra được độ nhạy cảm của
TSSL đối với những mong đợi về những nhân tố này. Việc đánh giá đặc điểm của rủi ro
không liên quan gì đến TSSL nhân tố chung và TSSL đặc trưng. Đặc điểm này của rủi ro sẽ
phản ứng ngay lập tức đối với những thay đổi của các thông tin nền tảng.
Các mơ hình đa nhân tố hoạt động như thế nào?
Các mơ hình đa nhân tố dựa trên nền tảng là các CK được quan sát theo thời gian. Những
bước khó khăn chỉ ra những nền tảng đó và sau đó là nhận dạng chúng với những thuộc tính
của tài sản mà các NĐT có thể hiểu được. Các thuộc tính của tài sản là những đặc điểm tiêu
biểu liên quan đến sự dịch chuyển giá của CK, như là các đặc điểm của ngành.
Trong bước phát triển mô hình này thì rủi ro và TSSL mà khơng có tương quan với nhau sẽ
được tách biệt. Thật quan trọng khi những mơ hình này bao gồm ln cả những nguồn của
rủi ro và TSSL nhưng phải loại trừ những đặc điểm thuộc tính có thể ảnh hưởng đến q
trình phân tích.
Việc tính tốn rủi ro là bước cuối cùng trong việc xây dựng một mơ hình hữu dụng. Phương
sai, hiệp phương sai và mối tương quan giữa các nhân tố được ước lượng và tính tốn. Các
NĐT dựa vào việc tính tốn rủi ro để quyết định việc lựa chọn các CK, phân bổ danh mục
đầu tư và các chiến lược đầu tư khác. Những quyết định của các NĐT dựa trên những thơng
tin có được từ việc phân tích mơ hình kết hợp với những mong đợi về TSSL mà họ có được
từ những nguồn nghiên cứu khác.
Ưu và nhược điểm cuả các mơ hình đa nhân tố
Có một vài ưu điểm trong việc sử dụng các mơ hình đa nhân tố cho việc phân tích chứng
khốn và danh mục:
Các mơ hình đa nhân tố đã đưa ra được sự phân chia về rủi ro. Chính vì vậy, một hệ
thống phân tích hồn chỉnh biểu hiện của rủi ro sẽ được hình thành.
Vì nền kinh tế phát triển một cách có logic nên các mơ hình đa nhân tố sẽ khơng đơn
thuần là những phân tích thuộc về lịch sử.
Các mơ hình đa nhân tố là những mơ hình mà có thể phản ứng với những tác nhân kinh tế
bên ngồi.
Khi nền kinh tế và các cơng ty thay đổi thì các mơ hình đa nhân tố sẽ thích ứng bằng cách
phản ứng với những thay đổi.
Các mơ hình đa nhân tố tách biệt tác động của những nhân tố riêng lẻ, cung cấp q trình
phân tích phân khúc giúp đưa ra những quyết định đầu tư tốt hơn.
Từ việc xem xét những ứng dụng, ta thấy các mô hình đa nhân tố đúng, dễ sử dụng và dễ
hiểu đối với các NĐT.
Cuối cùng, các mơ hình đa nhân tố là những mơ hình linh động cho phép một số lượng
lớn các NĐT tham khảo và sử dụng.
Dĩ nhiên, các mơ hình đa nhân tố có những hạn chế nhất định. Mặc dù chúng dự báo được
một tỷ lệ lớn về rủi ro nhưng chúng khơng thể giải thích được tất cả. Thực tế là mơ hình sẽ
khơng đưa ra được việc lựa chọn cụ thể những CK nào mà chính các NĐT sẽ là người đưa ra
những chiến lược lựa chọn riêng cho mình.
Những cơng thức tính tốn mơ hình
Những mơ hình đa nhân tố xây dựng dựa trên những mơ hình đơn nhân tố bằng cách tính
tóan và mô tả mối tương quan giữa các nhân tố. Với những mơ hình đơn nhân tố thì việc tính
tốn mà mô tả mức vượt trội của tỷ suất sinh lợi là:
r˜ j = X j * f˜ + u˜
r˜ j : Tổng tỷ suất sinh lợi vượt trội trên tỷ suất sinh lợi phi rủi ro
X j : Độ nhạy cảm của chứng khoán j đối với nhân tố
f˜
: Mức tỷ suất sinh lợi trên nhân tố
u˜ j : Tỷ suất sinh lợi phi nhân tố (đặc trưng) trên chứng khốn j
Chúng ta có thể mở rộng mơ hình này đối với K nhân tố. Cơng thức tính tổng tỷ suất sinh lợi
vượt trội cho mơ hình đa nhân tố trở thành:
(CT 1)
K
r˜ j =
X jk f˜ k + u˜ j
k 1
Trong đó :
Xjk : Biểu hiện rủi ro của chứng khoán j đối với nhân tố k
f˜ k : Mức tỷ suất sinh lợi đối với nhân tố k
Chú ý rằng khi k=1, cơng thức tính tốn của mơ hình đa nhân tố là mơ hình đơn nhân tố. Ví
dụ, CAPM là một mơ hình đơn nhân tố mà TSSL “thị trường” chỉ liên quan đến một nhân tố
duy nhất.
Khi một danh mục bao gồm chỉ một CK thì cơng thức (CT 1) mơ tả TSSL vượt trội của nó.
Nhưng hầu hết các danh mục bao gồm nhiều CK, mỗi CK chiếm một tỷ lệ hay một tỷ trọng
của toàn bộ danh mục. Khi các tỷ trọng h p1 , h p 2 ,…., h pn phản ánh các tỷ lệ của N CK trong
danh mục P thì chúng ta biểu diễn TSSL vượt trội theo công thức sau:
K
r˜ P =
Trong đó:
N
X Pk f˜ k +
k 1
h
j 1
N
X Pk =
h
j 1
Pj
X jk
Pj
u˜ j
Công thức này bao gồm rủi ro từ tất cả các nguồn và đặt nền tảng cho việc phân tích các mơ
hình đa nhân tố.
Dự báo rủi ro bằng các mơ hình đa nhân tố
Các NĐT nhìn vào phương sai của toàn bộ danh mục để đưa ra một sự đánh giá tổng qt về
rủi ro. Để tính tốn phương sai của một DM, ta cần phải tính tốn tất cả hiệp phương sai của
những thành phần tạo nên nó.
Ngồi cái cốt lõi của mơ hình đa nhân nhân tố, việc ước tính hiệp phương sai của mỗi tài sản
với mỗi tài sản khác rất phức tạp và gây ra những sai số đáng kể trong q trình ước tính. Ví
dụ, việc sử dụng một tập hợp ước tính của 1.600 tài sản sẽ có 1.280.800 hiệp phương sai và
phương sai phải tính tốn (xem Hình 3-2):
(Hình 3-2)
V(i,j)= covar( ri,rj)
V(i,j) : Ma tr n hi p
ph ng sai và (i,j) các tài s n
v(1,1)
V=
v(1,2) … v(1,n)
v(2,1) v(2,2) … v(2,n)
v(3,n) v(3,2) … v(3,n)
Ma tr n hi p
ph ng sai v i
N=1600 tài s n, có
1.280.000 tài s n và
ph ng sai c n
v(n,1) v(n,2) … v(n,n)
Một mơ hình đa nhân tố đơn giản hóa những tính tốn này một cách đáng kể. Điều này có
được là do việc sử dụng những đặc điểm chung (nhân tố) để thay thế cho những đặc tính của
các cơng ty riêng lẻ thơng qua các cách phân loại. Vì rủi ro đặc trưng được giả định là không
tương quan giữa các tài sản nên chỉ có những phương sai và hiệp phương sai của các nhân tố
mới cần được tính tốn trong suốt q trình ước tính mơ hình.
( Hình 3-3)
Vector c a các TSSL v t tr i
Vectortr n t c TSSL v c t tr ci nhân
Ma c a cá tr ng
a cá
Ma tr nct atr c ng c nhân c nhân
Vector
cá TSSL a cá t
Vector c ca các TSSL nhân tc tr ng
Vector
a các TSSL
Vector c a các TSSL
c tr ng
Q trình tính tốn TSSL nhân tố. Sử dụng một mơ hình đa nhân tố để đơn giản hóa q trình
tính tốn. Hình (3-3) mơ tả mơ hình đa nhân tố bằng ma trận được trình bày bằng các nhân
tố, một số ước tính sẽ được giảm xuống một cách đáng kể.
Ví dụ, trong GEM-MSCI, có 90 nhân tố (ngọai trừ nhân tố tiền tệ) gồm 48 nhân tố thị trường
nội địa, 38 nhân tố ngành và 4 chỉ số rủi ro, chúng sẽ bao phủ được toàn bộ những đặc tính
rủi ro của nguồn vốn chủ sở hữu. Con số tính tốn phương sai và hiệp phương sai sẽ được
giảm xuống chỉ cịn 4.095 (xem Hình 3-4). Hơn nữa, vì có thêm một vài tham số để xác định
nên chúng có thể được ước tính với độ chính xác cao hơn.
Hình 3-4:
Ma trận hiệp phương sai nhân tố. Với k=90 nhân tố, sẽ chỉ có 4095 phương sai và hiệp
phương sai cần được ước tính. Ma trận hiệp phương sai này loại trừ các loại tiền tệ (46 nhân
tố GEM-MSCI), được thêm vào ma trận cuối cùng.
Ma tr n hi p ph
Các nhân t chung
Th trng ni
a
Các ch s
ng sai c a các
Trong những mơ hình rủi ro đa quốc gia, biểu hiện của tiền tệ sẽ tác động đến rủi ro. Trong
GEM, việc tính tốn các TSSL tiền tệ là bước cuối cùng trong việc tính tốn ma trận hiệp
phương sai. Để đơn giản, chúng ta tính tốn ma trận hiệp phương sai trước khi thêm vào
những tác động của tiền tệ.
Chúng ta có thể dễ dàng xác định được những tính tốn đại số của ma trận, điều này hỗ trợ
và liên kết với những sơ đồ trên bằng việc sử dụng mơ hình đa nhân tố. Từ hình (3-3), chúng
ta sẽ bắt đầu bằng cơng thức tính tốn mơ hình đa nhân tố:
r˜ i = Xf˜ + u˜
r˜ i : Tỷ suất sinh lợi trên tài sản
X : Bỉêu hiện của hệ số trên nhân tố
f˜ : Tỷ suất sinh lợi nhân tố, và
u˜ : Tỷ suất sinh lợi đặc trưng.
Hình thành mối quan hệ này theo cơng thức tính tốn cơ bản, chúng ta thấy rằng:
Rủi ro = Var(r˜ j )
= Va rX f˜ u˜
Sử dụng ma trận để tính tốn phương sai, cơng thức tính tốn rủi ro sẽ trở thành:
Rủi ro = XFX T +
Trong đó:
X : Trình bày về ma trận của các cơng ty dựa trên các nhân tố
F : Ma trận hiệp phương sai của các nhân tố
X T : Nghịch đảo của ma trận X, và
: Ma trận nghịch đảo của những phương sai đặc trưng
Đây là cơng thức tính tốn cơ bản xác định những tính tốn bằng ma trận được sử dụng trong
việc phân tích rủi ro trong Mơ hình vốn tồn cầu.
1.4. Mơ hình GEM
Những chức năng chính của mơ hình GEM là dự báo rủi ro và giải thích TSSL. Mơ hình này
cũng giống như những mơ hình đa nhân tố khác là phân tích biểu hiện của rủi ro dựa trên các
nhân tố được nhận biết bởi BARRA. Những nhân tố chung này phân loại các biểu hiện của
một DM thông qua những nhân tố thuộc về “phong cách” (như quy mơ và thành cơng) hay
cịn gọi là nhân tố trực giác, thị trường nội địa và phân loại ngành, cung cấp những thông tin
hữu dụng về cơ cấu của danh mục. GEM chứa đựng một mơ hình riêng biệt mà phân tích rủi
ro theo nhân tố tiền tệ.
1.4.1. Phát triển mơ hình ( Mơ hình Barra)
Phát triển mơ hình là cả một nghệ thuật và khoa học. Nghệ thuật chính là sự chọn lựa những
nhân tố chung mà sẽ phản ánh một cách rõ ràng những biểu hiện của rủi ro trong danh mục.
Quá trình chọn lựa này phải kết hợp giữa kinh nghiệm, phán đoán và cả kiểm định nữa.
Cịn tính khoa học của việc phát triển mơ hình chính là q trình tính tốn các TSSL nhân tố.
Các hiệp phương sai của những TSSL này là tập hợp của những ma trận hiệp phương sai
được sử dung trong q trình phân tích rủi ro, được giải thích trong phần “Q trình phát
triển của các mơ hình rủi ro”.
Cơng thức của mơ hình vốn tồn cầu có nguồn gốc từ cơng thức mơ hình đa nhân tố cơ bản
và biến đổi bao gồm các nhân tố BARRA (90 nhân tố và 46 loại tiền tệ theo phiên bản MSCI,
và 93 nhân tố và 51 loại tiền theo phiên bản FT của tháng 3 năm 1998)
46
Rl(n)- Rfl(n)
=
k 1
(vượt trội địa phương)
38
4
b(n, k )h(k ) y(n, j) g ( j ) z(n, i)q(i) +
(quốc gia)
j 1
(ngành)
e(n)
i 1
(chỉ số rủi ro) (đặc trưng)
GEM-MSCI
51
Rl(n)- Rfl(n)
=
k 1
4
j 1
e(n)
i 1
(chỉ số rủi ro) (đặc trưng)
GEM-FT
Rl(n) : Tỷ suất sinh lợi nội địa đối với tài sản
(vượt trội địa phương)
Trong đó:
36
b(n, k )h(k ) y(n, j) g ( j ) z(n, i)q(i) +
(quốc gia)
(ngành)
Rfl(n): Mức phi rủi ro nội địa trong nứơc của tài sản,
b(n,k): Biểu hiện của n tài sản đối với k nhân tố quốc gia,
y(n,j): Biểu hiện của n tài sản đối với j nhân tố ngành,
z(n,i): Biểu hiện của n tài sản đối với i chỉ số rủi ro
h(k) : TSSL đối với k nhân tố quốc gia,
g(j) : TSSL đối với j nhân tố ngành
q(i) : TSSL đối với i chỉ số rủi ro
e(n) : TSSL đặc trưng của n tài sản
Các chỉ số rủi ro
Mơ hình GEM bao gồm 4 chỉ số rủi ro mà xác định những thuộc tính tiêu biểu chung giữa
các cơng ty trong việc phân tích danh mục. Chúng cung cấp thông tin so sánh đã đựơc nghiên
cứu về các nguồn của rủi ro một cách dễ dàng. Giá trị tuyệt đối của chỉ số càng cao thì sự ảnh
hưởng đối với toàn bộ rủi ro danh mục của nhân tố càng lớn.
Dưới đây là những chỉ số rủi ro mà chúng ta cần tìm hiểu:
1. Quy mơ: chỉ số này giúp đánh giá công ty dựa trên sự vốn hoá thị trường để phân biệt sự
khác nhau giữa những công ty lớn và công ty nhỏ. Chỉ số rủi ro này là một yếu tố điển
hình về tình hình qua các năm và cũng chính là một nguồn quan trọng về rủi ro.
2. Đà phát triển (Thành công): sẽ xác định những CK tốt nhất gần đây thông qua những
biểu hiện về giá thị trường được đánh giá bởi cường độ tương đối. Cường độ tương đối
của một CK quan trọng trong việc giải thích độ biến động của nó.
3. Giá trị: đánh giá mức độ mà một CK được định giá thấp hơn so với thị trường, điều này
liên quan đến chỉ tiêu cơ bản nhưng cụ thể như cổ tức,dòng tiền, giá trị sổ sách…
4. Sự biến động của thị trường: dự báo độ biến động của một công ty, trừ thị trường, dựa
trên những ứng xử của nó trong quá khứ.
Các thị trường nội địa
Khi đánh giá những DM quốc tế, một nhà quản lý phải xem xét những tác động của các
ngành và thị trường nội địa. Trong Mơ hình vốn tồn cầu, những tác động của thị trường nội
địa giải thích rủi ro của DM nhiều hơn là các phân loại ngành.
Với một loạt các thị trường nội địa được trình bày vào tháng 3 năm 1998, gồm bảng 4-1
(GEM-MSCI) và bảng 4-2 (GEM-FT).
Bảng 4-1:
ARG
Argentina
KOR
Korea
AUS
Australia
MAL
Malaysia
AUT
BEL
Austria
Belgium
MEX
NET
Mexico
Netherlands
BRA
Brazil
NZE
New Zealand
CAN
CHI
Canada
Chile
NOR
PAR
Norway
Pakistan
CHN
COL
China
Colombia
PER
PHI
Peru
Philippines
CZE
DEN
FIN
FRA
GER
GRE
HKG
HUN
IND
IDN
IRE
ISR
ITA
JPN
JOR
Czech Republic
Denmark
Finland
France
Germany
Greece
Hong Kong
Hungary
India
Indonesia
Ireland
Israel
Italy
Japan
Jordan
POL
POR
RUS
SIN
SAF
SPA
SRI
SWE
SWI
TAI
THA
TUR
UKI
USA
VEN
Poland
Portugal
Russia
Singapore
South Africa
Spain
Sri Lanca
Sweden
Switzerland
Taiwan
Thailanf
Turkey
United Kingdor
United States
Venezuela
Bảng 4-2:
ARG
AUS
AUT
BEL
BRA
CAN
CHI
CHN
COL
CZE
Argentina
Australia
Austria
Belgium
Brazil
Canada
Chile
China
Colombia
Czech Republic
MAL
MEX
MOR
NET
NZE
NIG
NOR
PAK
PER
PHI
Malaysia
Mexico
Morocco
Netherlands
New Zealand
Nigeria
Norway
Pakistan
Peru
Philippines