Tải bản đầy đủ (.doc) (9 trang)

Giải bài tập nguyên lý máy - chương 3

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (180.79 KB, 9 trang )

CHƯƠNG 3: PHÂN TÍCH LỰC HỌC TRÊN CƠ CẤU PHẲNG LOẠI 2
1) Một con trượt chuyển động nhanh dần với gia tốc a = 10m/s
2.
Không

kể tới ma sát trên mặt
trượt, tính công suất ngoại lực P đẩy vật chuyển động khi vật có vận tốc 5m/s. Biết khối lượng
của con trượt là m = 2 kg (hình 3.1).
Áp dụng nguyên lý D A lăm be, thu được:

0=+
qt
PP
P
qt
= m.a = 2.10 = 20N.
 P = 10N
Công suất ngoại lực P đẩy vật chuyển động với vận tốc 5m/s: Hình 3.1
WVPVPVP 1005.20),cos( ===
2) Hãy tính mômen của lực quán tính của bánh đà trong thời gian mở máy: Biết lúc bắt đầu mở
máy vận tốc góc bằng 0 và sau 3 giây vận tốc tăng tỷ lệ với thời gian thì máy chuyển động
bình ổn, với vận tốc góc trung bình ω = 21s
-1
; mômen quán tính của bánh đà là J = 2kg.m
2
,
trọng tâm của bánh đà ở ngay trên trục quay (hình 3.2)
Phương trình chuyển động của bánh đà:

t
εω


=

2
/7
3
21
srad
t
===
ω
ε
Mômen của lực quán tính được tính:
M = J . ε = 2 . 7 = 14Nm
Hình 3.2
3) Tính những áp lực khớp động và lực cân bằng (đặt tại điểm giữa khâu AB theo phương
vuông góc với khâu này), cho trước l
AB
= 0,1m, l
BC
= l
CD
= 0,2m. Lực cản P
2
= P
3
= 1000N tác
động tại trung điểm các khâu. Lực cản P
2
hướng thẳng đứng xuống dưới, lực P
3

hướng nằm
ngang sang phải như hình 3.3a. AB, CD thẳng đứng, BC nằm ngang
Hình 3.3a Hình 3.3b Hình 3.3c
Tách nhóm tĩnh định BCD và đặt lực vào các khớp chờ (hình 3.3b):
R
12
và R
D3
. Viết phương trình cân bằng lực cho toàn nhóm:

0
33212
=+++
D
RPPR
(1)
phương trình (1) tồn tại 4 ẩn số: Giá trị và phương chiều của 2 lực:
R
12
và R
D3.
Chia các áp lực này ra thành 2 thành phần (hình 3.3b)

τ
1212
12
RRR
n
+=


τ
33
3
D
n
D
D
RRR +=

Lấy tổng mômen của các lực đối với điểm C thuộc khâu 2 và thuộc khâu 3:

0 )(
2
12
)(
2
=−=Σ
MCBCiC
lPlRRM
τ


05005,0
2
12
〉== NPR
τ
Hình 3.3d
 Chiều
τ

12
R

đã chọn ban đầu là đúng.

0 )(
3
3
)(
3
=−=Σ
NCCD
D
iC
lPlRRM
τ

P
V a
ω
A
B
C
D
M
N
P
2
P
3

B
C
D
M
N
P
2
P
3
τ
12
R
n
R
12
τ
3D
R
n
D
R
3
a
b
c
d
e
f
A
B

R
21
P
cb
h
1
2
3
2
3
1
R
21
P
cb
R
A1

05005,0
3
3
〉== NPR
D
τ
 Chiều
τ
3D
R
đã chọn ban đầu là đúng.
Viết lại phương trình cân băng lực (1):


0
1233
32
12
=+++++
nn
DD
RRRPPR
ττ
(2)
Phương trình (2) chỉ còn tồn tại 2 ẩn số là giá trị của
n
R
12

n
D
R
3
. Cách giải được trình bày trên
hình 3.3c.
Véc tơ
df
biểu thị áp lực
3D
R
có giá trị là
)(2500 N
, có chiều như hình vẽ 3.3c

Véc tơ
fb
biểu thị áp lực
3D
R
có giá trị là
)(2500 N
, có chiều như hình vẽ 3.3c
Viết phương trình cân băng lực riêng cho khâu 2 để tính áp lực tại khớp C:
3223
RR −=

0
32212
=+++ RPR
(3)
Phương trình này chỉ tồn tại 2 ẩn số là giá trị và phương chiều của R
32
. cách giải được vẽ ở hình 3.3c.
Véc tơ
fc
biểu thị áp lực tại khớp C
32
R
có giá trị là
)(2500 N
, chiều như hình vẽ 3.3c.
Bây giờ ta đi tính lực cân bằng đặt tại điểm giữa khâu AB:
Phương trình cân băng lực của khâu 1:


0
121
=++
Acb
RRP
(4)
Phương trình này tồn tại 3 ẩn số, để làm giảm bớt ẩn số, ta đi tìm giá trị P
cb:
0.
2
.)(
21)(
=−=Σ hR
l
PRM
AB
cbiA

N
l
h
RP
AB
cb
500.
1,0.2
21,0
2500.2.2
21
===

Phương trình 4 được giải ở hình 3.3d, và phương chiều của R
A1
được biểu diễn như hình vẽ, giá trị
được tính bằng 500N
4) Tính những áp lực khớp động và moomen cân bằng trên khâu dẫn 1 của cơ cấu 4 khâu bản
lề phẳng; cho trước l
AB
= l
BC
/ 4 = l
CD
/ 4 = 0,1m; khâu BC nằm ngang; các góc ϕ
1
= 90
o
, ϕ
2
=
45
o
và lực cản P
3
= 1000N tác động tại trung điểm khâu 3 với α
3
= 90
o
(hình 3.4a). Xét xem
việc tính những áp lực khớp động ấy có phụ thuộc và vận tốc góc khâu dẫn không? Giải
thích?
Hình 3.4a Hình 3.4b Hình 3.4c

Tách nhóm tĩnh định và đặt các áp lực tại khớp chờ.
Phương trình cân bằng lực được viết cho toàn nhóm:

0
3312
=++
D
RPR
(1)
Chia áp lực tại khớp chờ ra làm 2 thành phần như hình vẽ (hình 3.4b):
0.)(
12
)(
2
==Σ
BCiC
lRRM
τ

0
12
=
τ
R
0 )(
3
3
)(
3
=−=Σ

MCCD
D
iC
lPlRRM
τ

05005,0
3
3
〉== NPR
D
τ
Hình 3.4d
Chiều
τ
3D
R
đã chọn ban đầu là đúng
Phương trình cân bằng lực (1) được viết lại như sau:

0
1233
3
=+++
nn
DD
RRRP
τ
(2)
Phương trình (2) chỉ tồn tại 2 ẩn số, hoạ đồ lực được vẽ như ở hình 3.4c.

A
B
C
D
M
P
3
1
2
3
ϕ
1
ϕ
2
α
3
B
C
D
M
P
3
2
3
α
3
n
R
12
n

D
R
3
τ
12
R
τ
3D
R
a
b
c
d
A
B
R
21
R
A1
M
cb

NR
D
2500
3
=
, chiều được xác định như hình vẽ

NR 2500

12
=
, chiều cũng được xác định như hình vẽ.
Tính áp lực tại khớp trong C:
Xét sự cân bằng của khâu 2:
1232
RR −=
, giá trị :
NR 2500
32
=
Tính mômen cân bằng đặt trên khâu dẫn 1:
Chọn chiều M
cb
như hình 3.4d.
M
cb
= R
21
. l
AB
= 500√ 2 . 0,1 = 50√ 2 Nm
Áp lực tại khớp A:
211
RR
A
−=
, giá trị bằng 500√ 2 N
Ta lập bảng so sánh:
TT Véc tơ biểu diễn Véc tơ thật Giá trị Ghi chú

1

ab

3
P
1000N
2

bc

τ
3D
R
500N
3

cd

n
D
R
3
500N
4

da

12
12

RR
n
=

N2500
5

bd

3D
R

N2500
6

ad

32
R

N2500
Các giá trị trên khi tính không phụ thuộc vào vận tốc góc của khâu dẫn, bởi vì chúng ta không đi xác
định lực quán tính
5) Tính những áp lực khớp động và moomen cân bằng trên khâu dẫn 1 của cơ cấu tay quay con
trượt (hình 3.5a), cho trước l
AB
= l
BC
/ 2 = 0,1m, AB thẳng đứng, AC nằm ngang. Lực cản P
3

=
1000N nằm ngang cách rãnh trượt một đoạn h
3
= 0,058m. Sau đó nghiệm lại Kết quả M
cb
bằng phương pháp công suất.
Hình 3.5a Hình 3.5b Hình 3.5c
Tách nhóm tĩnh định ra khỏi cơ cấu và đặt áp lực vào các khớp chờ (hình 3.5b):
Phương trình cân bằng lực được viết:

0
312
=++ PNR
(1)
Phương trình (1) có 3 ẩn số, ta cần phải giảm bớt các ẩn số.
Chia áp lực ở khớp chờ B ra làm 2 thành phần (hình 3.5b):
0.)(
12
)(
2
==Σ
BCiC
lRRM
τ

0
12
=
τ
R


n
RR
12
12
=
Phương trình (1) được viết lại:
0
12
3
=++
n
RNP
(2) Hình 3.5d
Hoạ đồ lực được vẽ như ở hình 3.5c.
Do tam giác ABC là nửa tam giác đều nên tam giác abc trên hình 3.5c cũng là nửa tam giác đều:
NR
3
3
2000
12
=
,
NN
3
3
1000=
Chiều của các lực đã chọn ban đầu là phù hợp.
Để tìm điểm đặt của áp lực N ta viết phương trình cân bằng mômen của các lực đối với điểm C
3:

A
B
C
1
2
3
P
3
h
3
R
12
n
N
P
3
a
b
c
B
C
2
3
P
3
h
3
R
12
n

R
12
t
N
x
R
21
R
A1
M
cb
B
A
h
0
33
=− xNhP

m
N
hP
x 1,03
1000
058,0.1000
.
33
===
Áp lực N đặt cách tâm C một khoảng 0,1m.
Để tính áp lực tại khớp trong C ta viết phương trình cân bằng lực riêng cho khâu 2:
0

3212
=+ RR

3212
RR −=

NRR
3
3
2000
3212
==
Tính mômen cân bằng đặt tại khâu dẫn:
Phương trình cân bằng lực tại khâu dẫn (hình 3.5d):
0
121
=+
A
RR

121 A
RR −=

NRR
A
3
3
2000
121
==

Mômen cân bằng có chiều được chọn như hình vẽ 3.5d:
NmhRM
cb
100
2
31,0
3
3
2000.
21
===

Chiều M
cb
đã chọn là đúng.
Bây giờ chúng ta nghiệm lại kết quả trên bằng phương
pháp công suất. Giả sử khâu AB quay với vận tốc góc
ω
1
và chọn chiều M
cb
như hình vẽ 3.5e.
0
331
=+ VPM
cb
ω
(3)
Ở chương 2 phần phân tích động học ta đã biết: Hình 3.5e
3

3221
VVVVV
CCBB
====

Chiều của M
cb
và ω
1
là cùng chiều, chiều của V
3
và P
3
là ngược nhau, do vậy từ phương trình (3) ta
suy ra:
M
cb
. ω
1
– P
3
. V
3
= 0  M
cb
= P
3
. V
3
/ ω

1
= P
3
. ω
1
.l
AB
/ ω
1
= P
3
. l
AB
= 1000 . 0,1 = 100Nm.
Chiều M
cb
và giá trị đã chọn là hoàn toàn đúng, phù hợp với phương pháp phân tích áp lực.
6) Tính những áp lực khớp động và mômen cân bằng trên khâu dẫn 1 của cơ cấu tính sin (hình
3.6a). Cho trước l
AB
= 0,1m, ϕ
1
= 45
o
, lực cản P
3
= 1000N. Sau đó giải bài toán khi rãnh trượt
chỉ tiếp xúc ở 2 điểm C’, C’’ với khoảng cách C’C’’ = 0,2m (hình 3.6b).
Hình 3.6a2
Hình 3.6a Hình 3.6a1

Tách nhóm tĩnh định (hình 3.6a1) Hình 3.6a3
Khớp trong là khớp tịnh tiến, do vậy viết phương trình cân bằng riêng cho từng khâu. Tách riêng khâu
2 (hình 3.6a2)
0
12
=+ NR

NR −=
12
 2 lực này song song và ngược chiều nhau.
Lấy tổng mô men của các lực trên khâu 2 đối với điểm B
2
(có giá trị bằng 0) dẫn đến 2 lực
NR ,
12
trực đối và đặt tai B (hình 3.6a3)
Xét riêng khâu 3:
0
323
=++ PNR

Chiếu phương trình này lên phương P
3
và N:

0=N

323
PR −=
Do vậy ta thấy rằng chiều các lực đã chọn trên hình 3.6a3,

3.6a4 là hợp lý và các lực có giá trị
R
12
= R
32
=R
23
= P
3
= 2000N, N = 0
Do
323
PR −=
và cách nhau một đoạn tạo nên một ngẫu: Hình 3.6a4
A
B
C
1
2
3
P
3
B
C
2
3
P
3
N
R

12
B
R
12
R
32
B
R
12
R
32
B
C
3
P
3
N
R
23
h
N
1
N
2
x
45
o
A
B
C

1
2
3
P
3
h
3
R
23
.h = P
3
. h = M
Chính vì thế, áp lực tại khớp C phải phân bố để tạo thành một ngẫu chống lại ngẫu lực M nói trên để
khâu 3 ở trạng thái tĩnh định:
0
21
==+ NNN
;
21
NN −=
và N
1
. x

= N
2
. x = M
Xác định mômen cân bằng:
Xét khâu dẫn 1 (hình 3.6a5)
Phương trình cân bằng lực:

0
121
=+
A
RR

0
121
=−=
A
RR
, có giá trị là 1000N
M
cb
= R
21
. h = 1000 . 0,1√2 /2= 50√2 Nm Hình 3.6a5
Ở trường hợp thứ hai, xét hình 3.6b
Hình 3.6b Hình 3.6b2 Hình 3.6b3
Tác nhóm tĩnh định ra khỏi cơ cấu (hình 3.6b). Xét riêng khâu 3 (hình 3.6b3)
Phương trình cân bằng lực riêng cho khâu 3:
0
32123
=+++ PNNR
Do 2 lực N
1
và N
2
cùng phương, cho nên ta có :
NNN =+

21
Phương trình trên được viết lại:
0
323
=++ PNR
.
Lúc này cách giải tương tự như phần trên và lấy kết quả đã tính, do N = 0 cho nên:
21
NN −=
.
Như vây: N
1
. x

= N
2
. x = M
Hay :
N
1
= N
2
= M / x = R
23
. h / l
C’C’’
= 1000 . 0,1√2 /2 . 0,2 = 250√2 N
7) Tính những áp lực khớp động A, B, C, D và mômen cân bằng trên khâu dẫn 1 của cơ cấu
máy sàng (hình 3.7a). Cho trước: l
AB

= l
BC
/2 = l
CD
/2 = l
DE
= 0,1m; ϕ = ϕ
23
= ϕ
3
= 90
o
; ϕ
4
= 45
o
.
lực cản P
3
= 1000N.
Hình 3.7a Hình 3.7b Hình 3.7c
Tính cho nhóm tĩnh định ở xa khâu dẫn trước (nhóm 4,5).
Phương trình cân bằng lực cho nhóm (4,5) (hình 3.7b):

0
334
=++ PNR
(1)
Phương trình này tồn tại 3 ẩn số, cần phải khử bớt ẩn số:


τ
3434
34
RRR
n
+=
Hình 3.7d
0.)(
34
)(
4
==

EFiF
lRRM
τ

0
34
=
τ
R
, 
n
RR
34
34
=
A
B

1
M
CB
h
R
21
R
A1
A
B
1
2
3
P
3
C’
C’’
B 2
3
P
3
C’
C’’
N
1
N
2
B
3
P

3
C’
C’’
N
1
N
2
R
23
F
P
3
A
B
C
D
E
1
2
3
4
ϕ
1
ϕ
23
ϕ
3
ϕ
4
5

5
E
F
4
R
34
n
R
34
t
N
N
R
34
P
3
P
3
B
C
D
E
2
3
ϕ
23
R
12
n
R

12
t
R
D3
t
R
D3
n
R
43
h
43
Hình 3.8e
R
23
R
C3
t
R
C3
n
a
b,c
Hình 3.8f
Phương trình (1) bây giờ chỉ còn lại 2 ẩn số là giá trị của áp lực
tại E và áp lực N. Hoạ đồ lực được vẽ như hình 3.7d.
Từ hoạ đồ lực ta xác định được giá trị:
N = P
3
= 1000N; R

34
= R
D
= 1000√2 N.
Hệ lực phẳng cân bằng, 3 lực đồng quy tại một điểm:
Áp lực N, R
34
, P
3
đồng quy tại F. Phương chiều đã chọn ban đầu
là hoàn toàn đúng.
Xét tiếp nhóm tĩnh định kề khâu dẫn (2,3)
Phương trình cân bằng lực: Hình 3.7e
0
12343
=++ RRR
D
(2)
Phương trình này tồn tại 4 ẩn số. Chia áp lực ở khớp chờ B và D ra làm 2 thành phần như hình3.7c:
0.)(
12
)(
2
==

BCiC
lRRM
τ
, 
0

12
=
τ
R
, 
n
RR
12
12
=
0 )(
4343
3
)(
3
=−=

hRlRRM
CD
D
iC
τ
NR
D
5002,0.2/21,0.21000
3
==
τ
 Chiều chọn ban đầu là đúng.
Phương trình cân bằng lực (2) được viết lại:

0
12
33
43
=+++ RRRR
n
DD
τ
(3) Hình 3.7f
Phương trình này chỉ có 2 ẩn số, cách giải được trình bày trên hình 3.7e
Áp lực R
12
= R
B
= 500N được biểu diễn bởi véc tơ
da
.
Xét sự cân bằng khâu 2:
0
3212
=+ RR
;  R
12
= R
32
= 500N.
Xét sự cân bằng lực của khâu dẫn:
0
121
=+

A
RR
,  R
21
= R
A1
= 500N
M
cb
= R
21
.0,1 = 500 . 0,2 = 50Nm
Chúng ta không thể tính áp lực khớp động bắt đầu từ nhóm nối với khâu dẫn được, vì lúc này
ta chưa biết được lực tác dụng lên khâu dẫn và hơn nữa, nếu thực hiện như vậy sẽ không tính đến
sự tác động của các ngoại lực ở các nhóm xa khâu dẫn.
8) Tính những áp lực khớp động và mômen cân bằng đặt tịa khâu dẫn 1 của cơ cấu cu lít (hình
3.8a). Cho trước l
AB
= 0,3m; ϕ
1
= 90
o
; ϕ
3
= 30
o
, mômen cản M
3
= 600Nm đặt trên culít. Sau đó
nghiệm lại kết quả tính M

cb
bằng phương pháp công suất.
Hình 3.8a Hình 3.8b Hình 3.8c Hình 3.8d
Tách nhóm tĩnh định (2,3); vì khớp trong là khớp tịnh
tiến cho nên ta viết và giải phương trình lực riêng
cho từng khâu:
Tách riêng khâu 2 (hình 3.8c) ta viết được:

0
3212
=+ RR
, 
0
3212
=−= RR
(1)
Lấy tổng mô men các lực đối với điểm B
2
:
0.)(
32)(
2
==

xRRM
iB
,  x = 0 (2)
Hai lực R
12
và R

32
trực đối và đặt tại B, phương
vuông góc với phương trượt BC (hình 3.8d).
a
b c
d
A
B
1
ϕ
1
M
cb
R
21b
R
A!
ϕ
1
ϕ
3
M
3
A
B
C
1
2
3
M

3
B
C
2
3
B
2
R
12
R
32
B
2
R
12
R
32
Xét tiếp riêng khâu 3 (hình 3.8e)

0
23
33
=++ RRR
n
CC
τ
(3)
3
3
)(

)(
3
MlRRM
BC
C
iB
−=

τ
; 
N
l
M
R
BC
C
1000
2.3,0
600
3
3
===
τ

Phương trình (3) được giải ở hoạ đồ lực (hình 3.8f). R
C3
n
= 0 Hình 3.8g
Nghĩa là R
C3


= R
C3
t
= R
23
= R
32
= R
12
= 1000N.
Phương chiều của các lực đã chọn là hợp lý.
Tính mô men cân bằng dặt trên khâu dẫn 1:
Xét hình 3.8g: Chiều M
cb
chọn trước, phương lực R
21
hợp với phương của tay quay AB một góc 30
o
.
Phương trình cân bằng lực:
0
121
=+
A
RR
, 
0
121
=−=

A
RR
, 
NRR
A
1000
121
==
M
cb
= R
21
. l
AB
/2 = 1000 . 0,3 / 2 = 150Nm.
Nghiệm lại M
cb
bằng phương pháp công suất:
Hoạ đồ vận tốc cơ cấu được biểu diễn ở hình
2
.
2
12
3
AB
B
B
l
V
V

ω
==
42.2
.
11
3
3
ωω
ω
===
AB
AB
BC
B
l
l
l
V
Chiều cùng chiều với vận tốc góc khâu 1
Chọn chiều M
cb
cùng chiều với ω
1
, ta có:
0
331
=+
ωω
MM
cb

, 
0
331
=+
ωω
MM
cb
Hình 3.8h

Nm
MMM
M
cb
150
4
600
44.

3
1
13
1
33
−=−=−=−=−=
ω
ω
ω
ω
Chứnh tỏ chiều M
cb

đã chọn ban đầu là sai, chiều M
cb
sẽ ngược lại chiều đã chọn. Kết quả phù hợp với việc
tính toán mômen cân bằng theo phương pháp phân tích áp lực.
9) Tính những áp lực khớp động và mô men cân bằng đặt trên cam của cơ cấu (hình 3.9a). Tại vị trí tiếp
xuác đang xeys, biên dạng cam là một đoạn thảng làm với phương ngang một góc ϕ
1
= 45
o
, h = a = b =
0,1m và lực cản P
3
1000N. Sau đó hãy giải bài toán bằng cách thay thế khớp cao, rồi so sánh kết quả
và phương pháp tính.
Hình 3.9a Hình 3.9b Hình 3.9c Hình 3.9d
Tách riêng khâu 2 và đặt các lực vào (hình 3.9b):

0
12'''2
=+++ RRRP
CC
(1)
Vì R
C’
và R
C’’
là cùng phương, do vậy hợp lực sẽ là R
C
và chiều R sẽ theo chiều của véc tơ nào có giá trị lớn hơn.
Phương trình (1) được viết lại:


0
122
=++ RRP
C
(2)
Phương trình (2) chỉ tồn tại 2 ẩn số : đó là giá trị của R
C
và R
12
. Cách giải được trình bày trên hình 3.9c.
A
B
1
R
21
R
A1
M
cb
ϕ
1
ϕ
3
M
3
A
B
C
1

2
3
ω
1
V
B3
V
B2,1
a
b
h
ϕ
1
A
B
C’
C’’
P
2
1
2
a
b
B
C’
C’’
P
2
2
R

12
R
C’
R
C’’
R
R
12
P
2
A
B
1
M
cb
h
Do ϕ
1
= 45
o
cho nên ta tính được giá trị:
R
C
= P
2
= 1000N và R
12
= 1000√2 N
Lấy tổng mô men của các lực trên khâu 2 đối với điểm B
2:


=−+= 0.)()(
'''
)(
2
aRbaRRM
CCi
B

2/
''' CC
RR =
. Áp lực R
C’
tại điểm C’ lớn hơn áp lực R
C’’
tạ điểm C’’. Do vây lực tổng R
C
sẽ mang chiều
của R
C’
. Từ đó thấy rằng chiều các áp lực đã chọn là hợp lý. Giá của các lực là:
R
C’’
= 2000N và R
C’’
= 1000N
Xét hình 3.9d. Moomen cân bằng được chọn như hình vẽ và giá trị được tính:
0
21

=− hRM
cb
,

NmhRM
cb
100
2
2
1,0.21000.
2121
===
Áp lực tại A được tính:
0
121
=+
A
RR

121 A
RR −=
, 
NRR
A
21000
121
==
Xét trường hợp thay thế khớp cao ta có cơ cấu thay thế (hình 3.9e):
Hình 3.9e Hình 3.9f
Tách nhóm tĩnh định (hình 3.9f) , vì khớp trong là khớp quay, ta viết phương trình cân bằng lực cho toàn nhóm:


0
12'''2
=+++ RRRP
CC
(3)
Vì R
C’
và R
C’’
là cùng phương, do vậy hợp lực sẽ là R
C
và chiều R sẽ theo chiều của véc tơ nào có giá trị lớn hơn.
Phương trình (1) được viết lại:
0
122
=++ RRP
C
Cách giải hoàn toàn tương tự như phần trước (hình 3.9c)
Trong trường hợp thay thế khớp cao cho nên số khớp thấp nhiều hơn, việc xác định áp lực nhiều hơn một khớp.
Nói cung 2 cách tính đều như nhau.
10) Tính những áp lực khớp động và moomen cân bằng trên khâu dẫn 1 của cơ cấu trên hình 3.10a. Cho
trước kích thước: l
AB
= l
BC
/4 = l
CD
/ 2 = l
DE

/ 2 = 0,05m, các góc ϕ
1
= ϕ
12
= 90
o
; ϕ
3
= ϕ
35
= 45
o
và lực cản
tác động nằm ngang trên khâu 5 là P
5
= 400N.
Hình 3.10a Hình 3.10b Hình 3.10c
Tách nhóm tĩnh định (4,5), đặt các lực vào, phương trình cân bằng lực cho toàn nhóm:

0
345
=++ RRP
F
(1)
Đa giác lực được vẽ như ở hình 3.10c, chiều của các áp lực được xác định trên hoạ đồ, có giá trị tương ứng:
R
F
= P
5
= 400N, R

34
=400√2 N.
Tương tự như những bài trước khi xét riêng khâu 4:
a
b
h
ϕ
1
A
B
C’
C’’
P
2
1
2
a
b
B
C’
C’’
P
2
2
R
C’’
R
C’
R
12

A
B
C
D
E F
P
5
1
2
3
4
5
ϕ
35

ϕ
3
ϕ
12

ϕ
1

E
F
P
5
4
5
R

34
R
F
P
5
R
F
R
34
Ắp lực R
34
đi qua điểm E, Phương lực P
5
cũng đi qua E, do vậy phương của R
F
cũng phải đi qua E.
Dĩ nhiên
5434
RR −=
Xét nhóm tĩnh định gần khâu dẫn (hình 3.10d):
Hình 3.10d Hình 3.10e Hình 3.10f
Phương trình cân bằng lực cho toàn nhóm:

0
12343
=++ RRR
D
Hay
0
121233

43
=++++
nn
DD
RRRRR
ττ
(2)
0 )(
43
3
)(
2
=−=

CECD
D
iC
lRlRRM
τ

N
l
l
RR
CD
CE
D
2200
2
2400

43
3
===
τ
Chiều đã chọn ban đầu là đúng.
0.)(
12
)(
3
==

BCiC
lRRM
τ
, 
0
12
=
τ
R
Phương trình (2) được viết lại như sau:
0
12
33
43
=+++ RRRR
n
DD
τ
(3)

Phương trình này tồn tại 2 ẩn số là giá trị của R
D3
n
và giá trị của R
12
, cách giải được trình bày trên hình 3.10e.
Phương chiều của các lực đã chọn là hợp lý. Giá trị được tính trực tiép trên hoạ đồ lực:
R
D3
= R
12
= 400N
Xét sự cân bằng của khâu 2 :
0
3212
=+ RR
 2 lực này ngược chiều nhau và có giá trị chính bằng 1000N.
Tính lực khâu dẫn.
Xét hình 3.10f . Phương trình cân bằng lực:
0
121
=+
A
RR
, 
NRR
A
400
121
==

Chọn chiều M
cb
như hình vẽ:
M
cb
= R
21
. l
AB
= 400 . 0,1 = 40Nm
11) Tính áp lực khớp động tai B (khớp quay giữa bánh răng 2 và cần C) và mômen cân bằng M
cb
trên cần
C của cơ cấu bánh răng hành tinh (hình 3.11a), dưới tác động của mômen cản trên khâu 1: M
1
= 20Nm,
cho trước mô đun của các bánh răng m = 20mm, góc ăn khớp tiêu chuẩn, số răng các bánh: z
1
= z
2
=
20; z
3
= 60.

Hình 3.11a Hình 3.11b
Ta có
BC
RRR ==
022

Xét sự cân bằng mô men của bánh răng 2, 1.
0.
1
=+ MABR
B
Với AB = m (z
1
+ z
2
)/2 = 20 (20 + 20)/2 = 400mm
B
C
D
E
2
3
R
43
R
D3
t
R
12
n
R
12
t
R
D3
n

a
b
c
d
R
12
R
D3
t
R
D3
n
R
D3
A
B
1
M
cb
R
21
R
A1
A
M
1
C
B
1
2

3
2
B
A
M
1
1
2
3
Vậy: R
B
= - M
1
/AB = 20/0,4 = - 50N
Mômen cân bằng tác động lên cần C được tính từ phương trình cân bằng công suất:
M
cb
. ω
C
+ M
1
. ω
1
= 0  M
cb
= - M
1

1


C
Xét chuyển động tương đối của cơ hệ đối với cần C:
CC
ωωω
−=
11

CC
ωωω
−=
33

1
3
1
3
1
1
z
z
CC
C
−=−=


ω
ω
ωω
ωω


41
1
3
1
=+=
z
z
C
ω
ω
 M
cb
= - 20 . 4 = -80Nm
Chứng tỏ M
cb
nược chiều với M
1
.

×